Abstract

In this paper, the optical properties of a plasmonic nanoantenna array have been investigated. The proposed plasmonic structure presents omnidirectional resonance properties, such as omnidirectional reflection dip and omnidirectional emission peak. In addition, the reflection and emission of the plasmonic nanoantenna array with various metal/insulator/metal cavity thicknesses are theoretically and experimentally investigated. The simulation reveals a fair agreement with the experimental results.

© 2014 Optical Society of America

1. Introduction

Surface plasmon polaritons (SPPs) are collective charge oscillations along metal/dielectric interfaces [1]. The unique properties of SPPs have been applied to diverse applications, such as photonics [2,3], medical drug delivering [4,5] and bio-sensing [6,7]. The middle-infrared (mid-IR) spectral range is of critical importance for thermal imaging, sensing of gases and aerosols, and environmental monitoring. Unfortunately, very few radiation sources exist in this range with sufficient power and they are mostly in the development phase. Unfortunately, radiation sources in the mid-IR range are still insufficient. Plasmonic thermal emitters (PTEs) based on periodically structured metallic multilayers provide tunable, narrow-band radiation, much narrower than from a black-body at the same heating temperature. Besides PTEs, several groups have demonstrated spectral control of emittance by means of subwavelength structures such as one-dimensional SiC grating [8,9], SiC nanoanttena [10], and photonic crystals (PhC) [1113]. One of the most promising venues is based on plasmonic and metamaterial effects [14]: the plasmonic metamaterials provide the adjustability of spectral design that can boost thermal emission at the desired wavelength, up to the level of an ideal blackbody. It has been shown that the resonance mode arising from the SP coupling between the adjacent metallic structures can be thermally excited from a heated PTE [15]. PTEs have become a promising candidate as a near-IR, mid-IR and even THz radiation [16] source owing to their versatile resonance properties. For example, extremely high temporal coherent thermal emission of PTEs, through the use of the resonance of surface phonon [8] and delocalized SP [17], have been demonstrated. However, the resonance condition based on surface phonons and/or delocalized SPs often leads to a sensitive response to the observing angle [18]. Besides narrow band resonance emission, broadband thermal emission exceeding the blackbody limit in the near-field based on hyperbolic metamaterials has also been theoretically proposed [19]. Broadband thermal emission based on the resonance of Fabry-Perot-like LSP has also been experimentally demonstrated [20]. To extend the application of PTEs, single [21], dual [22] and triple [23] resonance thermal emission of PTEs has been engineered and realized.

In this paper, we use a plasmonic nanoantenna array as an omnidirectional thermal emitter. Both of the reflection and emission properties as a function of MIM cavity thickness are investigated. The simulation presents a fair agreement with the experimental results.

2. Description of the omnidirectional plasmonic nanoantenna array

The schematic of the nanoantenna array is shown in Fig. 1. It is made of an optically thick silver film acting as a semi-infinite mirror, a thin dielectric layer (SiO2) forming the gap of the antenna of thickness tw, and an upper metallic nanowire. The plasmonic structure consists of a dielectric layer, acting as a load, sandwiched by two metallic structures which can be also treated as a metal/insulator/metal (MIM) cavity array. The periodicity and the nanoscale structures provide additional momentum to couple the free-space light into SP. The blue line represents the field distribution of the SP mode. As the two adjacent metals are sufficiently close, the two metallic structures are coupled. The resonance properties dramatically depend on the geometry of the whole MIM cavity which plays the role of the optical antenna and converts free-space optical radiation into SP localized within a subwavelength scale. The plasmonic nanoantenna array is fabricated by using conventional lithography and lift-off technique. Here, the pitch, width and thickness of the nanowire are fixed to be Λg = 3000nm, wAg = 1500nm and tAg = 100nm, respectively. Samples with different thickness of SiO2 are then made.

 

Fig. 1 Schematic representation of the plasmonic nanoantenna array. The thickness of the SiO2 layer is denoted by tw. The thickness, width and period of the Ag nanoantenna are denoted by tAg, wAg, and Λg, respectively.

