Abstract

Guiding light inside the hollow cores of microstructured optical fibers is a major research field within fiber optics. However, most of current fibers reveal limited spectral operation ranges between the mid-visible and the infrared and rely on complicated microstructures. Here we report on a new type of hollow-core fiber, showing for the first time distinct transmission windows between the deep ultraviolet and the near infrared. The fiber, guiding in a single mode, operates by the central core mode being anti-resonant to adjacent modes, leading to a novel modified tunneling leaky mode. The fiber design is straightforward to implement and reveals beneficial features such as preselecting the lowest loss mode (Gaussian-like or donut-shaped mode). Fibers with such a unique combination of attributes allow accessing the extremely important deep-UV range with Gaussian-like mode quality and may pave the way for new discoveries in biophotonics, multispectral spectroscopy, photo-initiated chemistry or ultrashort pulse delivery.

© 2014 Optical Society of America

1. Introduction

The guidance of light in optical fibers having a hollow core is one of the major research directions in fiber optics due to its attractiveness for basic research as well as for interdisciplinary applications. Such “empty-core” fibers are typically made from silica and reveal several key features such as very low or tunable group velocity dispersion for ultrashort pulse propagation and compression [1, 2], large damage threshold for high-power delivery far beyond that of standard fibers [3] or a strongly improved sensitivity for in-fiber spectroscopy in e.g. biophotonics [4, 5].

Two directions of hollow core research have emerged in recent time: (i) simplifying the fiber’s design as much as possible, thus making them more practical and useful for commercialization, (ii) pushing the optical guidance windows towards new spectral regimes [6]. Beside the visible (VIS) and infrared (IR), the ultraviolet (UV) regime has turned out to be of essential importance for a vast number of applications [711]. It has the potential to widen the application area of currently used fibers to new fields such as spectroscopy [5, 12], photo-initiated chemistry [13, 14], gas based frequency standards [15], lithography [16] or low-loss UV light delivery for applications in for instance medicine [1719].

Several very promising fiber designs have been implemented during the years, each relying on a different guidance mechanism. The simplest design is a capillary, which found only limited number of applications due to severe intrinsic modal loss [20]. Another fiber relies on a concentric arrangement of dielectric material with a central hollow core, allowing photonic band gap guidance [2123]. The drawback of this design – having more than one material involved in the fiber drawing process – has been circumvented with the hollow-core band gap photonic crystal fiber (HC-PCF) [2429] giving rise to a vast number of applications in various fields such as gas-laser interaction for tunable UV-sources, ultrafast pulse shaping [2], particle guidance [30], in-fiber micro-reactors [13, 31], or fiber-optic communications [32]. Beside the band gap effect, a low density of cladding states has been used in the Kagome-design [3336] providing optical guidance over a broad spectral range with higher attenuation. All these designs are based on sophisticated internal microstructures of the fibers, typically consisting of tens or even hundreds of thin layers or longitudinal holes separated by fine silica strands, thus they require a complicated, costly and time-consuming fabrication procedure with the tendency of being extremely sensitive to structural imperfections and irregularities, which discards them from wider distribution in interdisciplinary research, e.g. biomedicine.

Recently, a simplified design (negative curvature fiber) based on one single ring of thin walled holes connected to the inner wall of a silica capillary has proven to show 24 dB/km of attenuation at around 2.4 µm [37], which is remarkably low for such a simple design. The guidance mechanism relies on the central core mode being anti-resonant to the modes in the core surround [38]. The experiments, however, have shown that the loss of the core mode dramatically increases when approaching the VIS spectral range, preventing any light guidance for wavelength below 800 nm.

Here we report on the first experimental demonstration of waveguidance within a single optical mode inside a novel type of fiber down to a wavelength of 225 nm, which strongly extends beyond previously reported transmission windows by more than 100 nm towards shorter wavelength [36]. This innovative design relies on the core mode in the central hollow region being double anti-resonant to two different adjacent cavities and exhibits various transmission bands with propagation losses as small as 2.4 dB/m at 348 nm. Depending on the precise interplay between the involved modes, i.e. the fiber’s internal microstructure, the single transmitted core mode can be tuned either linearly or azimuthally polarized over the entire spectral guidance regime. The guidance properties within the transmission bands are explained by the concept of modified tunneling leaky modes (calculated by quasi-analytic waveguide models), giving a clear picture of the physics behind this new type of double anti-resonance guidance. Compared to HC-PCFs and negative curvature fibers, this new design is much simpler and straightforwardly to realize due to the strongly reduced number of holes, thus being the first realistic approach for a commercial implementation of an anti-resonant waveguide.

The unique capabilities of this novel fiber for Gaussian-like single mode (modes with no central node and no additional side lopes within the core section) light guidance in the deep UV to 225nm significantly extends the limits of currently used holey fibers and will pave the way for new interdisciplinary discoveries in e.g. biophotonics, in-fiber spectroscopy, photo-activated chemistry, light-matter interaction or lithography and provides great potential for or commercialization.

