Abstract

We present results from the first field-trial of a quantum-secured DWDM transmission system, in which quantum key distribution (QKD) is combined with 4 × 10 Gb/s encrypted data and transmitted simultaneously over 26 km of field installed fiber. QKD is used to frequently refresh the key for AES-256 encryption of the 10 Gb/s data traffic. Scalability to over 40 DWDM channels is analyzed.

© 2014 Optical Society of America

1. Introduction

Quantum key distribution (QKD) is a cryptographic primitive which provides an unprecedented level of data security. The security of QKD is related to the laws of quantum mechanics in a manner that can be uniquely quantified. Another significant advantage is that keys formed by QKD cannot be eavesdropped without detection [1, 2]. Such benefits make QKD a natural choice for highly secure optical telecommunications. Up until now there have been many demonstrations of QKD over dark fiber, including several field trial experiments [3, 4], but there have been few QKD experiments using the same fiber as classical data communications [513]. Although pioneering experiments have shown an acceptable quantum bit error rate in the presence of low bandwidth data [1416] as well as a notable low speed QKD experiment in the presence of 10Gb/s classical channels [17], simultaneous QKD and high speed data communications have never been reported over field installed fiber. The main difficulty in these experiments is mitigating optical noise from the data signals. This noise swamps the small signals used by QKD and worse, the noise scales with the data rate. On the other hand, today’s optical communication infrastructure widely supports 10 Gb/s data traffic. To gain a wider acceptance of QKD, it is therefore imperative in establishing that QKD is compatible with these high speed data communications. We note that a 1Gbps data encryption multiplexed over a single fiber with QKD has been performed in the laboratory [12]. Furthermore a single fiber, wavelength multiplexed high speed prototype QKD system has been built and successfully tested [13]. To take these developments to the next step, it is necessary to undertake field trials. Field trials are an ideal platform for these demonstrations, as they reveal practical issues in real world deployments.

Using minimal system modifications, we combine a state-of-the-art QKD system with a commercial dense wavelength division multiplexing (DWDM) transmission system using real-time layer-1 encryption capabilities in the field. We demonstrate, for the first time, simultaneous transmission of quantum keys and high speed 10 Gb/s data channels with an aggregate bandwidth of 40 Gb/s over the same installed fiber of 26 km in length. The quantum keys are formed at a rate of over 100 kb/s and continuously fed into an AES-256 encryption engine providing ultra-secure protection for up to 40 Gb/s data traffic. This field trial marks the world’s first transmission system protected by quantum cryptography over the same installed fiber.

2. Field trial configuration and experiments

Figure 1 shows the experimental setup for the field trial. A GHz QKD system, also known as the quantum subsystem [18] is integrated with a commercial 10Gb/s DWDM transmission system, also known as the classical subsystem [19] via a coarse wavelength division multiplexer (CWDM). Although we recently demonstrated a QKD system multiplexed with classical channels using DWDM [8], here we choose CDWM technology for ease of use and simplicity. The requirements for filter isolation and the filter losses themselves are typically much less if using CWDM than for DWDM for these types of experiments. However, the classical subsystem contains multiple 10G DWDM channels. For it we allocate the 1530 CWDM band of the main channel.

 figure: Fig. 1

Fig. 1 Experimental set-up for the field trial. The classical subsystem channel consists of a 10G DWDM transmission system which can send up to 4 × 10 Gb/s data. The quantum subsystem consists of a GHz QKD system. The classical and quantum subsystems are integrated with a CWDM multiplexer. IM: intensity modulator, PM: phase modulator, ATTEN.: electrically controlled variable attenuator, POL. CONT: polarization controller, CONTR.: electronic controller based on field programmable gate array (FPGA).

Download Full Size | PPT Slide | PDF

In the QKD transmitter (Alice’s QKD unit), GHz-clocked light pulses with 50 ps duration are generated by a 1550 nm distributed feedback laser diode. The laser wavelength is temperature tuned to the wavelength position of 1547.72nm, i.e. channel 37 of the International Telecommunication Union (ITU) DWDM grid. An intensity modulator is used for producing signal, decoy and vacuum pulses, required for implementing the decoy BB84 protocol. The light pulses are phase coded by a first asymmetric Mach-Zehnder interferometer (AMZI) and then attenuated to the single photon level by a variable optical attenuator. An average pulse intensity of ~0.4 photons per pulse leaving the transmitter is set and maintained by feedback control. Arriving at the quantum receiver (Bob’s QKD unit), these photons are first filtered by a DWDM filter selected to match the wavelength positon of the quantum laser. The photons are then decoded by a second AMZI, and detected by a pair of self-differencing avalanche photodiode single photon detectors [18]. We implement the T12 QKD protocol providing a quantifiable failure probability of ɛ = 10−10 [20]. All supporting communications, required by the quantum subsystem for synchronization, error correction [21] and privacy amplification [22], are transmitted optically using standard telecom SFP transceivers along the installed optical fiber. Custom made FPGA electronics have been developed to drive the QKD optics to facilitate automatic operation. The QKD units fits inside standard 3U 19-inch telecom rack modules. Robustness of the system has been demonstrated continuously over eight days in the field trial.