Download Full Size | PPT Slide | PDF

The optical properties of the structure are calculated by using the Rigorous Coupled Wave Analysis (RCWA) as described in [24,25]. The input light is TM (or TE) polarized in which the magnetic (electric) field is parallel to the grating grooves (i.e., parallel to the y-axis). The dispersive complex dielectric constants of SiO2 and Ag are taken from [26]. Here, we consider the primary resonance to arise from a LSP which in turn is due to a standing wave of plasmons trapped below a metal patch. The Hy field distribution of the considered resonance mode is simulated by using RCWA. The considered resonance mode is a fundamental Fabry-Perot (FP) one causing from the MIM SP wave gets reflected off the two edges of the metal patch. The resonance mode within the MIM cavity is also shown in Fig. 1. The resonances not are not coupled to each other, as the metal patches are sufficiently separated from each other.

3. Thickness-dependence resonance properties of the plasmonic nanoantenna array

Figure 2(a) shows the reflection spectrum of the plasmonic nanoantenna array. Black, red, blue, green and pink lines represent tw = 0nm, tw = 20nm, tw = 50nm, tw = 80nm, and tw = 140nm, respectively. The other geometric parameters are: Λg = 3μm, tAg = 0.1μm and WAg = 1.5μm. The reflection of the resonant modes of the plasmonic nanoantenna is studied in the 3μm-12μm wavelength range using an angle-resulted Fourier transform infrared spectroscopy (FTIR). The incident light is TM-polarized (magnetic field parallel to the wires) with an incident angle of 15°. The reflection signal (R) was normalized to the reflection of a flat Ag mirror.

 

Fig. 2 (a) Reflection spectra of the nanoantenna array as a function of SiO2 thickness, tw, measured under TM polarization with an oblique incident angle of 15°. (b) Resonant wavelength for the fundamental mode of the MIM cavity as a function of SiO2 thickness, tw. The other geometric parameters are Λg = 3μm, tAg = 0.1μm and wAg = 1.5μm. (c) Hy field distribution for λ = 4.8μm and tw = 20nm (●). (d) Hy field distribution for λ = 7.5μm and tw = 20nm (■). (e) Hy field distribution for λ = 11.6μm and tw = 20nm (▲).

Download Full Size | PPT Slide | PDF

As shown in Fig. 2(a), there is no resonance mode that can be observed for tw = 0nm, i.e. the structure is a surface-relief Ag grating. For tw = 20nm, a LSP mode at λ = 7.45μm can be observed within the tiny MIM cavities with a size of λ2/1625. The MIM cavities play the role of a FP resonator for the slow plasmonic wave propagating along the x-direction and reflected at the terminations of the wire. The FP resonant mode inside the MIM cavity is a fundamental FP one with no node. As tw increases, the resonance mode shifts to a shorter wavelength. It has been theoretically reported that the propagation constant and effective index inside the MIM cavity increases with a decreasing thickness of the MIM cavity [27,28]. The high effective index of the mode is due to the strong coupling between the thin metal wire and the Ag mirror. The optical path inside the MIM cavity decreases for an increasing tw. As a result, the resonance wavelength shifts to shorter wavelength. It can be also found that there is a resonance mode at 11.8μm for tw = 20nm. In a similar manner to the resonance mode at 7.45μm, it shifts to a shorter wavelength with an increasing tw.

Figure 2(b) shows the simulation and experimental results of the resonance wavelength as a function of thickness. The experimental results show fair agreement with the simulation results. The resonance wavelength dramatically changes for a relatively small tw. As tw > 100nm, the variance of the resonance wavelength can barely be observed.