2. Results and discussion

The new fiber has a hollow square-shaped core (edge length 2a = 17.7 µm), which is defined by very thin silica strands (strand thicknesses t = 560 nm) (Fig. 1(a)). The square core is surrounded by four comparably large air holes with a center extension of b = 38 µm. The total fiber diameter is 128 µm. The fabrication is straightforward and relies on drawing four capillaries squarely stacked inside an appropriate jacket tube (details of the fabrication are given in the appendix).

 

Fig. 1 The double antiresonant hollow square core fiber. (a) Scanning electron micrograph image of the cross section of the fiber (dark: air, light grey: silica). (b) Far field image of the transmitted mode at a wavelength of 355 nm. (c) Experimentally measured modal attenuation of the fundamental mode as function of wavelength (blue). The spectral positions of the silica strand resonances (calculated via the equation given in the text) are indicated by the dashed light grey lines (numbers correspond to the respective resonance order). The light purple areas show the different ultraviolet regimes (UVA 380–315 nm; UVB: 315–280 nm; UVC (deep UV): 280–200 nm) and the yellow and white areas the visible and near infrared intervals. The cyan dot refers to the wavelength at which the far field image shown in b) was taken. (d) Simulated modal attenuation of the fundamental mode using two different quasi-analytic models. Blue dots show the experimental loss minima. (e) ring model (green lines in c), (f) extended ring model (purple lines in d). White is air, cyan is silica. The dashed lines indicate extending the respective layer to infinity.

Download Full Size | PPT Slide | PDF

The square core fiber shows five strong transmission bands (Fig. 1(c)) which extent for the first time from the near-IR towards the deep UV range. The wavelengths of lowest modal attenuation together with the corresponding attenuations inside the respective transmission bands are: 750 nm, 6.9 dB/m; 480 nm, 2.0 dB/m; 348 nm, 2.4 dB/m; 276 nm, 9.1 dB/m; 231 nm, 49.7 dB/m (Fig. 1(c)). In-between these bands no light is observed in the core. The far field pattern of the fiber output basically resembles a fundamental mode with a single strong central maximum (Fig. 1(b)), while mode patterns in previously demonstrated hollow core fibers at 355nm suffer from highly multimode operation [36].

The band formation can be explained by a phase-matching of the core mode with modes in the adjacent silica strands, leading to modal hybridization, i.e. resonances. At those resonances light can laterally escape from the core region, being the origin of the strong attenuation increase at the boundaries of the bands. The spectral locations of the resonances (i.e. high loss regions) can be found by quantizing the transverse wave vector kt of the core mode (mπ = kt t) and assuming that, at resonance, the propagation constant of the core mode is equal to the vacuum wave vector, which in fact is true for the upper branch of the hybridized mode. This leads to λR=2t/mn21with the resonance wavelength λR, the resonance order m and the refractive index of silica n (data for silica refractive index taken from [39]). The calculated λR coincide with the high loss regions in-between two bands (grey dashed lines in Fig. 1(c)), confirming the above mentioned phase-matching process. This resonance model is well understood and denotes the optical guidance between two adjacent resonances as anti-resonance phenomenon [4045]. However, the anti-resonance model is unable to explain the nature of the modes away from the resonances, obviously being the most important region for any serious application.

To understand the physics of modal guidance within the bands, two types of waveguide models were analyzed, both relying on directly solving Maxwell Equations [46] and assuming the square region adjacent to the core to be approximated by a thin silica ring with an inner radius a and the thickness t (Figs. 1(e) and 1(f)). Within the first model (ring model, RM), core and outer cladding regions are both air, with the latter being extended to infinity (Fig. 1(e)). A key result of the simulations is that solutions only exist if open, unbounded modes are considered, which is mathematically represented by a negative transverse wave vector in the outer cladding region (kt,clad=β2k02) (β: propagation constant of the core mode, k0: vacuum wave vector). Such open modes, which are difficult to simulate with finite element (FE) mode solvers since open systems require boundary conditions generally being difficult to include into the FE-approach, continuously dissipate energy from the core section towards the most outer cladding. Modes in anti-resonant hollow waveguides are therefore intrinsically lossy, which is in strong contrast to waveguides relying on total internal reflection, being principally loss-free. The radial distribution of the Poynting vector Sz reveals a key feature of such modes (Fig. 2(a)): a minimum of Sz at a specific radial position which is called radiation caustic rcaustic. For a + t < r < rcaustic the mode is evanescent and therefore confines the light to the waveguide (grey region in Fig. 2(a)), whereas for the r > rcaustic Sz increases indicating energy dissipation into the cladding. This is characteristic for any leaky waveguide mode. In the center of a transmission band the radiation caustic reaches their maxima (the mode is confined as much as possible) and the corresponding modal attenuation is smallest (Fig. 2(b)). All modes discussed here have a + t < rcaustic < ∞ and are called modified tunneling leaky modes (TLMs) [47].