Prior to the field trial, critical parameters for the optical modules of the QKD system were calibrated using measurements traceable to the primary scale for optical power realized by cryogenic radiometry [23] and standard wavelength emission lines of 13C2H2 [24], thereby establishing traceability to the SI. This was performed using a test bed capable of precise synchronization with the QKD transmitter pulse emission, or the receiver detector gates, with low jitter (less than 10 ps rms). The mean photon number per pulse for signal, decoy and vacuum states emitted by the QKD transmitter was also measured during the field trial with a traceably calibrated single-photon detector. This was done in real time as the transmitter randomly switched between the three states while implementing key distribution. The prior calibrations and real-time decoy-state measurements will be more fully described in a forthcoming paper [25].

The field trial was performed using the installed G.652 standard single mode fiber, arranged in a loopback configuration from Martlesham Heath to Ipswich and back (situated in the UK). The total fiber length is 26 km, featuring a total loss of 9.8 dB (0.38 dB/km). The quantum and all 10 Gb/s signals are transmitted in the telecom C-Band through the same fiber. Sharing a single fiber significantly reduces the operational cost of QKD. In addition, the system robustness is enhanced as any disturbance to the communication channel affects the quantum and classical signals alike, therefore the synchronization between these two signals remains intact.

Figure 2 shows the 10Gb/s DWDM system used in the field trial. Four 10 Gb/s wavelength channels are generated by 10 Gb/s transponders with wire-speed layer-1 data encryption function. These signals are then multiplexed together by DWDM multiplexer and then combined with the quantum signal using a CWDM for transmission across the installed fiber.

 figure: Fig. 2

Fig. 2 10Gb/s DWDM transmission system (classical subsystem). Four wavelengths using 10G transponders can be multiplexed with the quantum signal using standard telecom components. DWDM: dense wavelength division multiplexer, VOA: variable optical attenuator, CWDM: coarse wavelength division multiplexer, EDFA: erbium doped fiber amplifier, 10G TRANS: 10G transponder.

Download Full Size | PPT Slide | PDF

In order to reduce the impact of 10 Gb/s traffic on the QKD signals when co-propagating along on the same fiber, a variable optical attenuator is used to reduce the signal power of the 10 Gb/s wavelength channels. An erbium doped fiber amplifier (EDFA) with 20dB gain is used to enhance the receiver sensitivity. In the field trial we used a 10 Gigabit Ethernet (GE) tester to provide the 10GE client traffic and verify end to end error free performance of the encrypted 10 Gb/s transmission.

Secure quantum keys are pushed approximately every 100 s to the 10 Gb/s transmission system, as shown in Fig. 3.Each of the four 10 Gb/s transmitter/receiver module pairs on both sides of the link reads a distinct 256-bit key for symmetric encryption and an 80 bit initialization vector (IV) from the quantum key block. After key synchronization between transmitter and receiver is performed via an embedded communication channel, encryption is executed using the AES-256 method in counter mode [26]. Keys and IVs are replaced with every new quantum key block (i.e. every 100 s) without interrupting the data traffic. All classical traffic (including classical communication used to generate the quantum key) is carried over the same fiber as the quantum signals. Although the QKD bit rate is sufficient to supply over 300 AES keys per second, the refresh rate is limited by the code of the data transmission system. We note that much faster key renewal rates could have been obtained by further optimization of the experimental setup but this is beyond the scope of the present paper.

 figure: Fig. 3

Fig. 3 Key management schematic and encryption routine.

Download Full Size | PPT Slide | PDF

3. Results and discussion

Four C-band 100 GHz spaced DWDM channels (1529.55 nm, 1530.33 nm, 1531.12 nm and 1531.9 nm) were used for 10 Gb/s transmission. Upon interacting with the silica phonons of the optical fiber, these 10G signals generate Raman noise photons across > 200 nm bandwidth [7, 27]. At the normal 10G operating power of ~0 dBm, the Raman noise is comparable in intensity to the quantum signals. Time and spectral filtering schemes have to be used to reduce the intensity of Raman scatter on the quantum channel. Our single photon detectors with an effective gate window of 140 ps aligned to the expected arrival time of the single photons temporally reject > 80% of the Raman noise photons, as the Raman photons are randomly distributed in time. Together with the spectral filtering by the 100 GHz DWDM filter, the total noise rejection is 36dB, which is sufficient for QKD to co-exist with 10 Gb/s signals on the same fiber.

