Abstract

We investigate the evolution of asymmetric self-accelerating finite energy Airy pulses (FEAP) in optical fibers with emphasis on the role of Raman scattering. We show that the Raman-induced frequency shift (RIFS) of soliton initiated by an asymmetric self-accelerating FEAP depends not only on the launched peak power but also on the truncation coefficient imposed on the asymmetric self-accelerating FEAP. We find that the RIFS of asymmetric self-accelerating FEAP increases with a decrease in the truncation coefficient, while the peak power and spectrum width of the outermost red shift of the shedding soliton spectrum are almost unchanged. The time and frequency shifts of the shedding soliton are found to be sensitive to the truncation coefficient when the truncation coefficient is in the range of 0 to 0.1. These excellent features would lead to the realization of a RIFS-based tunable light source by launching self-accelerating FEAP with different truncation coefficient into an optical fiber.

© 2014 Optical Society of America

1. Introduction

The original Airy wave packet was predicted by Berry and Balazs in the context of quantum mechanics as a solution to the potential-free Schrödinger equation [1]. However, such Airy wave packet is physically unrealizable as it carries infinite energy. In 2007, the concept of finite-energy Airy beam (FEAB) was introduced theoretically [2] and demonstrated experimentally [3] within the area of spatial optics. Since then, FEAB have been attracting considerable interest [48], due to their intriguing characteristics of transverse acceleration, quasi-diffraction-free and self-reconstruction [2, 3, 9].

More recently, finite energy Airy pulses (FEAP), known as pulsed version of FEAB, were introduced from spatial to temporal domain by exploiting the analogy between “diffraction in space” and “dispersion in time” [2]. In fact, the generation of FEAP has been reported as early as 1979 as a result of the propagation of Gaussian pulse through a fiber with only third-order dispersion [10, 11]. FEAP can also be produced by imparting a cubic spectral phase on an incident pulse by other pulse shaping techniques [12]. The resulting FEAP can propagate further without broadening in the quadratic dispersive (normal or anomalous) media, leading to spatially and temporally confined pulses or light bullets [13, 14]. The other linear propagation dynamics of FEAP was studied as well [1517]. Alongside the linear dynamic properties of FEAP, nonlinear propagation of high intensity FEAP has also attracted attentions [1823]. The effect of Kerr nonlinearity on the evolution of FEAP in optical fiber with normal or anomalous group velocity dispersion (GVD) was analyzed [18, 19]. Zhang et al. reported soliton pair was generated and engineered from the interaction of Airy pulse [20]. Ament et al. has shown both experimentally and numerically that, multi-peak dispersive waves are emitted when a femtosecond FEAP propagates in a highly nonlinear photonic crystal fiber with a single zero-dispersion wavelength [21]. It has been reported that the high-order linear and nonlinear effects play an important role in the propagation of self-decelerating FEAP, indicating that the deceleration of the main lobe is enhanced by Raman scattering effects [22]. In addition, Zhang et al. investigated the impact of truncation coefficient on the modulation instability of FEAP [23].

To accurately describe the femtosecond pulse nonlinear propagation, higher-order liner and nonlinear effects should be considered [24]. Of all the higher-order nonlinear effects, stimulated Raman scattering plays a crucial role in light pulse propagation [25]. As the pulse propagates in the medium, a continuous red-shift of the pulse spectrum is induced-a feature that is referred to as the Raman-induced frequency shift (RIFS), where low-frequency photons of the pulse are amplified by its high-frequency photons through Raman scattering from of the optical phonons. RIFS was first discovered and analyzed in 1986 [26, 27] and has been investigated extensively in the various optical fibers and metamaterials since then [28, 29]. It has found a number of practical applications, including supercontinuum generation [30], tunable femtosecond pulse sources [31], analog-to-digital conversion [32], and signal processing [33]. Hence, it is very important to realize the RIFS manipulation under different conditions. For this purpose, several techniques have been proposed to control the RIFS, including RIFS suppression by bandwidth-limited amplification [34, 35], cross-phase modulation [36], upshifted filtering [37], negative dispersion slope [38] and self-steepening [39] or RIFS enhancement by reducing the initial pulse duration [40], and by optimization of the photonic crystal fibers [41, 42].

Although RIFS has been extensively studied in optical fibers since the discovery of the phenomenon, the overwhelming majority of prior studies use an optical pulse with compact and symmetric temporal profiles such as sech, Gaussian, or super-Gaussian. FEAP can exhibit self-acceleration or self-deceleration depending on its tail behind or in front of its main lobe. The influence of Raman scattering on the propagation of self-decelerating FEAP is presented in Reference [22]. However, the actual group velocity of self-decelerating FEAP is distinctively different from that of self-accelerating FEAP. Spectrogram (time frequency space) of the self-decelerating FEAP is the total opposite of the one by self-accelerating FEAP. It is therefore still unknown how exactly the Raman scattering executes its role in the propagation dynamics of self-accelerating FEAP. In addition, self-accelerating FEAP also has the ability to resist dispersion and their intensity peaks accelerate and self-reconstruct during the linear propagation. Do these unique linear properties make the RIFS of self-accelerating EFAP different from that of symmetric pulses or self-decelerating FEAP? In this paper, we focus our interest on the studies of self-accelerating FEAP propagating in an optical fiber with the inclusion of Raman scattering effects.