The Hy field distribution of the three resonance modes for tw = 20nm are shown in Figs. 2(c), 2(d) and 2(e). It can be seen that the resonance mode for λ = 7.45μm is a fundamental FP resonance mode. The resonance mode for 11.8μm is also a fundamental FP resonance mode but with a weak local field enhancement. This resonance wavelength is close to the SiO2 phonon vibration absorption peak. Therefore, the refractive index at λ = 11.8μm (n = 2.14) is much higher than that at λ = 7.45μm (n = 1.2). Therefore, the MIM cavity can support another fundamental FP mode with a longer wavelength.

Figure 3 shows the omnidirectional property of the nanoantenna array. The black solid line is the SP dispersion for Ag/Air interface. The red, blue, green, and pink symbols represent tw = 20nm, tw = 50nm, tw = 80nm, and tw = 140nm, respectively. It can be seen that the resonant wavelength remain almost the same for tw = 20nm and tw = 50nm for an incident angle varying from 15° to 65° with a step of 5°. In the area of the left hand side of the SP dispersion line, the resonance wavelength for tw = 140nm slight shifts to a longer wavelength as the incident angle approaches the SP dispersion line, while in the area of the right hand side of the SP dispersion line, the resonance wavelength for tw = 140nm slightly shifts to a shorter wavelength as the incident angle approaches the SP dispersion line. As the resonance wavelength and the incident angle satisfy the SP resonance condition, the grating-coupled SP at the Ag grating/Air interface with a high local density of state couples out the LSP inside the MIM cavity. The resonance condition near the SP dispersion line is thus altered.

 

Fig. 3 Resonant wavelength for the fundamental mode of the MIM cavity for an oblique incident angle ranging from 15° to 65°. The black solid line represents the SPP dispersion at the Ag/Air interface. The geometric parameters of the nanoantenna are Λg = 3μm, tAg = 0.1μm and WAg = 1.5μm.

Download Full Size | PPT Slide | PDF

According to the Kirchhoff’s law, the emissivity is equal to absorptivity. The previous works have been shown that the thermal emission peak is coincide to the SP dispersion [8] and surface phonon dispersion [17]. It is found that the absorption peak at specific incident angle leads to an emission peak at the same collection angle. These significant results imply that the Kirchhoff’s law can be extend to be: the emissivity of a material at specific energy (wavelength) and momentum (collection angle) is equal to its absorptivity at specific energy and momentum (incident angle). Based on this concept, our previous work [20] showed that the emission spectrum can be well predicted based on the angle-resolved reflectance spectrum. Therefore, we conclude that the angle-independent resonance properties shown in the Fig. 3 can contribute to angle-independent thermal emission. The thermal emission, based on high density of state at the band edge of PhC [29] and the dispersion of the grating-coupled SP, presents relatively higher quality-value than that of the MIM cavity resonance. This makes the thermal emission of the PhC band edge and the grating-coupled SP present high temporal coherence. However, the resonance of the PhC band edge and the grating-coupled SP highly depends on the momentum matching condition. Thereby, the resonance can only be observed at a specific angle. This extremely high angle-dependent property is especially obvious for the thermal emission from the grating-coupled SP resonance. This characteristic limits their applications and overall efficiency. In this study, the proposed plasmonic nanoantenna arrays present an omnidirectional resonance property. The resonance thermal emission can be observed over a wide observing angle. This kind of characteristic is more convenient as an IR illumination source.

4. Resonant emissivity

For the measurement of the emissivity of a gray body, an ideal blackbody emitter is usually needed as a reference. Here, a self-reference method is applied. First, the TE-polarized thermal radiation of the PTE was measured as a reference using an FTIR spectrometer. The thermal radiation from the heated PTE was collected using a concave mirror with a numerical aperture of 0.1. In the measuring spectral range, there is no resonance mode for TE-polarized light. Thereby, the ideal emissivity spectrum of the TE-polarized light can be theoretically evaluated. In this paper, the ideal emissivity of TE-polarized light is calculated using the RCWA method. The absorptance of different incident angle is averaged. Therefore, the calculated emissivity is angle-averaged. Then, the TM-polarized thermal emission was measured and normalized to the TE-polarized thermal radiation. The normalized results can be seen as the enhancement of the thermal emission. The enhancement of the thermal emission at λ = 5.8μm for tw = 50nm is 12.3. Multiplying the normalized thermal radiation spectrum by the theoretical TE-polarized emissivity, one can obtain the TM-polarized emissivity spectrum as shown in Fig. 4(a). The emissivity spectrum is measured from the PTE heated at a temperature of 250°C. Black, red, blue and green solid lines represent the TM-polarized emissivity of the plasmonic nanoantenna array with tw = 20nm, tw = 50nm, tw = 80nm and tw = 140nm. The emissivity for tw = 0nm is not shown here because there is no resonance mode.