To minimize the impact of 10G wavelengths on the quantum channel, we used lower signal power for the 10G channels in the field trial. To ensure error-free operation of 10 Gb/s traffic and estimate the system margin and potential for additional capacity, we investigated the performance of the 10 Gb/s wavelengths operating at the lower signal power. Figure 4 shows the Pre-FEC BER (bit error rate) of the four 10 Gb/s wavelength channels as a function of the received signal power, i.e. signal power at the input of the EDFA amplifier as shown in Fig. 2. For received channel powers above −37.0 dBm, the pre-FEC BER is below 10−5.

 figure: Fig. 4

Fig. 4 The bit error rate (BER) of the four DWDM data channels measured as a function of the received optical power at the EDFA input.

Download Full Size | PPT Slide | PDF

After the application of GFEC, an end to end 10 GbE error free operation is achieved. Based on measured receiver sensitivities, we set the total launch power (measured at the point labeled “launch point” in Fig. 2) from the 10 Gb/s transmitters at ‒10 dBm. Each 10G wavelength channel has a launch power at the launch point of −16 dBm. This setting ensures >10 dB power margin at the receiver. The total launch power of all four 10Gb/s channels combined is therefore −10dBm or 0.1mW.

Given the loss budget ample margin, we anticipate that the launch power could be further reduced by 10 dB. Consequently ten times the number of data channels, i.e., 40 × 10 Gb/s, could be launched without introducing additional errors in the data transmission or reducing the secure quantum key generation rate, Fig. 5.

 figure: Fig. 5

Fig. 5 QKD bit rate as a function of the total 10G launch power (and equivalent number of 10G channels).

Download Full Size | PPT Slide | PDF

Increasing the conventional signal power generally impairs the quantum subsystem performance. To test this, we have increased the total 10G launch power to ‒7dBm, which does not require an EDFA pre-amplified receiver. We have shown that the current QKD system can generate >80 kb/s secure keys in this condition, Fig. 5.

Figure 6(a) shows the QKD system performance in the presence of four 10 Gb/s data traffic wavelengths over 12 hours. In the same fiber carrying QKD signals, the 4 × 10 Gb/s traffic co-propagates with the quantum signal. The average quantum bit error rate (QBER) is 6.0%. After error correction and privacy amplification, an average secure key rate of 160 kb/s is achieved. This is the highest aggregated data bandwidth (40 Gb/s) transmitted simultaneously over the same installed fiber as QKD. Note that the rate is adequate for unbreakable one time pad encryption on broadband services such as video conferencing (suggested minimum bandwidth 128 kb/s [28]).

 figure: Fig. 6

Fig. 6 QKD system performance in presence of, (a) 40 Gb/s conventional data traffic. (b) bi-directional 10 Gb/s data traffic, over single 26 km of installed fiber.

Download Full Size | PPT Slide | PDF

Considering the QKD protocol failure probability (ɛ = 10‒10), such secure conferencing would have the strongest protection to date. If someone spends his lifetime video-conferencing, the present setup can guarantee that his information loss to eavesdroppers is no larger than the duration of a single eye-blink. The average secure key rate by far exceeds the requirements of the current encryption system. This offers the opportunity to scale the system up to allow a simultaneous encryption of 40 or more data channels with distinct keys and sub-second key refresh rates.

In the second experiment, the suitability of a lower cost deployment using a single fiber for bidirectional 10G transmission was investigated. Conventionally, bidirectional 10G communication is realized with two separate fibers. Here we combine both directional 10 Gb/s signals into a single fiber together with QKD. DWDM channels at 1531.12 nm and 1531.92 nm are allocated to 10 Gb/s traffic co- and counter-propagating with quantum signals respectively. Such configuration produces more Raman noise to QKD, as back-scattered Raman noise by the counter-propagating 10G data is not attenuated by the entire fiber link [27]. Nevertheless, an average secure key rate of 110 kb/s is still achieved with a QBER of 6.4% over a 12 hour period, as illustrated in Fig. 6(b). Consequently we have demonstrated the co-existence of bi-directional 10 Gb/s data with quantum traffic over the single installed fiber.