 

Fig. 2 Properties of the modified tunneling leaky modes of the hollow square core fiber (simulated by ring model Fig. 1(e)). (a) Example illustrating the radial Pointing vector distribution (logarithmic scale) of the modified tunneling leaky mode (radiation caustic indicated by the blue dot at 32.5 µm, a = 8.85 µm, t = 560 nm). (b) Spectral distribution of the radiation caustic for the different transmission bands (grey dashed lines: spectral positions of the strand resonances with the respective resonance orders). The lower black dashed line is the boundary at which the tunneling converts to a refracting leaky mode, and the upper black dashed line is the limit of an infinite distance from the core, corresponding to the bounded mode boundary. The region of the tunneling leaky modes is shown in light green.

Download Full Size | PPT Slide | PDF

TLMs, which have only been used in the context of capillary modes, comprise features of both bounded and radiation modes at the same time and exist only in the region between the guided mode boundary (rcaustic → ∞, upper black dashed line in Fig. 2(b)) and refracting leaky mode boundary (rcaustica + t, lower black dashed line in Fig. 2(b)). The radiation caustic collapses to the outer boundary of the ring when spectrally approaching the strand resonances, transforming itself into a lossy capillary mode (Fig. 2(b)).

The calculated attenuation of the fundamental mode within the bands (Fig. 1(d)) principally resembles the measured loss behavior (Fig. 1(c)). The measured bands reveal a reduced bandwidth, which mainly results from variations in the strand thicknesses (standard deviation 13nm), inhomogenously broadening the resonances. The experimental attenuation increases for λ0 < 400nm, whereas the model predicts a monotonic decrease. The origin of this effect, which has also been observed in the negative curvature fiber at much longer wavelengths, is under current debate [37, 48, 49]. Broadened resonances, resulting from variations in the silica bridge thicknesses, are at least partly relevant for the increased experimental attenuation. Such variations give rise to a distribution of transmission bands with spectrally different transmission minima. The superposition of all these bands in fact leads to a narrower band with increased attenuation. Ultimately scattering due to intrinsic surface roughness at the silica-air interfaces will constitute the fundamental limit. Such irregularities are intrinsic to the fiber fabrication process and result from surface waves frozen-in during fiber drawing [50]. Up to now corresponding low loss limits were derived for the NIR wavelength range only (few dB/km) [51]. Due to the severe wavelength dependence an order of magnitude higher loss limit is expected in the UV wavelength range.

The RM shows one order of magnitude higher attenuation than the experiment (in the region of negligible surface roughness influence, λ0∈{VIS,NIR}), revealing the need of including another external feedback layer to account for the four outer air holes surrounding the square core (Fig. 1(a)). Therefore an extended ring model (ERM) was established, giving a better match to the experimental results (Figs. 1(b) and 1(c). This ERM relies on an additional semi-infinite concentric boundary silica layer with a radius b (Fig. 1(f)), acting as additional feedback and forming an outer leaky waveguide. Its leaky modes can phase-match to the TLMs, if the azimuthal symmetries of both involved modes are identical, thus opening an additional loss channel for the TLMs (red dot at 23µm in Fig. 3(a)). If the modes of core and outer waveguide are, however, anti-resonant (green square at 17µm in Fig. 3(a)), the attenuation of the TLM can drop by two orders of magnitude below that of the RM by being simultaneously anti-resonant to strand and outer waveguide modes. The double anti-resonant effect is the key feature of our waveguide, allowing a significant reduction of the modal attenuation compared to a ring model type structure. A striking result of the ERM is that the mode with the lowest loss in the system can be chosen by tuning the radius b (Fig. 1(f)). As example, for b = 17 µm the TL-HE11 (TL: tunneling leaky) mode has significant lower loss than the TL-TE01 mode (green square in Fig. 3(a), Fig. 3(b)), whereas this situation reverses at b = 23 µm (red dot in Fig. 3(a), Fig. 3(c)). This effect results from the strong outer radius dependence of the dispersion of the outer waveguide modes (β = β(b)). The spectral dependence of TLMs and outer waveguide modes (β = β(λ0)), however, is almost identical, leading to a constant relative attenuation between the modes with negligible wavelength dependence (Fig. 4(a)) for one fixed fiber structure. We demonstrate this effect by measuring the optical near field pattern (white light) of two different fibers: the first fiber had b = 34 µm showing a fundamental-type TL-HE11 mode for all wavelengths (Fig. 4(b)). A slightly larger outer radius was realized in a second sample (b = 36 µm), giving rise to a donut shaped optical mode at any relevant wavelength, which we identify as TL-TE01 mode (Fig. 4(c)). The ERM therefore gives a clear picture of the physics behind the light guidance inside our fiber structure. It has to be pointed out that only the ERM allows explaining the emergence of the higher order mode in the experiment, as the RM predicts the fundamental mode to always have the lowest loss.

