Abstract

Second-order nonlinear optical susceptibilities for second harmonic generation (SHG) associated with intersubband transitions in GaN/AlGaN single quantum well and step quantum well have been studied theoretically by solving Schrödinger and Poisson equations self-consistently. The calculated results suggest that due to the very large polarization-induced field in the quantum well, the potential profile becomes asymmetrical, leading to large second-order susceptibilities. A high value about 4 × 10−7 m/V can be obtained in single quantum well structure. Furthermore, by adopting step quantum well structure to increase the asymmetry degree of the potential profile and manipulate the energy levels for double-resonance, a significant enhancement of second-order susceptibility can occur in step quantum well. Specifically, the susceptibility can be as large as 4 × 10−6 m/V with structure optimization, about an order of magnitude greater than that in single quantum well. The results indicate that nonlinear optical elements based on GaN/AlGaN step quantum wells are very promising for SHG in a wide range of wavelengths from telecommunication to mid-infrared, especially effective in longer wavelength.

© 2014 Optical Society of America

1. Introduction

During the past decade much progress has been made in III-nitride based optoelectronic devices such as light emitting diodes [1,2] and laser diodes [3,4]. The intersubband transition absorption [5,6] and quantum well infrared photodetectors [7,8] have also been demonstrated in GaN/AlGaN multi-quantum wells based devices. However, nonlinear optical effects such as second harmonic generation in III-nitride materials have received little attention so far, especially in multi-quantum wells associated with intersubband transitions [912]. It has been predicted that in semiconductor quantum wells, the second-order nonlinear optical susceptibility can be strongly enhanced when the input waves are in close resonance with intersubband transitions [13], while it is inherently zero in a potential with inversion symmetry. Therefore, an asymmetrical potential is essential to obtain nonzero second-order susceptibilities. For the widely used GaAs/AlGaAs, InAs/InGaAs, or SiGe/Si quantum well structures, many methods have been proposed to achieve asymmetrical potential, such as external bias voltage application [14,15], step quantum well [16] or coupled double quantum wells [17], and the second-order nonlinear optical susceptibilities have been successfully measured in some of these structures. In contrast to the above mentioned materials, GaN/AlGaN quantum wells naturally exhibit an asymmetrical triangular potential due to the large polarization-induced field. Large second-order nonlinear optical susceptibilities have been predicted in GaN/AlN quantum wells by Liu et al [18]. The experimental observation of SHG has also been demonstrated in GaN/AlN quantum wells grown on AlN/c-sapphire template by Nevou et al [19], but the susceptibility is only 114 pm/V, much smaller than the value predicted in Ref. 18. These issues prompt us to study some other structures such as GaN/AlGaN step quantum well structure for double-resonance enhancement of the susceptibility, which has not been studied so far. In such quantum well structure, an AlGaN step quantum well having a lower Al mole composition is inserted between GaN quantum well and AlGaN barrier, so that the energy levels can be tailored for double-resonance condition.

In this letter, a comparative study of second-order susceptibilities for SHG in GaN/AlGaN single quantum well and step quantum well has been conducted by solving Schrödinger and Poisson equations self-consistently, taking the polarization effect and exchange correlation potential into consideration. The influences of Al mole composition of the barrier and the well width or step well width on the susceptibilities have been investigated in detail. Specifically, the structure parameters of step quantum wells have been optimized for double-resonance condition and a significant enhancement of the susceptibility has been achieved.

2. Theoretical calculation

Considering a GaN/AlGaN quantum well structure grown on c-sapphire in the presence of an optical field with angular frequency of ω with polarization along the well growth direction (z axis), the zzz component of the second-order susceptibility tensor for SHG process is given by [16,18]

χ2ω(2)=e3nε02m,nzlnznmzml{1(ωΩnliγnl)(2ωΩmliγml)+1(ω+Ωnliγnl)(2ω+Ωmliγml)1(2ωΩmniγmn)[1ωΩmliγml+1ω+Ωnliγnl]},
where zij=φi|z|φj,Ωij=(EiEj)/,1/γijare the dephasing times. We assume that only the ground state level is populated with a carrier density of n. Ei and φi are energy eigenvalue and corresponding envelope wave function of the ith subband of the quantum well, respectively, which can be obtained by solving Schrödinger and Poisson equations self-consistently [20]. The detailed descriptions of the related equations and calculations can be found in our previous study in Ref. 20. For a three energy levels system, under double-resonance condition, i.e.Ω21=Ω32=Ω,and assumingγ21=γ32=γ, Eq. (1) can be written as follows:
χ2ω(2)=e3nε02z12z23z31(ωΩiγ)(2ω2Ωiγ),
with a peak value for ω=Ω of

χ2ω,max(2)=e3nε0z12z23z31(γ)2.

The basic unit of GaN/AlGaN single quantum well structure under investigation is(lb)Alx1Ga1-x1N/(lw)GaN/(lb)Alx1Ga1-x1N,and that of step quantum well structure is (lb)Alx1Ga1-x1N/(lw)GaN/(lsw)AlxsGa1-xsN/(lb)Alx1Ga1-x1N, where lb, lw and lsw are the widths of space barrier, GaN well and AlGaN step well, respectively. x1 and xs represent the Al mole compositions of space barrier and step well, respectively. In the calculation, lb is fixed to 3 nm, while other parameters can be changed for various purposes.