We now briefly comment on the effect of reduced classical data channel power. Although in standard WDM systems, the signal power of individual wavelength channels is around 0 dBm our work clearly demonstrates that the classical channels still continue to operate error free with reduced launch powers in our field trial configuration. This work is the first field trial demonstration of quantum secured 10 Gb/s DWDM transmission system over a single installed fiber. In future work, we hope to build upon this achievement by using higher classical data channel powers which are more compatible to the power levels used in standard WDM systems [8].

4. Conclusions and outlook

We have presented results from the first field trial of a quantum secured DWDM transmission system with real-time 10 Gb/s layer-1 data encryption over installed fiber of 26 km. Coexistence of quantum keys and up to 4 × 10 Gb/s encrypted data is demonstrated over a single installed fiber. Secure key rate of 160 kbps has been achieved in presence of error free 4 × 10Gb/s data. A system power margin of > 10 dB for the 10 Gb/s channels was maintained throughout the field trial providing ample margin for further capacity and reach increase. This also confirms the robustness and ease of implementation of QKD systems. The experimental results represent an important step towards mass deployment of ultra-secure high speed data networks employing novel quantum technologies.

Acknowledgments

NPL and TREL acknowledge funding from the UK Technology Strategy Board Trusted Services Project TP 1913-19252. NPL also acknowledges funding from project MIQC (contract IND06) of the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

References and links

1. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009). [CrossRef]  

2. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore (1983), pp. 175.

3. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19(11), 10387–10409 (2011). [CrossRef]   [PubMed]  

4. J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express 20(15), 16339–16347 (2012). [CrossRef]  

5. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009). [CrossRef]  

6. J. Mora, W. Amaya, A. Ruiz-Alba, A. Martinez, D. Calvo, V. García Muñoz, and J. Capmany, “Simultaneous transmission of 20×2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON,” Opt. Express 20(15), 16358–16365 (2012). [CrossRef]  

7. I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13(6), 063039 (2011). [CrossRef]  

8. K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014). [CrossRef]  

9. A. Ciurana, J. Martínez-Mateo, M. Peev, A. Poppe, N. Walenta, H. Zbinden, and V. Martín, “Quantum metropolitan optical network based on wavelength division multiplexing,” Opt. Express 22(2), 1576–1593 (2014). [CrossRef]   [PubMed]  

10. A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express 16(15), 11354–11360 (2008). [CrossRef]   [PubMed]  

11. N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009). [CrossRef]  

12. P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010). [CrossRef]  

13. N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014). [CrossRef]  

14. P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33(3), 188–190 (1997). [CrossRef]  

15. M. S. Goodman, P. Toliver, R. J. Runser, T. E. Chapuran, J. Jackel, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, S. McNown, N. Nweke, J. T. Blake, L. Mercer, and H. Dardy, “Quantum cryptography for optical networks: a systems perspective,” Lasers and Electro-Optics Society, LEOS 2003. The 16th Annual Meeting of the IEEE 2 1040 (2003). [CrossRef]  

16. P. Toliver, R. J. Runser, T. E. Chapuran, S. McNown, M. S. Goodman, J. Jackel, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Impact of spontaneous anti-Stokes Raman scattering on QKD+DWDM networking,” Lasers and Electro-Optics Society, LEOS 2004. The 167th Annual Meeting of the IEEE 2 491 (2004). [CrossRef]  

17. T. J. Xia, D. Z. Chen, G. Wellbrock, A. Zavriyev, A. C. Beal, and K. M. Lee, “In-band quantum key distribution (QKD) on fiber populated by high-speed classical data channels,” Optical Fiber Communication Conference, OTuJ7 (2006). [CrossRef]  

18. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Practical gigahertz quantum key distribution based on avalanche photodiodes,” New J. Phys. 11(4), 045019 (2009). [CrossRef]  

19. FSP3000 data sheet, available online at http://www.advaoptical.com/~/media/Resources/Data%20Sheets/FSP_3000.ashx.

20. M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21(21), 24550–24565 (2013). [CrossRef]   [PubMed]  

21. G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” Lect. Notes Comput. Sci. 765, 410–423 (1994). [CrossRef]  

22. C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy amplification by public discussion,” SIAM J. Comput. 17(2), 210–229 (1988). [CrossRef]  

23. N. P. Fox, “Radiometry with cryogenic radiometers and semiconductor photodiodes,” Metrologia 32(6), 535–543 (1995). [CrossRef]  

24. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005). [CrossRef]  

25. C. J. Chunnilall, I. Choi, J. F. Dynes, G. Lepert, P. D. Patel, R. B. Patel, D. J. Szwer, and A. G. Sinclair, “Traceable optical metrology of GHz QKD optical modules,” in preparation.