 

Fig. 4 (a) Plasmonic enhanced emissivity for different MIM cavity thickness, tw. The heating temperature of the plasmonic nanoantenna is 250°C. (b) Relation between the resonant emissivity and Hy field enhancement of the fundamental mode.

Download Full Size | PPT Slide | PDF

As shown in Fig. 4(a), the resonance wavelength gradually shifts to a shorter wavelength as tw increases. Under the off-resonance condition, the plasmonic nanoantenna array shows a low emissivity, around 2% within the investigated spectral range, which is consistent with the inherent properties of a Ag plate. It can be seen that the trend of emissivity climbs up and then declines for an increasing tw. For tw = 50nm, the maximum of the TM emissivity is 0.19 and the enhancement is 12.3. Additionally, the emissivity is an angle-averaged one. Therefore, the sharp resonance peak reported in [8,17] is not found owing that the angle-dependent SP mode was merged with the angle-independent SP mode after the average over solid angles.

Figure 4(b) shows the maximum of the TM emissivity for different tw. Also shown in Fig. 4(b) is the Hy field enhancement at resonance wavelength for different tw. The field enhancement is defined as the maximum of the localized magnetic field normalized to the input magnetic field. The input field is TM-polarized. Therefore, only y-component of the magnetic field, Hy, is shown. The resonance mode is a fundamental FP-like mode, as shown in Fig. 1. It can be seen that the trend of the Hy field enhancement as a function of tw is similar to that of emissivity. The Hy field enhancement (450 folds) shows a maximum for tw = 50nm. As tw > 50nm, the coupling strength between the two metallic structure decreases leading to a decreasing Hy field enhancement. As tw < 50nm, the MIM cavity becomes lossy. The Hy field enhancement thus decreases.

5. Conclusion

In this paper, the optical properties of a plasmonic nanoantenna array have been investigated. The proposed plasmonic structure supports omnidirectional LSP resonance, leading to an omnidirectional reflection dip and omnidirectional emission peak. It is shown that the omnidirectional properties will be perturbed as the resonance condition gets close to the grating-coupled SP dispersion line. In addition, the reflection and emission of the plasmonic nanoantenna array with various MIM cavity thicknesses are theoretically and experimentally investigated. It is shown that the resonance wavelength shifts to a longer wavelength for a decreasing MIM cavity thickness owing to the strong coupling between the two adjacent metallic structures. The resonance condition simulated by using RCWA shows a fair agreement with the experimental results.

Acknowledgments

The authors are grateful for the financial support of this research received from the National Science Council of Taiwan, R.O.C. under grant number NSC 101-2221-E-259-024-MY3 and NSC 102-2120-M-259-002-.

References and links

1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

2. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [CrossRef]   [PubMed]  

3. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]  

4. L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007). [CrossRef]   [PubMed]  

5. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004). [CrossRef]   [PubMed]  

6. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004). [CrossRef]  

7. A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011). [CrossRef]   [PubMed]  

8. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002). [CrossRef]   [PubMed]  

9. J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997). [CrossRef]  

10. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009). [CrossRef]  

11. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000). [CrossRef]  

12. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002). [CrossRef]   [PubMed]  

13. D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006). [CrossRef]   [PubMed]  

14. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef]   [PubMed]  