This paper is organized as follows. Section 2 presents the theoretical model, while Section 3 presents numerical results of the self-accelerating FEAP propagating in an optical fiber in the presence of Raman scattering effects, and a comparison of the RIFS of self-accelerating FEAP and that of symmetric pulse. Then, a brief summary of the results and conclusions are given in Section 4.

2. Theoretical model

To isolate the effects of Raman scattering, we neglect the impact of high-order dispersion, self-steepening and fiber losses on the pulse propagation along optical fiber. Therefore, a modified nonlinear Schrödinger equation (NLSE) with an added Raman term can be written in the form of Eq. (1) [24]:

iΦz=β222Φt2γ(|Φ|2ΦtRΦ|Φ|2t),
where Φ is the amplitude of the slowly varying envelope of the optical field; β2 is the second-order dispersion parameter of the fiber; tRis a parameter related to the Raman response; γ is a nonlinear parameter; t=τz/vgis the retarded time in a frame of reference moving with the pulse at a group velocity of vg. Equation (1) with the simple model of Raman scattering can be used to reasonably describe the propagation of picosecond pulse but is not applicable for pulses whose lengths are close to or shorter than 100 femtosecond [24]. For the latter, a comprehensive model of Raman Scattering and other higher-order linear and nonlinear effects must be considered in the propagation equation.

By substitution of parameters we have

T=tt0,Z=zlD,TR=tRt0,ψ=ΦΦ0,N=γΦ0lD,
where the field amplitude ψ(Z,T) is normalized such that ψ(0,0)=1, t0 and Φ0 are related to the width and the peak power of the pulse launched into the fiber; lD=t02/|β2| is the dispersion length. Assuming that the pulse propagates in the region of anomalous dispersion (β2<0), Eq. (1) can be reduced to its normalized form

iψZ=122ψT2N2(|ψ|2ψTRψ|ψ|2T).

The initial self-accelerating FEAP can be written as

ψ(T,Z=0)=(a)Ai(T)exp(aT),
where 0<a<1 is a truncation-dependent parameter; (a) is introduced to keep the maximum amplitude of initially launched pulse to 1 for any value of a. Because the parameter N=γt02Φ0/|β2|, we vary it to scale the Airy peak power. The standard split-step Fourier method, also known as the beam-propagation method, is employed to numerically solve Eq. (1) for the propagation dynamics of self-accelerating FEAP in an optical fiber with emphasis on the role of Raman scattering.

3. Numerical results

In the absence of Raman scattering and the presence of anomalous dispersion (β2<0), Eq. (3) predicts that, when N=1, an input pulse with the amplitude ψ(T,0)=sech(T)propagates as the fundamental soliton with the general solution in the form of ψ(T,0)=sech(T)exp(iZ/2). Clearly, the shape and width of such an input pulse does not change perfectly during propagation. FEAP are a solution to Eq. (3) with γ=0 so that the self-phase modulation (SPM) is absent. The linear propagation of self-accelerating FEAP is displayed in Figs. 1(a) and 1(b).

 figure: Fig. 1

Fig. 1 Temporal and spectral evolutions of a FEAP with truncation coefficient a=0.1 (a), (b) and Gaussian pulse (c), (d) in linear condition for N=1.

Download Full Size | PPT Slide | PDF

Figures 1(a) and 1(b) show the temporal and spectral evolutions of the self-accelerating FEAP with the truncation coefficient a=0.1 and N=1 as a function of propagation distance in the linear regime. It is indicated by Fig. 1(a) that the self-accelerating FEAP displays all the remarkable properties of the ideal self-accelerating Airy pulses in a finite propagation distance. The shape of self-accelerating FEAP remains quasi-invariant over several dispersion lengths while again the intensity features tend to “freely accelerate” until dispersion dominates. Compared to the linear propagation of Gaussian pulse, whose pulse duration is same as that of the main lobe of self-accelerating FEAP [Figs. 1(c) and 1(d)], the temporal broadening rate of the self-accelerating FEAP is bigger than that of Gaussian pulse. The physical reason behind such difference can be understood by noting that self-accelerating FEAP have broader spectrum compared with that of Gaussian pulse. We carried out a series of numerical experiments to disclose the impact of combined effects of anomalous GVD and SPM on the propagation dynamics of the self-accelerating FEAP. It is found that its propagation dynamics is similar to that of self-decelerating FEAP [19].