26. Encryption in counter mode is specified in NIST standard SP 800–38a, available online at http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

27. K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

28. https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need.

References

  • View by:

  1. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
    [Crossref]
  2. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore (1983), pp. 175.
  3. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19(11), 10387–10409 (2011).
    [Crossref] [PubMed]
  4. J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express 20(15), 16339–16347 (2012).
    [Crossref]
  5. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
    [Crossref]
  6. J. Mora, W. Amaya, A. Ruiz-Alba, A. Martinez, D. Calvo, V. García Muñoz, and J. Capmany, “Simultaneous transmission of 20×2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON,” Opt. Express 20(15), 16358–16365 (2012).
    [Crossref]
  7. I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13(6), 063039 (2011).
    [Crossref]
  8. K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
    [Crossref]
  9. A. Ciurana, J. Martínez-Mateo, M. Peev, A. Poppe, N. Walenta, H. Zbinden, and V. Martín, “Quantum metropolitan optical network based on wavelength division multiplexing,” Opt. Express 22(2), 1576–1593 (2014).
    [Crossref] [PubMed]
  10. A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express 16(15), 11354–11360 (2008).
    [Crossref] [PubMed]
  11. N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
    [Crossref]
  12. P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).
    [Crossref]
  13. N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
    [Crossref]
  14. P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33(3), 188–190 (1997).
    [Crossref]
  15. M. S. Goodman, P. Toliver, R. J. Runser, T. E. Chapuran, J. Jackel, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, S. McNown, N. Nweke, J. T. Blake, L. Mercer, and H. Dardy, “Quantum cryptography for optical networks: a systems perspective,” Lasers and Electro-Optics Society, LEOS 2003. The 16th Annual Meeting of the IEEE 2 1040 (2003).
    [Crossref]
  16. P. Toliver, R. J. Runser, T. E. Chapuran, S. McNown, M. S. Goodman, J. Jackel, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Impact of spontaneous anti-Stokes Raman scattering on QKD+DWDM networking,” Lasers and Electro-Optics Society, LEOS 2004. The 167th Annual Meeting of the IEEE 2 491 (2004).
    [Crossref]
  17. T. J. Xia, D. Z. Chen, G. Wellbrock, A. Zavriyev, A. C. Beal, and K. M. Lee, “In-band quantum key distribution (QKD) on fiber populated by high-speed classical data channels,” Optical Fiber Communication Conference, OTuJ7 (2006).
    [Crossref]
  18. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Practical gigahertz quantum key distribution based on avalanche photodiodes,” New J. Phys. 11(4), 045019 (2009).
    [Crossref]
  19. FSP3000 data sheet, available online at http://www.advaoptical.com/~/media/Resources/Data%20Sheets/FSP_3000.ashx .
  20. M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21(21), 24550–24565 (2013).
    [Crossref] [PubMed]
  21. G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” Lect. Notes Comput. Sci. 765, 410–423 (1994).
    [Crossref]
  22. C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy amplification by public discussion,” SIAM J. Comput. 17(2), 210–229 (1988).
    [Crossref]
  23. N. P. Fox, “Radiometry with cryogenic radiometers and semiconductor photodiodes,” Metrologia 32(6), 535–543 (1995).
    [Crossref]
  24. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
    [Crossref]
  25. C. J. Chunnilall, I. Choi, J. F. Dynes, G. Lepert, P. D. Patel, R. B. Patel, D. J. Szwer, and A. G. Sinclair, “Traceable optical metrology of GHz QKD optical modules,” in preparation.
  26. Encryption in counter mode is specified in NIST standard SP 800–38a, available online at http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf .
  27. K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).
  28. https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need .

2014 (3)

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

A. Ciurana, J. Martínez-Mateo, M. Peev, A. Poppe, N. Walenta, H. Zbinden, and V. Martín, “Quantum metropolitan optical network based on wavelength division multiplexing,” Opt. Express 22(2), 1576–1593 (2014).
[Crossref] [PubMed]

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (2)

2010 (1)

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).
[Crossref]

2009 (4)

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Practical gigahertz quantum key distribution based on avalanche photodiodes,” New J. Phys. 11(4), 045019 (2009).
[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

2008 (1)

2005 (1)

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[Crossref]

1997 (1)

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33(3), 188–190 (1997).
[Crossref]

1995 (1)

N. P. Fox, “Radiometry with cryogenic radiometers and semiconductor photodiodes,” Metrologia 32(6), 535–543 (1995).
[Crossref]

1994 (1)

G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” Lect. Notes Comput. Sci. 765, 410–423 (1994).
[Crossref]

1988 (1)

C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy amplification by public discussion,” SIAM J. Comput. 17(2), 210–229 (1988).
[Crossref]

Allacher, A.