 

Fig. 3 Modal attenuation of the two lowest order modified tunneling leaky modes as function of the outer waveguide radius b (Fig. 1(f), a = 10 µm, t = 500 nm, λ0 = 500 nm). The fundamental mode (TL-HE11) and the next higher-order mode (TL-TE01) are shown in purple and blue, respectively. The two dashed horizontal lines indicate the attenuation of the corresponding modes from the ring model (Fig. 1(e)). The normalized Poynting vector distributions of two TL-HE11 modes with selected cladding radii are presented on the right-handed side of the diagram (linear scale). (b): minimum attenuation at a radius of 17 µm (green square), (c) maximum attenuation at a radius of 23 µm (red dot). The color bar on the top of the figure refers to the two Poynting vector distributions.

Download Full Size | PPT Slide | PDF

 

Fig. 4 Spectral characteristics of the two lowest order modified tunneling leaky modes (calculated by the extended ring model). (a) The diagram shows the modal attenuation as function of frequency of the fundamental mode (TL-HE11 mode, purple) and the next higher order mode (TL-TE01 mode, blue). The two images on the right-handed side show experimentally measured near field images of the central core modes for two different fiber structures.

Download Full Size | PPT Slide | PDF

3. Conclusion

We have introduced a novel type of double-antiresonant hollow fiber, showing transmission in a single optical mode over a wide range of wavelengths extending for the first time towards the important deep UV range [711] (shortest guided wavelength is 225 nm). The guidance properties of the core mode have been thoroughly explained by a new type of modified tunneling leaky modes, having features of both leaky and guided modes. The low optical loss is therefore explained by the central mode being simultaneously anti-resonant with both strand and leaky outer waveguide modes. This double anti-resonance reveals negligible wavelength dependence in the experiment, allowing either a fundamental-like (HE11) or a donut-shaped (TE01) mode to be chosen as the lowest loss mode. The fiber’s design relies on only four large air holes and a central square core surrounded by very thin silica strands, making it straightforward to implement, compared to any other known designs. All experimental findings have been thoroughly explained by a quasi-analytic concentric ring model.

We believe that the unique capabilities for single-mode light guidance down to the deep-UV will pave the way for new interdisciplinary discoveries in research areas such as ultrasensitive and multispectral spectroscopy, in-fiber photocatalysis, gas-based metrology or ultrashort pulse forming and represent a fundamental step towards a commercialization of hollow anti-resonant fiber waveguides.

Appendix: Methods

Loss measurements: The modal attenuations were determined by successively cutting the fiber short (cut-back method). Probe light (Halogen lamp) was coupled in and out of the sample by approaching standard step index fibers at both ends of the fiber. This butt coupling procedure ensured that (i) only the core modes were excited and (ii) only light from the central fiber section was collected. Bending the fiber induces an intensity drop to about one quarter of the initial intensity with no further reduction when the bending radius is reduced further. Such non-monotonic behavior was also observed for other types of anti-resonant waveguides and is under current debate [52].

Excluding higher order mode excitation: To be sure that higher-order modes from the prefiber (“pinhole fiber”) did not contribute to our findings, we conducted a single wavelength loss measurement with a high quality beam using a lens-based input coupling scheme (wavelength 355 nm, incoming beam: M2 =1.1), giving practically the same loss value (Fig. 1(c), blue circle) as the butt coupling technique. A potential influence of the higher-order modes from the prefiber can therefore be excluded.

Fabrication of the double anti-resonant square core fiber: The square core fiber has been implemented using a three step version of the stack-and-draw approach (Fig. 5(a): (i) a large air filling fraction silica tube (outer and inner diameter 28 and 26 mm, Heraeus Suprasil F300) has been drawn such that four resulting capillaries assembled in square arrangement fit into a jacket tube. (ii) This preform has been drawn into a cane (Fig. 5(b)). (iii) This cane was overcladded by another jacket and drawn to the final fiber (outer diameter 125 µm, Fig. 5(c)). The main challenge is the uniform sintering of the four capillaries at their tangency points to provide an evenly distributed physical connection to the inner wall of the jacket. The thin-wall bridges in the final fiber have been achieved by isostatic pressurization in the second drawing step [53], allowing formation of very fine bridges and preventing formation of thickened strands. Variations of the bridge thickness are mainly caused by the different stretching ratios resulting from variations of the distances between the sintering points.

 

Fig. 5 Fabrication details of the square core fiber. (a) Fabrication sequence of the three step process. The numbers along the magenta arrows indicate the approximate size reduction factor. (b) Microscope image of the cane. (c) Scanning electron micrograph of the square core fiber cross section.

Download Full Size | PPT Slide | PDF

Acknowledgments

Funding from the federal state of Thuringia (Forschergruppe Fasersensorik: FKZ: 2012 FGR 0013; FaserINFRA: FKZ: B715-11029) and ESF is highly acknowledged.