3.1 Influence of Raman scattering on the propagation of self-accelerating FEAP

Figure 2 shows the temporal and spectral evolution of the self-accelerating FEAP with truncation coefficient a=0.1 and different launched peak powers. Its temporal evolution is apparently different from that of self-decelerating FEAP [26]. A detailed comparison can be investigated and will be reported elsewhere. Figures 2(b)2(d) show that, the shedding soliton slows down due to the Raman scattering effects, and it experiences successive collisions with self-accelerating side lobes. This is manifested as the bending trajectory in time domain and the spectral red-shift in frequency domain. For self-decelerating FEAP, the deceleration of their main lobe is enhanced [22]. The temporal deceleration rate is directly proportional to parameter N. The larger the value of parameter N, the more the time delay becomes evident, if assuming a fixed propagation distance [Fig. 2(a)]. The reason for this behavior can be understood as follows. When Raman scattering effects is not taken into consideration, the primary lobe of self-accelerating FEAP with high launched peak power N has enough energy to form soliton within a short propagation distance, and then shed it with a short pulse width. Short pulse duration is very helpful for enhancing the RIFS [40].

 figure: Fig. 2

Fig. 2 Temporal and spectral evolutions of the FEAP with a=0.1for different launched peak power (N) in the anomalous dispersion regime under the action of SPM and Raman effects (TR=0.1): (a) output pulse intensity and (e) spectral intensity at Z=15, and contour maps of the temporal and spectral evolution for (b), (f) N=1.0, (c), (g) N=1.2, and (d), (h) N=1.4.

Download Full Size | PPT Slide | PDF

In the frequency domain [right column of Fig. 2], the RIFS of self-accelerating FEAP was observed in pulse spectrum toward long wavelengths along the fiber. When a self-accelerating FEAP for which the width and peak power are chosen such that N=1, is launched inside an ideal lossless fiber, the peak intensity of shedding soliton is smaller than 1, indicating that its pulse width is most broad [Fig. 2(a)]. It means that the Raman effects play a relatively minor role here. So the RIFS is not obvious. With increasing launched peak power, the peak intensity of shedding soliton is increased above 1, and its pulse width becomes narrower. As a result, the spectrum shifts significantly towards longer wavelength due to the contribution of RIFS, while the blue-shifted spectra almost remain the same. At the early stage, the Raman-induced red-shifting frequency will interfere with the residual frequency, leading to discrete multi-peaks. As the propagation distance is increased, the IRS effects gradually start to dominate and shift soliton to the back of pulse. The larger the value of the parameter N, the greater and smoother the outermost red-shifted spectra will be obtained. Clearly, when N=1.0 and 1.2, the spectral evolutions exhibit multi-peaks structure as a result of such interference [Figs. 2(f) and 2(g)]. For N=1.4, such multi-peaks structure is still seen in the initial stage of propagation. This unique behavior can be understood as follows. The self-accelerating FEAP has a broader spectrum. Because of the SPM-induced frequency chirp, at distinct temporal points, the pulse may have the same instantaneous frequency but different phases that may interfere destructively and constructively relying on their relative phase difference. In addition, Raman effects become weak in the case of low peak power. The pulse spectra show multiple peaks structure as a result of such interference.

3.2 Influence of truncation coefficient on the RIFS of self-accelerating FEAP

The truncation coefficient is a very important parameter of self-accelerating FEAP since its unique features depend considerably on the truncation degree. When the self-accelerating FEAP have a large value of truncation coefficient, their unique features disappear rapidly. In this section, we are devoted to disclose how the truncation degree affects the RIFS of self-accelerating FEAP. We set the parameter N to 1.6 while the truncation coefficient is limited to the range of 0.03 to 0.15.

Figure 3 shows the temporal and spectral evolution of self-accelerating FEAP with three different values of truncation coefficient over 15 dispersion lengths by numerically solving Eq. (3) with TR=0.1. It is clearly seen that the impact of truncation coefficient on the RIFS of self-accelerating FEAP. The smaller the truncation coefficient, the larger the temporal shift of the shedding soliton position. Figures 3(a) and 3(e) present, for comparison, the output pulse shapes and spectra at propagation distance Z=15 for the truncation coefficient a to 0.05, 0.10, and 0.15. It is indicated that the peak power and the temporal shift of shedding soliton increase with the decreasing truncation coefficient; as a result, the RIFS decreases with an increase in the truncation coefficient. But the peak power and spectral width of the outermost red-shifted spectra are almost the same for different truncation coefficients. The reason is that, for small truncation coefficient, the self-accelerating FEAP contains more energy owing to much more side lobes, leading to the formation of a soliton with high peak power and short pulse width. The shorter pulse with higher peak power is capable of generating a larger RIFS, because RIFS scales quadratically with the parameter N, or with the width as T04 [24]. Moreover, the truncation coefficient can be used to manipulate the RIFS for realizing a broad tunable light source. It should be pointed out that the increasing number of side lobes is not clearly visible in Figs. 3(b)3(e) when the truncation coefficient decreases, because their intensities are much smaller compared to that of the main lobe. On the other hand, the time window covers a wide range from −20 to 210, resulting in loss of visual quality. If the evolution of absolute amplitude |ψ|, rather than of the intensity |ψ|2, and a smaller time window are displayed, a better visualization of the increasing number of the low-intensity side lobes will be obtained.

 figure: Fig. 3

Fig. 3 Temporal and spectral evolutions of a self-accelerating FEAP with different truncation coefficients in the anomalous dispersion regime under the action of SPM (N=1.6) and Raman effects (TR=0.1): (a) output pulse and (e) spectral intensity at Z=15, and contour maps of the pulse and spectral evolutions for (b), (f) a=0.05, (c), (g) a=0.10, and (d), (h) a=0.15.