Amaya, W.

Asai, T.

Baek, B.

Barwood, G. P.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[Crossref]

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy amplification by public discussion,” SIAM J. Comput. 17(2), 210–229 (1988).
[Crossref]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore (1983), pp. 175.

Brassard, G.

G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” Lect. Notes Comput. Sci. 765, 410–423 (1994).
[Crossref]

C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy amplification by public discussion,” SIAM J. Comput. 17(2), 210–229 (1988).
[Crossref]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore (1983), pp. 175.

Burg, A.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Calvo, D.

Capmany, J.

Caselunghe, D.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Chapuran, T. E.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

Choi, I.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express 20(15), 16339–16347 (2012).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13(6), 063039 (2011).
[Crossref]

C. J. Chunnilall, I. Choi, J. F. Dynes, G. Lepert, P. D. Patel, R. B. Patel, D. J. Szwer, and A. G. Sinclair, “Traceable optical metrology of GHz QKD optical modules,” in preparation.

Chunnilall, C. J.

C. J. Chunnilall, I. Choi, J. F. Dynes, G. Lepert, P. D. Patel, R. B. Patel, D. J. Szwer, and A. G. Sinclair, “Traceable optical metrology of GHz QKD optical modules,” in preparation.

Ciurana, A.

Constantin, J.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Dallmann, N.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Dardy, H.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Dixon, A. R.

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21(21), 24550–24565 (2013).
[Crossref] [PubMed]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express 20(15), 16339–16347 (2012).
[Crossref]

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19(11), 10387–10409 (2011).
[Crossref] [PubMed]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Practical gigahertz quantum key distribution based on avalanche photodiodes,” New J. Phys. 11(4), 045019 (2009).
[Crossref]

Domeki, T.

Dušek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Dynes, J. F.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21(21), 24550–24565 (2013).
[Crossref] [PubMed]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express 20(15), 16339–16347 (2012).
[Crossref]

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19(11), 10387–10409 (2011).
[Crossref] [PubMed]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Practical gigahertz quantum key distribution based on avalanche photodiodes,” New J. Phys. 11(4), 045019 (2009).
[Crossref]

C. J. Chunnilall, I. Choi, J. F. Dynes, G. Lepert, P. D. Patel, R. B. Patel, D. J. Szwer, and A. G. Sinclair, “Traceable optical metrology of GHz QKD optical modules,” in preparation.

Edwards, C. S.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[Crossref]

Eraerds, P.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).
[Crossref]

Fox, N. P.

N. P. Fox, “Radiometry with cryogenic radiometers and semiconductor photodiodes,” Metrologia 32(6), 535–543 (1995).
[Crossref]

Fröhlich, B.

Fujiwara, M.

García Muñoz, V.

Gill, P.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[Crossref]

Gisin, N.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).
[Crossref]

Goodman, M. S.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Guinnard, O.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Hasegawa, T.

Honjo, T.

Houlmann, R.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Hughes, R. J.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Ishizuka, H.

Jackel, J.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Junod, P.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Klaus, W.

Kobayashi, H.

Korzh, B.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Kulesza, N.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Länger, T.

Lea, S. N.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[Crossref]

Legré, M.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19(11), 10387–10409 (2011).
[Crossref] [PubMed]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).
[Crossref]

Lepert, G.

C. J. Chunnilall, I. Choi, J. F. Dynes, G. Lepert, P. D. Patel, R. B. Patel, D. J. Szwer, and A. G. Sinclair, “Traceable optical metrology of GHz QKD optical modules,” in preparation.

Lim, C. W.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Lucamarini, M.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21(21), 24550–24565 (2013).
[Crossref] [PubMed]

Lunghi, T.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Lütkenhaus, N.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Maeda, W.

Margolis, H. S.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[Crossref]

Martín, V.

Martinez, A.

Martínez-Mateo, J.

Matsui, M.

Maurhart, O.

McCabe, K. P.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

McNown, S. R.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Mercer, L.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Miki, S.

Monat, L.

Mora, J.

Nam, S. W.

Nambu, Y.

Nordholt, J. E.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Page, J.-B.

Patel, K. A.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21(21), 24550–24565 (2013).
[Crossref] [PubMed]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Patel, P. D.