References and links

1. W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett. 29(11), 1285–1287 (2004). [CrossRef]   [PubMed]  

2. K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. J. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett. 38(18), 3592–3595 (2013). [CrossRef]   [PubMed]  

3. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003). [CrossRef]   [PubMed]  

4. T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013). [CrossRef]   [PubMed]  

5. S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014). [CrossRef]   [PubMed]  

6. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012). [CrossRef]   [PubMed]  

7. Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008). [CrossRef]   [PubMed]  

8. T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007). [CrossRef]   [PubMed]  

9. V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995). [CrossRef]   [PubMed]  

10. T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B 111(16), 4171–4177 (2007). [CrossRef]   [PubMed]  

11. T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007). [CrossRef]   [PubMed]  

12. P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012). [CrossRef]   [PubMed]  

13. J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010). [CrossRef]   [PubMed]  

14. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013). [CrossRef]   [PubMed]  

15. A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Opt. Lett. 36(24), 4776–4778 (2011). [CrossRef]   [PubMed]  

16. G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4(6), 1840–1855 (2012). [CrossRef]   [PubMed]  

17. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000). [CrossRef]   [PubMed]  

18. T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009). [CrossRef]   [PubMed]  

19. T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct. 924–926, 301–308 (2009). [CrossRef]  

20. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission + Lasers,” Bell System Technical Journal 43, 1783 (1964).

21. Y. Fink, D. J. Ripin, S. H. Fan, C. P. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999). [CrossRef]  

22. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001). [CrossRef]   [PubMed]  

23. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004). [CrossRef]   [PubMed]  

24. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282(5393), 1476–1478 (1998). [CrossRef]   [PubMed]  

25. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999). [CrossRef]   [PubMed]  

26. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef]   [PubMed]  

27. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003). [CrossRef]   [PubMed]  

28. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003). [CrossRef]   [PubMed]  

29. M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. S. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013). [CrossRef]   [PubMed]  

30. O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 109(2), 024502 (2012). [CrossRef]   [PubMed]  

31. F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today 171(1), 281–289 (2011). [CrossRef]  

32. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013). [CrossRef]  

33. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006). [CrossRef]   [PubMed]  

34. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007). [CrossRef]   [PubMed]  

35. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011). [CrossRef]   [PubMed]  

36. S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J.-L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett. 34(19), 2888–2890 (2009). [CrossRef]   [PubMed]  

37. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013). [CrossRef]   [PubMed]  

38. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13(20), 8277–8285 (2005). [CrossRef]   [PubMed]  

39. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984). [CrossRef]   [PubMed]  

40. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002). [CrossRef]   [PubMed]  

41. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003). [CrossRef]   [PubMed]  

42. K. J. Rowland, S. Afshar V, and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16(22), 17935–17951 (2008). [CrossRef]   [PubMed]  

43. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010). [CrossRef]   [PubMed]  

44. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010). [CrossRef]   [PubMed]  

45. L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012). [CrossRef]   [PubMed]  

46. P. Yeh, A. Yariv, and E. Marom, “THEORY OF BRAGG FIBER,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978). [CrossRef]  

47. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

48. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011). [CrossRef]   [PubMed]  

49. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013). [CrossRef]   [PubMed]  

50. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005). [CrossRef]   [PubMed]  