Download Full Size | PPT Slide | PDF

To get a better understanding of the influence of truncation coefficient on the RIFS, we computed the time centroid Tac=Tand frequency centroid Fac=ω which defines that x=x|ψ(Z,x)|2dx/|ψ(Z,x)|2dx,x=Torω, as a function of propagation distance. Figure 4 shows the time centroids (Tac) and frequency centroids (Fac) over 15 dispersion lengths for different values of truncation coefficients. It is clearly seen from Fig. 4(b) that the frequency centroids Facare almost the same over the first 5 dispersion lengths. While numerical results shown in Fig. 4(a) indicate that the time centroids Tac bears small deviations over the first 5 dispersion lengths for different truncation coefficient because the time centroid of initial FEAP depends on their truncation coefficient. With further increment of the propagation distance, they are quite sensitive to the truncation coefficients with its value in the range from 0 to 0.1. This is very useful for spectral tuning based on the RIFS of the self-accelerating FEAP.

 figure: Fig. 4

Fig. 4 (a) Time and (b) frequency centroids of FEAP with different truncation coefficients as a function of propagation distance for N = 1.6.

Download Full Size | PPT Slide | PDF

3.3 Comparison of the RIFS of self-accelerating FEAP and that of symmetric pulses

The RIFS of light pulses with symmetric profiles such as Gauss and sech have been intensively investigated. A comparison shown in Fig. 5 reveals difference between the RIFS of the self-accelerating FEAP and that of symmetric Gauss and sech pulses. Figures 5(a) and 5(d) show the output pulse intensity and spectra at Z=15 in the anomalous dispersion regime under the action of SPM (N=1.4) and Raman scattering (TR=0.1)effects. The time and frequency centroids (Tac, Fac), Imax, and TP of Imax are also shown in Fig. 5. A careful comparison shows that, under the action of Raman effects, the outermost red-shifted spectra with larger intensity and much larger shift will be obtained by using the self-accelerating FEAP pump. It can be seen from Fig. 5(e) that the frequency centroid Fac of self-accelerating FEAP is almost identical to that of soliton in first 9 dispersion lengths. With further propagation, the frequency shifting rate of self-accelerating FEAP is faster than that of solitons. The RIFS of Gaussian pulse is not obvious compared with that of the other input pulses. We compare the maximum intensity evolutions for three cases in Fig. 5(c): at the first 5.5 dispersion lengths, the maximum intensity of soliton shed from the main lobe of FEAP is comparable to that of sech pulse and is larger than that of Gauss pulse; but it becomes significantly larger as propagation distance is increased. The reason is that, at the initial propagation stage, the soliton is formed out of the main lobe of FEAP and experiences successive collisions with side lobes; the shedding soliton then interacts with the dispersion background, leading to energy exchange in the propagation process [43]. As a result, the maximum intensity of shedding soliton increases gradually and exhibits multi-peaks structure. The larger the peak intensity, the bigger the RIFS of soliton shows.

 figure: Fig. 5

Fig. 5 Propagation of the FEAP with a=0.1, sech and Gaussian pulse in the anomalous GVD under the action of SPM (N=1.4), Raman (TR=0.1) effects: (a) output pulse intensity and (d) spectra at Z=15; (b) Tac, (e) Fac, (c) Imax and (f) TP of Imax evolutions as a function of propagation distance.

Download Full Size | PPT Slide | PDF

4. Conclusion

In summary, we have numerically investigated the nonlinear propagation of self-accelerating FEAP in optical fibers with emphasis on the Raman scattering effects. It is shown that soliton is shed from the main lobe of self-accelerating FEAP and then slows down, as is apparent from its bent trajectory. At the same time, the shedding soliton interact with secondary lobes and dispersive background, resulting in its maximum intensity being periodically manifested. Furthermore, we find that the RIFS of shedding soliton can be manipulated by varying the truncation coefficient imposed on the self-accelerating FEAP. It is shown that the smaller the truncation coefficient, the bigger the amount of the RIFS. In addition, we also present a comparison of the nonlinear propagation of self-accelerating FEAP with that of pulse having the same width of the main lobe of self-accelerating FEAP as well as symmetric profiles (such as Gauss, sech), showing that the asymmetric self-accelerating FEAP with truncation coefficient a=0.1 exhibits the largest RIFS. The numerical results obtained demonstrate that a tunable light source based on RIFS of the self-accelerating FEAP can be achieved for various potential applications.

Acknowledgments

This work was supported by the Natural Science Foundation of SZU (Grant Nos. 201449, 201450) and the Hunan Provincial Natural Science Foundation of China (Grant No. 13JJ4108).