15. M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006). [CrossRef]  

16. Y. Ueba, J. Takahara, and T. Nagatsuma, “Thermal radiation control in the terahertz region using the spoof surface plasmon mode,” Opt. Lett. 36(6), 909–911 (2011). [CrossRef]   [PubMed]  

17. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999). [CrossRef]  

18. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004). [CrossRef]  

19. G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008). [CrossRef]  

20. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, and D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007). [CrossRef]   [PubMed]  

21. Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express 17(16), 13526–13531 (2009). [CrossRef]   [PubMed]  

22. C. M. Wang and C. J. Yu, “Free space Plasmonic filter with Dual resonance wavelength using asymmetric T-shaped metallic array,” Plasmonics 8(2), 385–390 (2013). [CrossRef]  

23. S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, and S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

24. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

25. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord,“Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).

26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

27. C. I. Lin and T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B 85(8), 085405 (2012). [CrossRef]  

28. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]  

29. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  3. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [CrossRef]
  4. L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
    [CrossRef] [PubMed]
  5. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
    [CrossRef] [PubMed]
  6. E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [CrossRef]
  7. A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
    [CrossRef] [PubMed]
  8. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [CrossRef] [PubMed]
  9. J. Le Gall, M. Olivier, J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
    [CrossRef]
  10. J. A. Schuller, T. Taubner, M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
    [CrossRef]
  11. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
    [CrossRef]
  12. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
    [CrossRef] [PubMed]
  13. D. L. C. Chan, M. Soljacić, J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
    [CrossRef] [PubMed]
  14. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  15. M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
    [CrossRef]
  16. Y. Ueba, J. Takahara, T. Nagatsuma, “Thermal radiation control in the terahertz region using the spoof surface plasmon mode,” Opt. Lett. 36(6), 909–911 (2011).
    [CrossRef] [PubMed]
  17. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
    [CrossRef]
  18. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
    [CrossRef]
  19. G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
    [CrossRef]
  20. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
    [CrossRef] [PubMed]
  21. Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express 17(16), 13526–13531 (2009).
    [CrossRef] [PubMed]
  22. C. M. Wang, C. J. Yu, “Free space Plasmonic filter with Dual resonance wavelength using asymmetric T-shaped metallic array,” Plasmonics 8(2), 385–390 (2013).
    [CrossRef]
  23. S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).
  24. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
  25. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord,“Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  27. C. I. Lin, T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B 85(8), 085405 (2012).
    [CrossRef]
  28. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [CrossRef]
  29. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
    [CrossRef]

2013

C. M. Wang, C. J. Yu, “Free space Plasmonic filter with Dual resonance wavelength using asymmetric T-shaped metallic array,” Plasmonics 8(2), 385–390 (2013).
[CrossRef]

2012

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

C. I. Lin, T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B 85(8), 085405 (2012).
[CrossRef]

2011

Y. Ueba, J. Takahara, T. Nagatsuma, “Thermal radiation control in the terahertz region using the spoof surface plasmon mode,” Opt. Lett. 36(6), 909–911 (2011).
[CrossRef] [PubMed]

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

2010

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

2009

2008

G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

2007

L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
[CrossRef] [PubMed]

2006

D. L. C. Chan, M. Soljacić, J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

2004

K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

2003

2002

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

2000

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

1999

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

1997

J. Le Gall, M. Olivier, J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

1995

Abbas, M. N.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Barsic, D. N.

L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Biener, G.

G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

J. A. Schuller, T. Taubner, M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Bur, J.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cao, L.

L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Carminati, R.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Cattoni, A.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

Chan, D. L. C.

Chang, H. C.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

Chang, P. E.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

Chang, Y. C.

Chang, Y. T.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
[CrossRef] [PubMed]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Chen, C. H.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

Chen, C. Y.

Chen, H. H.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

Chen, J.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

Chen, Y.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Choi, K. K.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Chow, E.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Chuang, T. H.

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Collin, S.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

Dahan, N.

G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[CrossRef]

Decanini, D.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

El-Kady, I.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Fendler, J. H.