51. E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012). [CrossRef]   [PubMed]  

52. F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010). [CrossRef]   [PubMed]  

53. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: Capillary drawing,” J. Lightwave Technol. 19(12), 1924–1931 (2001). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett. 29(11), 1285–1287 (2004).
    [CrossRef] [PubMed]
  2. K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. J. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett. 38(18), 3592–3595 (2013).
    [CrossRef] [PubMed]
  3. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
    [CrossRef] [PubMed]
  4. T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
    [CrossRef] [PubMed]
  5. S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
    [CrossRef] [PubMed]
  6. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [CrossRef] [PubMed]
  7. Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
    [CrossRef] [PubMed]
  8. T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
    [CrossRef] [PubMed]
  9. V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995).
    [CrossRef] [PubMed]
  10. T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B 111(16), 4171–4177 (2007).
    [CrossRef] [PubMed]
  11. T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
    [CrossRef] [PubMed]
  12. P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012).
    [CrossRef] [PubMed]
  13. J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
    [CrossRef] [PubMed]
  14. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
    [CrossRef] [PubMed]
  15. A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Opt. Lett. 36(24), 4776–4778 (2011).
    [CrossRef] [PubMed]
  16. G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4(6), 1840–1855 (2012).
    [CrossRef] [PubMed]
  17. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
    [CrossRef] [PubMed]
  18. T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009).
    [CrossRef] [PubMed]
  19. T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct. 924–926, 301–308 (2009).
    [CrossRef]
  20. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission + Lasers,” Bell System Technical Journal 43, 1783 (1964).
  21. Y. Fink, D. J. Ripin, S. H. Fan, C. P. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999).
    [CrossRef]
  22. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
    [CrossRef] [PubMed]
  23. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004).
    [CrossRef] [PubMed]
  24. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282(5393), 1476–1478 (1998).
    [CrossRef] [PubMed]
  25. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [CrossRef] [PubMed]
  26. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  27. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  28. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
    [CrossRef] [PubMed]
  29. M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. S. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013).
    [CrossRef] [PubMed]
  30. O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
    [CrossRef] [PubMed]
  31. F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today 171(1), 281–289 (2011).
    [CrossRef]
  32. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [CrossRef]
  33. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [CrossRef] [PubMed]
  34. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
    [CrossRef] [PubMed]
  35. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [CrossRef] [PubMed]
  36. S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J.-L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett. 34(19), 2888–2890 (2009).
    [CrossRef] [PubMed]
  37. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
    [CrossRef] [PubMed]
  38. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13(20), 8277–8285 (2005).
    [CrossRef] [PubMed]
  39. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [CrossRef] [PubMed]
  40. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [CrossRef] [PubMed]
  41. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
    [CrossRef] [PubMed]
  42. K. J. Rowland, S. Afshar V, and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16(22), 17935–17951 (2008).
    [CrossRef] [PubMed]
  43. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [CrossRef] [PubMed]
  44. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
    [CrossRef] [PubMed]
  45. L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012).
    [CrossRef] [PubMed]
  46. P. Yeh, A. Yariv, and E. Marom, “THEORY OF BRAGG FIBER,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978).
    [CrossRef]
  47. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  48. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [CrossRef] [PubMed]
  49. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
    [CrossRef] [PubMed]
  50. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [CrossRef] [PubMed]
  51. E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
    [CrossRef] [PubMed]
  52. F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010).
    [CrossRef] [PubMed]
  53. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: Capillary drawing,” J. Lightwave Technol. 19(12), 1924–1931 (2001).
    [CrossRef]

2014 (1)

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[CrossRef] [PubMed]

2013 (7)

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
[CrossRef] [PubMed]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
[CrossRef] [PubMed]

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. S. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013).
[CrossRef] [PubMed]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[CrossRef] [PubMed]

K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. J. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett. 38(18), 3592–3595 (2013).
[CrossRef] [PubMed]

2012 (6)

2011 (4)

2010 (4)

2009 (3)

T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009).
[CrossRef] [PubMed]

T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct. 924–926, 301–308 (2009).
[CrossRef]

S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J.-L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett. 34(19), 2888–2890 (2009).
[CrossRef] [PubMed]

2008 (2)

K. J. Rowland, S. Afshar V, and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16(22), 17935–17951 (2008).
[CrossRef] [PubMed]

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

2007 (4)

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B 111(16), 4171–4177 (2007).
[CrossRef] [PubMed]

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

2004 (2)

2003 (5)

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

2000 (1)

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

1999 (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Y. Fink, D. J. Ripin, S. H. Fan, C. P. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999).
[CrossRef]

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

1995 (1)

V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995).
[CrossRef] [PubMed]

1984 (1)

1978 (1)

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission + Lasers,” Bell System Technical Journal 43, 1783 (1964).

Abdolvand, A.

Abeeluck, A. K.

Afshar V, S.

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Anstie, J. D.

Auguste, J.-L.

Babic, F.

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Balakrishnan, G.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Bayindir, M.

Baynes, F. N.

Beaudou, B.

Becker, K.

T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009).
[CrossRef] [PubMed]

Benabid, F.

Benoit, G.

Biriukov, A. S.

Birks, T. A.

Blondy, J.-M.

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Bringmann, G.

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Burger, S.

Chang, H.-C.

Chen, C. P.

Chen, J. S. Y.

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
[CrossRef] [PubMed]

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Cubillas, A. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Dasari, R. R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Davis, A. V.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

de Sterke, C. M.

Dianov, E. M.

Dunn, S. C.

Eggleton, B. J.

Engeness, T. D.

Etzold, B. J. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Euser, T. G.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[CrossRef] [PubMed]

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
[CrossRef] [PubMed]

Fan, S. H.

Farr, L.

Farrer, N. J.

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
[CrossRef] [PubMed]

Feld, M. S.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Février, S.

Fink, Y.

Fitt, A. D.

Fitzmaurice, M.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Fleming, J. W.

Focia, P.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Fokoua, E. N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[CrossRef] [PubMed]

Frosch, T.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[CrossRef] [PubMed]

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
[CrossRef] [PubMed]

T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009).
[CrossRef] [PubMed]

T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct. 924–926, 301–308 (2009).
[CrossRef]

T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B 111(16), 4171–4177 (2007).
[CrossRef] [PubMed]

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

Frosz, M.

Frosz, M. H.

Furusawa, K.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Garbos, M. K.

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[CrossRef] [PubMed]

Garcia-Garcia, F. R.

F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today 171(1), 281–289 (2011).
[CrossRef]

Gérôme, F.