References and links

1. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979). [CrossRef]  

2. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007). [CrossRef]   [PubMed]  

3. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007). [CrossRef]   [PubMed]  

4. A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011). [CrossRef]  

5. P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012). [CrossRef]  

6. C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013). [CrossRef]  

7. P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013). [CrossRef]   [PubMed]  

8. Y. Zhang, M. R. Belić, H. Zheng, H. Chen, C. Li, Y. Li, and Y. Zhang, “Interactions of Airy beams, nonlinear accelerating beams, and induced solitons in Kerr and saturable nonlinear media,” Opt. Express 22(6), 7160–7171 (2014). [CrossRef]   [PubMed]  

9. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008). [CrossRef]   [PubMed]  

10. D. Marcuse, “Pulse distortion in single-mode fibers,” Appl. Opt. 19(10), 1653–1660 (1980). [CrossRef]   [PubMed]  

11. M. Miyagi and S. Nishida, “Pulse spreading in a single-mode fiber due to third-order dispersion,” Appl. Opt. 18(5), 678–682 (1979). [CrossRef]   [PubMed]  

12. C. C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23(4), 283–285 (1998). [CrossRef]   [PubMed]  

13. A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010). [CrossRef]  

14. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010). [CrossRef]   [PubMed]  

15. I. M. Besieris and A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046605 (2008). [CrossRef]   [PubMed]  

16. R. Driben, Y. Hu, Z. Chen, B. A. Malomed, and R. Morandotti, “Inversion and tight focusing of Airy pulses under the action of third-order dispersion,” Opt. Lett. 38(14), 2499–2501 (2013). [CrossRef]   [PubMed]  

17. I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19(23), 23132–23139 (2011). [CrossRef]   [PubMed]  

18. S. Wang, D. Fan, X. Bai, and X. Zeng, “Propagation dynamics of Airy pulses in optical fibers with periodic dispersion modulation,” Phys. Rev. A 89(2), 023802 (2014). [CrossRef]  

19. Y. Fattal, A. Rudnick, and D. M. Marom, “Soliton shedding from Airy pulses in Kerr media,” Opt. Express 19(18), 17298–17307 (2011). [CrossRef]   [PubMed]  

20. Y. Zhang, M. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, and Y. Zhang, “Soliton pair generation in the interactions of Airy and nonlinear accelerating beams,” Opt. Lett. 38(22), 4585–4588 (2013). [CrossRef]   [PubMed]  

21. C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011). [CrossRef]   [PubMed]  

22. L. Zhang, J. Zhang, Y. Chen, A. Liu, and G. Liu, “Dynamic propagation of finite-energy Airy pulses in the presence of higher-order effects,” J. Opt. Soc. Am. B 31(4), 889–897 (2014). [CrossRef]  

23. L. Zhang and H. Zhong, “Modulation instability of finite energy Airy pulse in optical fiber,” Opt. Express 22(14), 17107–17115 (2014). [CrossRef]   [PubMed]  

24. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

25. R. H. Stolen and W. J. Tomlinson, “Effect of the Raman part of the nonlinear refractive index on propagation of ultrashort optical pulses in fibers,” J. Opt. Soc. Am. B 9(4), 565–573 (1992). [CrossRef]  

26. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986). [CrossRef]   [PubMed]  

27. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986). [CrossRef]   [PubMed]  

28. J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008). [CrossRef]   [PubMed]  

29. Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011). [CrossRef]  

30. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]  

31. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999). [CrossRef]  

32. C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003). [CrossRef]   [PubMed]  

33. M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of Raman soliton,” Electron. Lett. 40(6), 381–382 (2004). [CrossRef]  

34. K. J. Blow, N. J. Doran, and D. Wood, “Suppression of the soliton self-frequency shift by bandwidth-limited amplification,” J. Opt. Soc. Am. B 5(6), 1301–1304 (1988). [CrossRef]  

35. I. M. Uzunov, “Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(6), 066603 (2010). [CrossRef]   [PubMed]  

36. D. Schadt and B. Jaskorzynska, “Suppression of the Raman self-frequency shift by cross-phase modulation,” J. Opt. Soc. Am. B 5(11), 2374–2378 (1988). [CrossRef]  

37. P. Tchofo Dinda, K. Nakkeeran, and A. Labruyére, “Suppression of soliton self-frequency shift by upshifted filtering,” Opt. Lett. 27(6), 382–384 (2002). [CrossRef]   [PubMed]  

38. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003). [CrossRef]   [PubMed]  

39. A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33(15), 1723–1725 (2008). [CrossRef]   [PubMed]  

40. E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005). [CrossRef]  

41. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26(11), 2064–2071 (2009). [CrossRef]  

42. R. Pant, A. C. Judge, E. C. Magi, B. T. Kuhlmey, M. De Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27(9), 1894–1901 (2010). [CrossRef]  