C. J. Chunnilall, I. Choi, J. F. Dynes, G. Lepert, P. D. Patel, R. B. Patel, D. J. Szwer, and A. G. Sinclair, “Traceable optical metrology of GHz QKD optical modules,” in preparation.

Patel, R. B.

C. J. Chunnilall, I. Choi, J. F. Dynes, G. Lepert, P. D. Patel, R. B. Patel, D. J. Szwer, and A. G. Sinclair, “Traceable optical metrology of GHz QKD optical modules,” in preparation.

Peev, M.

Penty, R. V.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21(21), 24550–24565 (2013).
[Crossref] [PubMed]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Peters, N. A.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Peterson, C. G.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

Poppe, A.

Portmann, C.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Ribordy, G.

Robert, J.-M.

C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy amplification by public discussion,” SIAM J. Comput. 17(2), 210–229 (1988).
[Crossref]

Robyr, S.

Rosenberg, D.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

Rowley, W. R. C.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[Crossref]

Ruiz-Alba, A.

Runser, R. J.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Sakai, Y.

Salvail, L.

G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” Lect. Notes Comput. Sci. 765, 410–423 (1994).
[Crossref]

Sasaki, M.

Scarani, V.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Sharpe, A. W.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21(21), 24550–24565 (2013).
[Crossref] [PubMed]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express 20(15), 16339–16347 (2012).
[Crossref]

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19(11), 10387–10409 (2011).
[Crossref] [PubMed]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Practical gigahertz quantum key distribution based on avalanche photodiodes,” New J. Phys. 11(4), 045019 (2009).
[Crossref]

Shields, A. J.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21(21), 24550–24565 (2013).
[Crossref] [PubMed]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express 20(15), 16339–16347 (2012).
[Crossref]

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19(11), 10387–10409 (2011).
[Crossref] [PubMed]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Practical gigahertz quantum key distribution based on avalanche photodiodes,” New J. Phys. 11(4), 045019 (2009).
[Crossref]

Shimizu, K.

Sinclair, A. G.

C. J. Chunnilall, I. Choi, J. F. Dynes, G. Lepert, P. D. Patel, R. B. Patel, D. J. Szwer, and A. G. Sinclair, “Traceable optical metrology of GHz QKD optical modules,” in preparation.

Soucarros, M.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Szwer, D. J.

C. J. Chunnilall, I. Choi, J. F. Dynes, G. Lepert, P. D. Patel, R. B. Patel, D. J. Szwer, and A. G. Sinclair, “Traceable optical metrology of GHz QKD optical modules,” in preparation.

Tajima, A.

Takahashi, S.

Takeoka, M.

Takesue, H.

Tamaki, K.

Tanaka, A.

Thew, R. T.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Tokura, T.

Tokura, Y.

Toliver, P.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

Tomita, A.

Townsend, P. D.

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13(6), 063039 (2011).
[Crossref]

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33(3), 188–190 (1997).
[Crossref]

Trinkler, P.

Trolliet, G.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Tsurumaru, T.

Tyagi, K. T.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

Uchikoga, S.

Vannel, F.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Wakui, K.

Walenta, N.

A. Ciurana, J. Martínez-Mateo, M. Peev, A. Poppe, N. Walenta, H. Zbinden, and V. Martín, “Quantum metropolitan optical network based on wavelength division multiplexing,” Opt. Express 22(2), 1576–1593 (2014).
[Crossref] [PubMed]

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).
[Crossref]

Wang, Z.

Yamashita, T.

Yoshino, K.

Young, R. J.

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13(6), 063039 (2011).
[Crossref]

Yuan, Z. L.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21(21), 24550–24565 (2013).
[Crossref] [PubMed]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express 20(15), 16339–16347 (2012).
[Crossref]

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19(11), 10387–10409 (2011).
[Crossref] [PubMed]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Practical gigahertz quantum key distribution based on avalanche photodiodes,” New J. Phys. 11(4), 045019 (2009).
[Crossref]

Zbinden, H.

A. Ciurana, J. Martínez-Mateo, M. Peev, A. Poppe, N. Walenta, H. Zbinden, and V. Martín, “Quantum metropolitan optical network based on wavelength division multiplexing,” Opt. Express 22(2), 1576–1593 (2014).
[Crossref] [PubMed]

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).
[Crossref]

Zeilinger, A.