Ghenuche, P.

Göbel, W.

Gonzalez-Jimenez, I. D.

F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today 171(1), 281–289 (2011).
[CrossRef]

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Hand, D. P.

Hanf, S.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[CrossRef] [PubMed]

Hanlon, E. B.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Hart, S. D.

Hayes, J. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Headley, C.

Helmchen, F.

Humbert, G.

Ibanescu, M.

Itzkan, I.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Jacobs, S. A.

Jamier, R.

Jayaraman, V.

V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Joly, N. Y.

Jones, A. C.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Keiner, R.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[CrossRef] [PubMed]

Knight, J. C.

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[CrossRef] [PubMed]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
[CrossRef] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[CrossRef] [PubMed]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13(20), 8277–8285 (2005).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Koncarevic, S.

T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009).
[CrossRef] [PubMed]

Koo, T. W.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Kosolapov, A. F.

Kramer, J. R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Kuriki, K.

Kuriki, Y.

Labruyère, A.

Lai, C.-H.

Langenhorst, F.

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

Leggett, G. J.

G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4(6), 1840–1855 (2012).
[CrossRef] [PubMed]

Li, K.

F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today 171(1), 281–289 (2011).
[CrossRef]

Li, Z.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Light, P. S.

Litchinitser, N. M.

Liu, T.-A.

Lu, J.-Y.

Luiten, A. N.

Lurie, A.

Maier, R. R. J.

Mak, K. F.

Mangan, B. J.

Manoharan, R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission + Lasers,” Bell System Technical Journal 43, 1783 (1964).

Marom, E.

Mason, M. W.

McPhedran, R. C.

Monro, T. M.

Motz, J. T.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Mukerji, I.

V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995).
[CrossRef] [PubMed]

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Nimmerjahn, A.

Nold, J.

Noll, T.

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

O’Halloran, T. V.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Pearce, G. J.

Peng, J.-L.

Penner-Hahn, J. E.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Petrovich, M. N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Please, C. P.

Plotnichenko, V. G.

Poletti, F.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[CrossRef] [PubMed]

Popp, J.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[CrossRef] [PubMed]

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
[CrossRef] [PubMed]

T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009).
[CrossRef] [PubMed]

T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct. 924–926, 301–308 (2009).
[CrossRef]

T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B 111(16), 4171–4177 (2007).
[CrossRef] [PubMed]

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

Poulton, C. G.

Pryamikov, A. D.

Rahman, M. A.

F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today 171(1), 281–289 (2011).
[CrossRef]

Rammler, S.

Richardson, D. J.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[CrossRef] [PubMed]

Rigneault, H.

Ripin, D. J.

Roberts, P. J.

Rodgers, K. R.

V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995).
[CrossRef] [PubMed]

Rowland, K. J.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Russell, P. S.

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. S. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013).
[CrossRef] [PubMed]

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. S. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. J. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett. 38(18), 3592–3595 (2013).
[CrossRef] [PubMed]

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[CrossRef] [PubMed]

P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012).
[CrossRef] [PubMed]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13(20), 8277–8285 (2005).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Sabert, H.

Sadler, P. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
[CrossRef] [PubMed]

Scharrer, M.

P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012).
[CrossRef] [PubMed]

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
[CrossRef] [PubMed]

Schenzel, K.

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission + Lasers,” Bell System Technical Journal 43, 1783 (1964).

Schmidt, O. A.

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[CrossRef] [PubMed]

Schmitt, M.

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B 111(16), 4171–4177 (2007).
[CrossRef] [PubMed]

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

Semjonov, S. L.

Setti, V.

Shafer, K. E.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Shapira, O.

Shephard, J. D.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Skorobogatiy, M.

Slavik, R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Soljacic, M.

Spiro, T. G.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995).
[CrossRef] [PubMed]

St J Russell, P.

Stace, T. M.

Staehlin, B. M.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Stasser, J. P.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Stefani, A.

Sun, C.-K.

Tarcea, N.

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

Thiele, H.

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

Thomas, E. L.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Tomlinson, A.

Travers, J. C.

Unterkofler, S.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Urich, A.

Usner, B.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Viens, J. F.

Vincetti, L.

Wadsworth, W. J.

Wang, Y. Y.

Wasserscheid, P.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Weisberg, O.

Weiss, T.

Wenger, J.

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Wheeler, N. V.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[CrossRef] [PubMed]

White, T. P.

Wiederhecker, G. S.

Williams, D. P.

Xue, Y.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Yan, D.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[CrossRef] [PubMed]

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
[CrossRef] [PubMed]

Yariv, A.

Yeh, P.

You, B.

Yu, F.

Anal. Chem. (4)

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
[CrossRef] [PubMed]

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[CrossRef] [PubMed]

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Bell System Technical Journal (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission + Lasers,” Bell System Technical Journal 43, 1783 (1964).