43. F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
    [Crossref]
  2. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
    [Crossref] [PubMed]
  3. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [Crossref] [PubMed]
  4. A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
    [Crossref]
  5. P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
    [Crossref]
  6. C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
    [Crossref]
  7. P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
    [Crossref] [PubMed]
  8. Y. Zhang, M. R. Belić, H. Zheng, H. Chen, C. Li, Y. Li, and Y. Zhang, “Interactions of Airy beams, nonlinear accelerating beams, and induced solitons in Kerr and saturable nonlinear media,” Opt. Express 22(6), 7160–7171 (2014).
    [Crossref] [PubMed]
  9. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
    [Crossref] [PubMed]
  10. D. Marcuse, “Pulse distortion in single-mode fibers,” Appl. Opt. 19(10), 1653–1660 (1980).
    [Crossref] [PubMed]
  11. M. Miyagi and S. Nishida, “Pulse spreading in a single-mode fiber due to third-order dispersion,” Appl. Opt. 18(5), 678–682 (1979).
    [Crossref] [PubMed]
  12. C. C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23(4), 283–285 (1998).
    [Crossref] [PubMed]
  13. A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010).
    [Crossref]
  14. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
    [Crossref] [PubMed]
  15. I. M. Besieris and A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046605 (2008).
    [Crossref] [PubMed]
  16. R. Driben, Y. Hu, Z. Chen, B. A. Malomed, and R. Morandotti, “Inversion and tight focusing of Airy pulses under the action of third-order dispersion,” Opt. Lett. 38(14), 2499–2501 (2013).
    [Crossref] [PubMed]
  17. I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19(23), 23132–23139 (2011).
    [Crossref] [PubMed]
  18. S. Wang, D. Fan, X. Bai, and X. Zeng, “Propagation dynamics of Airy pulses in optical fibers with periodic dispersion modulation,” Phys. Rev. A 89(2), 023802 (2014).
    [Crossref]
  19. Y. Fattal, A. Rudnick, and D. M. Marom, “Soliton shedding from Airy pulses in Kerr media,” Opt. Express 19(18), 17298–17307 (2011).
    [Crossref] [PubMed]
  20. Y. Zhang, M. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, and Y. Zhang, “Soliton pair generation in the interactions of Airy and nonlinear accelerating beams,” Opt. Lett. 38(22), 4585–4588 (2013).
    [Crossref] [PubMed]
  21. C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
    [Crossref] [PubMed]
  22. L. Zhang, J. Zhang, Y. Chen, A. Liu, and G. Liu, “Dynamic propagation of finite-energy Airy pulses in the presence of higher-order effects,” J. Opt. Soc. Am. B 31(4), 889–897 (2014).
    [Crossref]
  23. L. Zhang and H. Zhong, “Modulation instability of finite energy Airy pulse in optical fiber,” Opt. Express 22(14), 17107–17115 (2014).
    [Crossref] [PubMed]
  24. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  25. R. H. Stolen and W. J. Tomlinson, “Effect of the Raman part of the nonlinear refractive index on propagation of ultrashort optical pulses in fibers,” J. Opt. Soc. Am. B 9(4), 565–573 (1992).
    [Crossref]
  26. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [Crossref] [PubMed]
  27. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [Crossref] [PubMed]
  28. J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
    [Crossref] [PubMed]
  29. Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
    [Crossref]
  30. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  31. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999).
    [Crossref]
  32. C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
    [Crossref] [PubMed]
  33. M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of Raman soliton,” Electron. Lett. 40(6), 381–382 (2004).
    [Crossref]
  34. K. J. Blow, N. J. Doran, and D. Wood, “Suppression of the soliton self-frequency shift by bandwidth-limited amplification,” J. Opt. Soc. Am. B 5(6), 1301–1304 (1988).
    [Crossref]
  35. I. M. Uzunov, “Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(6), 066603 (2010).
    [Crossref] [PubMed]
  36. D. Schadt and B. Jaskorzynska, “Suppression of the Raman self-frequency shift by cross-phase modulation,” J. Opt. Soc. Am. B 5(11), 2374–2378 (1988).
    [Crossref]
  37. P. Tchofo Dinda, K. Nakkeeran, and A. Labruyére, “Suppression of soliton self-frequency shift by upshifted filtering,” Opt. Lett. 27(6), 382–384 (2002).
    [Crossref] [PubMed]
  38. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
    [Crossref] [PubMed]
  39. A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33(15), 1723–1725 (2008).
    [Crossref] [PubMed]
  40. E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
    [Crossref]
  41. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26(11), 2064–2071 (2009).
    [Crossref]
  42. R. Pant, A. C. Judge, E. C. Magi, B. T. Kuhlmey, M. De Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27(9), 1894–1901 (2010).
    [Crossref]
  43. F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
    [Crossref] [PubMed]

2014 (4)

2013 (4)

Y. Zhang, M. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, and Y. Zhang, “Soliton pair generation in the interactions of Airy and nonlinear accelerating beams,” Opt. Lett. 38(22), 4585–4588 (2013).
[Crossref] [PubMed]

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref] [PubMed]

R. Driben, Y. Hu, Z. Chen, B. A. Malomed, and R. Morandotti, “Inversion and tight focusing of Airy pulses under the action of third-order dispersion,” Opt. Lett. 38(14), 2499–2501 (2013).
[Crossref] [PubMed]

2012 (1)