Appl. Phys. B (1)

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[Crossref]

Appl. Phys. Lett. (1)

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

Electron. Lett. (1)

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33(3), 188–190 (1997).
[Crossref]

Lect. Notes Comput. Sci. (1)

G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” Lect. Notes Comput. Sci. 765, 410–423 (1994).
[Crossref]

Metrologia (1)

N. P. Fox, “Radiometry with cryogenic radiometers and semiconductor photodiodes,” Metrologia 32(6), 535–543 (1995).
[Crossref]

New J. Phys. (6)

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13(6), 063039 (2011).
[Crossref]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).
[Crossref]

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, R. T. Thew, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16(1), 013047 (2014).
[Crossref]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Practical gigahertz quantum key distribution based on avalanche photodiodes,” New J. Phys. 11(4), 045019 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Opt. Express (6)

J. Mora, W. Amaya, A. Ruiz-Alba, A. Martinez, D. Calvo, V. García Muñoz, and J. Capmany, “Simultaneous transmission of 20×2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON,” Opt. Express 20(15), 16358–16365 (2012).
[Crossref]

A. Ciurana, J. Martínez-Mateo, M. Peev, A. Poppe, N. Walenta, H. Zbinden, and V. Martín, “Quantum metropolitan optical network based on wavelength division multiplexing,” Opt. Express 22(2), 1576–1593 (2014).
[Crossref] [PubMed]

A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express 16(15), 11354–11360 (2008).
[Crossref] [PubMed]

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19(11), 10387–10409 (2011).
[Crossref] [PubMed]

J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express 20(15), 16339–16347 (2012).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21(21), 24550–24565 (2013).
[Crossref] [PubMed]

Phys. Rev. X (1)

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Rev. Mod. Phys. (1)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

SIAM J. Comput. (1)

C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy amplification by public discussion,” SIAM J. Comput. 17(2), 210–229 (1988).
[Crossref]

Other (8)

https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need .

C. J. Chunnilall, I. Choi, J. F. Dynes, G. Lepert, P. D. Patel, R. B. Patel, D. J. Szwer, and A. G. Sinclair, “Traceable optical metrology of GHz QKD optical modules,” in preparation.

Encryption in counter mode is specified in NIST standard SP 800–38a, available online at http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf .

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore (1983), pp. 175.

FSP3000 data sheet, available online at http://www.advaoptical.com/~/media/Resources/Data%20Sheets/FSP_3000.ashx .

M. S. Goodman, P. Toliver, R. J. Runser, T. E. Chapuran, J. Jackel, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, S. McNown, N. Nweke, J. T. Blake, L. Mercer, and H. Dardy, “Quantum cryptography for optical networks: a systems perspective,” Lasers and Electro-Optics Society, LEOS 2003. The 16th Annual Meeting of the IEEE 2 1040 (2003).
[Crossref]

P. Toliver, R. J. Runser, T. E. Chapuran, S. McNown, M. S. Goodman, J. Jackel, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Impact of spontaneous anti-Stokes Raman scattering on QKD+DWDM networking,” Lasers and Electro-Optics Society, LEOS 2004. The 167th Annual Meeting of the IEEE 2 491 (2004).
[Crossref]

T. J. Xia, D. Z. Chen, G. Wellbrock, A. Zavriyev, A. C. Beal, and K. M. Lee, “In-band quantum key distribution (QKD) on fiber populated by high-speed classical data channels,” Optical Fiber Communication Conference, OTuJ7 (2006).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental set-up for the field trial. The classical subsystem channel consists of a 10G DWDM transmission system which can send up to 4 × 10 Gb/s data. The quantum subsystem consists of a GHz QKD system. The classical and quantum subsystems are integrated with a CWDM multiplexer. IM: intensity modulator, PM: phase modulator, ATTEN.: electrically controlled variable attenuator, POL. CONT: polarization controller, CONTR.: electronic controller based on field programmable gate array (FPGA).
Fig. 2
Fig. 2 10Gb/s DWDM transmission system (classical subsystem). Four wavelengths using 10G transponders can be multiplexed with the quantum signal using standard telecom components. DWDM: dense wavelength division multiplexer, VOA: variable optical attenuator, CWDM: coarse wavelength division multiplexer, EDFA: erbium doped fiber amplifier, 10G TRANS: 10G transponder.
Fig. 3
Fig. 3 Key management schematic and encryption routine.
Fig. 4
Fig. 4 The bit error rate (BER) of the four DWDM data channels measured as a function of the received optical power at the EDFA input.
Fig. 5
Fig. 5 QKD bit rate as a function of the total 10G launch power (and equivalent number of 10G channels).
Fig. 6
Fig. 6 QKD system performance in presence of, (a) 40 Gb/s conventional data traffic. (b) bi-directional 10 Gb/s data traffic, over single 26 km of installed fiber.

Metrics