Biomed. Opt. Express (1)

Catal. Today (1)

F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today 171(1), 281–289 (2011).
[CrossRef]

Chem. Soc. Rev. (1)

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Chemistry (1)

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
[CrossRef] [PubMed]

J. Lightwave Technol. (2)

J. Mol. Struct. (1)

T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct. 924–926, 301–308 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B 111(16), 4171–4177 (2007).
[CrossRef] [PubMed]

Nanoscale (1)

G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4(6), 1840–1855 (2012).
[CrossRef] [PubMed]

Nat. Chem. Biol. (1)

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Nature (2)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Opt. Express (14)

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
[CrossRef] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
[CrossRef] [PubMed]

K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004).
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[CrossRef] [PubMed]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13(20), 8277–8285 (2005).
[CrossRef] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
[CrossRef] [PubMed]

K. J. Rowland, S. Afshar V, and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16(22), 17935–17951 (2008).
[CrossRef] [PubMed]

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[CrossRef] [PubMed]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[CrossRef] [PubMed]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[CrossRef] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[CrossRef] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[CrossRef] [PubMed]

L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012).
[CrossRef] [PubMed]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[CrossRef] [PubMed]

Opt. Lett. (10)

P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012).
[CrossRef] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[CrossRef] [PubMed]

A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Opt. Lett. 36(24), 4776–4778 (2011).
[CrossRef] [PubMed]

K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. J. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett. 38(18), 3592–3595 (2013).
[CrossRef] [PubMed]

F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010).
[CrossRef] [PubMed]

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. S. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013).
[CrossRef] [PubMed]

S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J.-L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett. 34(19), 2888–2890 (2009).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett. 29(11), 1285–1287 (2004).
[CrossRef] [PubMed]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[CrossRef] [PubMed]

Science (5)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other (1)

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The double antiresonant hollow square core fiber. (a) Scanning electron micrograph image of the cross section of the fiber (dark: air, light grey: silica). (b) Far field image of the transmitted mode at a wavelength of 355 nm. (c) Experimentally measured modal attenuation of the fundamental mode as function of wavelength (blue). The spectral positions of the silica strand resonances (calculated via the equation given in the text) are indicated by the dashed light grey lines (numbers correspond to the respective resonance order). The light purple areas show the different ultraviolet regimes (UVA 380–315 nm; UVB: 315–280 nm; UVC (deep UV): 280–200 nm) and the yellow and white areas the visible and near infrared intervals. The cyan dot refers to the wavelength at which the far field image shown in b) was taken. (d) Simulated modal attenuation of the fundamental mode using two different quasi-analytic models. Blue dots show the experimental loss minima. (e) ring model (green lines in c), (f) extended ring model (purple lines in d). White is air, cyan is silica. The dashed lines indicate extending the respective layer to infinity.

Fig. 2
Fig. 2

Properties of the modified tunneling leaky modes of the hollow square core fiber (simulated by ring model Fig. 1(e)). (a) Example illustrating the radial Pointing vector distribution (logarithmic scale) of the modified tunneling leaky mode (radiation caustic indicated by the blue dot at 32.5 µm, a = 8.85 µm, t = 560 nm). (b) Spectral distribution of the radiation caustic for the different transmission bands (grey dashed lines: spectral positions of the strand resonances with the respective resonance orders). The lower black dashed line is the boundary at which the tunneling converts to a refracting leaky mode, and the upper black dashed line is the limit of an infinite distance from the core, corresponding to the bounded mode boundary. The region of the tunneling leaky modes is shown in light green.

Fig. 3
Fig. 3

Modal attenuation of the two lowest order modified tunneling leaky modes as function of the outer waveguide radius b (Fig. 1(f), a = 10 µm, t = 500 nm, λ0 = 500 nm). The fundamental mode (TL-HE11) and the next higher-order mode (TL-TE01) are shown in purple and blue, respectively. The two dashed horizontal lines indicate the attenuation of the corresponding modes from the ring model (Fig. 1(e)). The normalized Poynting vector distributions of two TL-HE11 modes with selected cladding radii are presented on the right-handed side of the diagram (linear scale). (b): minimum attenuation at a radius of 17 µm (green square), (c) maximum attenuation at a radius of 23 µm (red dot). The color bar on the top of the figure refers to the two Poynting vector distributions.

Fig. 4
Fig. 4

Spectral characteristics of the two lowest order modified tunneling leaky modes (calculated by the extended ring model). (a) The diagram shows the modal attenuation as function of frequency of the fundamental mode (TL-HE11 mode, purple) and the next higher order mode (TL-TE01 mode, blue). The two images on the right-handed side show experimentally measured near field images of the central core modes for two different fiber structures.

Fig. 5
Fig. 5

Fabrication details of the square core fiber. (a) Fabrication sequence of the three step process. The numbers along the magenta arrows indicate the approximate size reduction factor. (b) Microscope image of the cane. (c) Scanning electron micrograph of the square core fiber cross section.

Metrics