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

2011 (5)

I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19(23), 23132–23139 (2011).
[Crossref] [PubMed]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
[Crossref] [PubMed]

Y. Fattal, A. Rudnick, and D. M. Marom, “Soliton shedding from Airy pulses in Kerr media,” Opt. Express 19(18), 17298–17307 (2011).
[Crossref] [PubMed]

Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
[Crossref]

2010 (4)

I. M. Uzunov, “Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(6), 066603 (2010).
[Crossref] [PubMed]

A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010).
[Crossref]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

R. Pant, A. C. Judge, E. C. Magi, B. T. Kuhlmey, M. De Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27(9), 1894–1901 (2010).
[Crossref]

2009 (1)

2008 (4)

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33(15), 1723–1725 (2008).
[Crossref] [PubMed]

I. M. Besieris and A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046605 (2008).
[Crossref] [PubMed]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

2007 (2)

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
[Crossref] [PubMed]

2005 (1)

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

2004 (1)

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of Raman soliton,” Electron. Lett. 40(6), 381–382 (2004).
[Crossref]

2003 (2)

C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

2002 (1)

1999 (1)

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

1998 (1)

1992 (1)

1988 (2)

1986 (2)

1980 (1)

1979 (2)

Abdollahpour, D.

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

Ament, C.

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
[Crossref] [PubMed]

Bai, X.

S. Wang, D. Fan, X. Bai, and X. Zeng, “Propagation dynamics of Airy pulses in optical fibers with periodic dispersion modulation,” Phys. Rev. A 89(2), 023802 (2014).
[Crossref]

Balazs, N. L.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Bandres, C. M. A.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

Bang, O.

Belic, M.

Belic, M. R.

Berry, M. V.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Besieris, I. M.

I. M. Besieris and A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046605 (2008).
[Crossref] [PubMed]

Blow, K. J.

Broky, J.

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Chai, L.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Chang, C. C.

Chen, H.

Chen, Y.

Chen, Z.

Chong, A.

A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010).
[Crossref]

Christodoulides, D. N.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19(23), 23132–23139 (2011).
[Crossref] [PubMed]

A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010).
[Crossref]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[Crossref] [PubMed]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Couairon, A.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref] [PubMed]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

Dai, X. Y.

Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
[Crossref]

de Sterke, C. M.

De Sterke, M.

Dogariu, A.

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Doran, N. J.

Driben, R.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Eggleton, B. J.

Faccio, D.

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

Fan, D.

S. Wang, D. Fan, X. Bai, and X. Zeng, “Propagation dynamics of Airy pulses in optical fibers with periodic dispersion modulation,” Phys. Rev. A 89(2), 023802 (2014).
[Crossref]

Fan, D. Y.

Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
[Crossref]

Fattal, Y.

Fujiura, K.

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of Raman soliton,” Electron. Lett. 40(6), 381–382 (2004).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gordon, J. P.

Goto, T.

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

Greenfield, E.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

Guo, J.

Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
[Crossref]

Hu, M. L.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Hu, Y.

Jaskorzynska, B.

Judge, A. C.

Kaminer, I.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19(23), 23132–23139 (2011).
[Crossref] [PubMed]

Kato, M.

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of Raman soliton,” Electron. Lett. 40(6), 381–382 (2004).
[Crossref]

Knight, J. C.

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Kuhlmey, B. T.

Kurihara, T.

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of Raman soliton,” Electron. Lett. 40(6), 381–382 (2004).
[Crossref]

Labruyére, A.

Lee, J. H.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

Li, C.

Li, Y.

Li, Y. F.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Liu, A.

Liu, G.

Liu, X.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
[Crossref] [PubMed]

Lotti, A.

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

Lu, K.

Luan, F.

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Lumer, Y.

Magi, E. C.

Mägi, E. C.

Malomed, B. A.

Marcuse, D.

Marom, D. M.

Mills, M.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

Mitschke, F. M.

Miyagi, M.

Mollenauer, L. F.

Moloney, J. V.

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
[Crossref] [PubMed]

Morandotti, R.

Nakkeeran, K.

Nishida, S.

Nishizawa, N.

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

Panagiotopoulos, P.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref] [PubMed]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

Pant, R.

Papazoglou, D. G.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref] [PubMed]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

Polynkin, P.

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
[Crossref] [PubMed]

Renninger, W.

A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010).
[Crossref]

Rodríguez-Lara, B. M.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

Rudnick, A.

Russell, P. St. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Sardesai, H. P.

Schadt, D.

Segev, M.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19(23), 23132–23139 (2011).
[Crossref] [PubMed]

Serebryannikov, E. E.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Shaarawi, A. M.

I. M. Besieris and A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046605 (2008).
[Crossref] [PubMed]

Siviloglou, G. A.

Skryabin, D. V.

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Stolen, R. H.

Suntsov, S.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

Tchofo Dinda, P.

Tomlinson, W. J.

Tzortzakis, S.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref] [PubMed]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

Uzunov, I. M.

I. M. Uzunov, “Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(6), 066603 (2010).
[Crossref] [PubMed]

van Howe, J.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

Voronin, A. A.