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Gaylord, T. K.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Ghenuche, P.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

Goldberg, A.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Grann, E. B.

Greffet, J. J.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

J. Le Gall, M. Olivier, J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Guichard, A. R.

L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Haghiri-Gosnet, A. M.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

Halas, N. J.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Hasman, E.

G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[CrossRef]

Herminghaus, S.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

Hirsch, L. R.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Ho, K. M.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Hsiao, H. H.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

Huang, S. Y.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

Hutter, E.

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Jiang, Y. W.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Joulain, K.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Kleiner, V.

G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[CrossRef]

Knoll, W.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

Kreiter, M.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

Le Gall, J.

J. Le Gall, M. Olivier, J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Lee, S. C.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
[CrossRef] [PubMed]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Li, Z. Y.

Lin, C. I.

C. I. Lin, T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B 85(8), 085405 (2012).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Marquier, F.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

Meng, C. Y.

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Mittleman, D. M.

K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Mittler-Neher, S.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

Moharam, M. G.

Mulet, J. P.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Nagatsuma, T.

Niv, A.

G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[CrossRef]

O’Neal, D. P.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Olivier, M.

J. Le Gall, M. Olivier, J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Oster, J.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Payne, J. D.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Pelouard, J. L.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Pommet, D. A.

Sambles, R.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

J. A. Schuller, T. Taubner, M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

Shih, M. H.

Soljacic, M.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Takahara, J.

Taubner, T.

J. A. Schuller, T. Taubner, M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

Tsai, D. P.

Tsai, M. W.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
[CrossRef] [PubMed]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Ueba, Y.

Wang, C. M.

Wang, K.

K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

West, J. L.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Ye, Y. H.

Yu, C. J.

C. M. Wang, C. J. Yu, “Free space Plasmonic filter with Dual resonance wavelength using asymmetric T-shaped metallic array,” Plasmonics 8(2), 385–390 (2013).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Adv. Mater.

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Appl. Phys. Lett.

G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[CrossRef]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Cancer Lett.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

IEEE Photonics Technol. Lett.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nano Lett.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Nat. Mater.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Photonics

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

J. A. Schuller, T. Taubner, M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

Nature

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Opt. Commun.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

C. I. Lin, T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B 85(8), 085405 (2012).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

J. Le Gall, M. Olivier, J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Plasmonics

C. M. Wang, C. J. Yu, “Free space Plasmonic filter with Dual resonance wavelength using asymmetric T-shaped metallic array,” Plasmonics 8(2), 385–390 (2013).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the plasmonic nanoantenna array. The thickness of the SiO2 layer is denoted by tw. The thickness, width and period of the Ag nanoantenna are denoted by tAg, wAg, and Λg, respectively.

Fig. 2
Fig. 2

(a) Reflection spectra of the nanoantenna array as a function of SiO2 thickness, tw, measured under TM polarization with an oblique incident angle of 15°. (b) Resonant wavelength for the fundamental mode of the MIM cavity as a function of SiO2 thickness, tw. The other geometric parameters are Λg = 3μm, tAg = 0.1μm and wAg = 1.5μm. (c) Hy field distribution for λ = 4.8μm and tw = 20nm (●). (d) Hy field distribution for λ = 7.5μm and tw = 20nm (■). (e) Hy field distribution for λ = 11.6μm and tw = 20nm (▲).

Fig. 3
Fig. 3

Resonant wavelength for the fundamental mode of the MIM cavity for an oblique incident angle ranging from 15° to 65°. The black solid line represents the SPP dispersion at the Ag/Air interface. The geometric parameters of the nanoantenna are Λg = 3μm, tAg = 0.1μm and WAg = 1.5μm.

Fig. 4
Fig. 4

(a) Plasmonic enhanced emissivity for different MIM cavity thickness, tw. The heating temperature of the plasmonic nanoantenna is 250°C. (b) Relation between the resonant emissivity and Hy field enhancement of the fundamental mode.

Metrics