Wang, C. Y.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Wang, S.

S. Wang, D. Fan, X. Bai, and X. Zeng, “Propagation dynamics of Airy pulses in optical fibers with periodic dispersion modulation,” Phys. Rev. A 89(2), 023802 (2014).
[Crossref]

Wang, Z.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Weiner, A. M.

Wen, S. C.

Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
[Crossref]

Wise, F. W.

A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010).
[Crossref]

Wood, D.

Wu, Z.

Xiang, Y. J.

Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
[Crossref]

Xu, C.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
[Crossref] [PubMed]

Yulin, A. V.

Zeng, X.

S. Wang, D. Fan, X. Bai, and X. Zeng, “Propagation dynamics of Airy pulses in optical fibers with periodic dispersion modulation,” Phys. Rev. A 89(2), 023802 (2014).
[Crossref]

Zhang, J.

Zhang, L.

Zhang, Y.

Zheltikov, A. M.

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33(15), 1723–1725 (2008).
[Crossref] [PubMed]

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Zheng, H.

Zhong, H.

Am. J. Phys. (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (1)

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of Raman soliton,” Electron. Lett. 40(6), 381–382 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

IEEE Photon. Technol. Lett. (1)

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

J. Opt. Soc. Am. B (6)

JETP Lett. (1)

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Nat. Commun. (1)

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref] [PubMed]

Nat. Photon. (1)

A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (9)

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
[Crossref] [PubMed]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
[Crossref] [PubMed]

C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
[Crossref] [PubMed]

R. Driben, Y. Hu, Z. Chen, B. A. Malomed, and R. Morandotti, “Inversion and tight focusing of Airy pulses under the action of third-order dispersion,” Opt. Lett. 38(14), 2499–2501 (2013).
[Crossref] [PubMed]

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33(15), 1723–1725 (2008).
[Crossref] [PubMed]

P. Tchofo Dinda, K. Nakkeeran, and A. Labruyére, “Suppression of soliton self-frequency shift by upshifted filtering,” Opt. Lett. 27(6), 382–384 (2002).
[Crossref] [PubMed]

C. C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23(4), 283–285 (1998).
[Crossref] [PubMed]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[Crossref] [PubMed]

Y. Zhang, M. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, and Y. Zhang, “Soliton pair generation in the interactions of Airy and nonlinear accelerating beams,” Opt. Lett. 38(22), 4585–4588 (2013).
[Crossref] [PubMed]

Opt. Photon. News (1)

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

Phys. Rev. A (4)

S. Wang, D. Fan, X. Bai, and X. Zeng, “Propagation dynamics of Airy pulses in optical fibers with periodic dispersion modulation,” Phys. Rev. A 89(2), 023802 (2014).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

I. M. Uzunov, “Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(6), 066603 (2010).
[Crossref] [PubMed]

I. M. Besieris and A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046605 (2008).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Temporal and spectral evolutions of a FEAP with truncation coefficient a = 0.1 (a), (b) and Gaussian pulse (c), (d) in linear condition for N = 1 .
Fig. 2
Fig. 2 Temporal and spectral evolutions of the FEAP with a = 0.1 for different launched peak power ( N ) in the anomalous dispersion regime under the action of SPM and Raman effects ( T R = 0.1 ): (a) output pulse intensity and (e) spectral intensity at Z = 15 , and contour maps of the temporal and spectral evolution for (b), (f) N = 1.0 , (c), (g) N = 1.2 , and (d), (h) N = 1.4 .
Fig. 3
Fig. 3 Temporal and spectral evolutions of a self-accelerating FEAP with different truncation coefficients in the anomalous dispersion regime under the action of SPM ( N = 1.6 ) and Raman effects ( T R = 0.1 ): (a) output pulse and (e) spectral intensity at Z = 15 , and contour maps of the pulse and spectral evolutions for (b), (f) a = 0.05 , (c), (g) a = 0.10 , and (d), (h) a = 0.15 .
Fig. 4
Fig. 4 (a) Time and (b) frequency centroids of FEAP with different truncation coefficients as a function of propagation distance for N = 1.6.
Fig. 5
Fig. 5 Propagation of the FEAP with a = 0.1 , sech and Gaussian pulse in the anomalous GVD under the action of SPM ( N = 1.4 ), Raman ( T R = 0.1 ) effects: (a) output pulse intensity and (d) spectra at Z = 15 ; (b) T a c , (e) F a c , (c) I max and (f) TP of I max evolutions as a function of propagation distance.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i Φ z = β 2 2 2 Φ t 2 γ ( | Φ | 2 Φ t R Φ | Φ | 2 t ) ,
T = t t 0 , Z = z l D , T R = t R t 0 , ψ = Φ Φ 0 , N = γ Φ 0 l D ,
i ψ Z = 1 2 2 ψ T 2 N 2 ( | ψ | 2 ψ T R ψ | ψ | 2 T ) .
ψ ( T , Z = 0 ) = ( a ) Ai ( T ) exp ( a T ) ,

Metrics