3. Results and discussion

Figures 1(a) and 1(b) show the conduction band diagrams and squared envelope wave functions of the first three electronic levels in GaN/AlGaN single quantum well and step quantum well, respectively. It is clear that, due to the large polarization-induced field, the potential profile becomes triangular so that the inversion symmetry is broken. Therefore, a high second-order susceptibility is expected in such triangular potential profile. Unlike single quantum well structure, the susceptibility in step quantum well structure benefits from not only the polarization-induced field but also the asymmetrical structure, as shown in Fig. 1(b). The spacings between energy levels decrease significantly in step quantum well compared with that in single quantum well, which can even reach terahertz frequency range as explained in our previous study in Ref. 20.

 figure: Fig. 1

Fig. 1 Conduction band diagrams and squared envelope wave functions of the first three electronic levels in GaN/AlGaN (a) single quantum well with lw = 6 nm, x1 = 1, and (b) step quantum well with lw = 1 nm, lsw = 3 nm, x1 = 2xs = 1. The dashed lines in (a) and (b) represent the Fermi level. Insets are the schematic one-period cross-sections of both structures, which are doped with a donor density of 1 × 1019 cm−3.

Download Full Size | PPT Slide | PDF

Figure 2(a) shows the second-order susceptibility χ2ω(2) as a function of the fundamental photon energy ω for different Al mole compositions of the barrier, ranging from 0.5 to 1, in GaN/AlGaN single quantum well. It can be seen that, in the frequency range, there are two main resonance peaks in the second-harmonic spectra. The lower energy peak comes from the resonance at 2ω=E31, while the higher energy peak comes from the resonance at ω=E21. The two separate energy peaks indicate that the double-resonance does not occur in single quantum well, which can be confirmed by the relation E21>E32 shown in Fig. 2(b). As the Al mole composition of the barrier decreases, the maximal χ2ω(2) increases monotonically, also seen in the inset in Fig. 1(a). When x1 is 0.5, a high χ2ω(2) of 4 × 10−7 m/V can be obtained in GaN/AlGaN single quantum well, which is about 4 orders of magnitude larger than that in bulk GaN [21]. To clarify which factor plays a dominant role in the enhancement of the second-order susceptibility, the intersubband transition energies (E21, E32, E31) and the product of dipole matrix elements (z12, z23, z31) as a function of x1 are plotted in Fig. 2(b). The product of dipole matrix elements (z12, z23, z31) increases by more than two times while all transition energies decrease, when x1 decreases from 1 to 0.5. Since χ2ω(2) is enhanced by about three times in the same decrease process, it can be concluded that the product of dipole matrix elements mainly account for the enhancement of χ2ω(2). In addition, it should be noted that the spacing between lower energy peak and higher energy peak becomes narrower as the Al mole composition decreases, indicating that the SHG process is close to the double-resonance with an another enhancement of χ2ω(2).

 figure: Fig. 2

Fig. 2 (a) Second-order susceptibility χ2ω(2) as a function of the fundamental photon energy ω for different Al mole compositions of the barrier, (b) intersubband transition energies (E21, E32, E31) and the product of dipole matrix elements (z12, z23, z31) as a function of Al mole compositions of the barrier in single quantum well, with well width of 6 nm. The inset in (a) shows the maximal χ2ω(2) as a function of x1.

Download Full Size | PPT Slide | PDF

The influence of well width on the second-order susceptibility χ2ω(2) is investigated and results are illustrated in Fig. 3(a). As seen in Fig. 3(a), there are still two resonance peaks in the second-harmonic spectra, which is similar to that in Fig. 2(a). The maximal χ2ω(2) decreases significantly as the well width decreases, and simultaneously the resonance peaks have an obvious blueshift, which can be tuned to the telecommunication wavelength range by controlling well width, as shown in Fig. 3(b). It is already known that the effective depth of the triangular potential decreases while the quantum confinement effect strengthens with a decrease of the well width [20]. As a result, the whole potential profile becomes less asymmetrical leading to a decrease of the product of dipole matrix elements, meanwhile the energy spacing becomes larger making the resonance peak blueshift. However this relative small increase of the product of dipole matrix elements alone cannot completely account for the big enhancement of the second-order susceptibility χ2ω(2) (shown in the inset in Fig. 3(a)). In the calculation, we find that the free electron density increases with increasing the well width though the dopant density is constant (not shown here). Therefore, both the carrier density and the dipole matrix elements contribute to the enhancement of χ2ω(2).

 figure: Fig. 3

Fig. 3 (a) Second-order susceptibility χ2ω(2) as a function of the fundamental photon energy ω for different well widths, (b) intersubband transition energies (E21, E32, E31) and the product of dipole matrix elements (z12, z23, z31) as a function of well width in single quantum well, with x1 = 1. The inset in (a) shows the maximal χ2ω(2) as a function of well width.

Download Full Size | PPT Slide | PDF

To highlight the advantages of double-resonance, the second-order susceptibility χ2ω(2) in step quantum well is investigated at length in this letter. Similar to Fig. 2(a), Fig. 4(a) plots the χ2ω(2) as a function of the fundamental photon energy ω for different Al mole compositions of the barrier. As expected, the maximalχ2ω(2) in step quantum well is larger than that in single quantum well but at much smaller resonance energy. A large value of 7 × 10−7 m/V can be gained with peak energy about 0.1 eV when x1 = 1. It should be pointed out that the step quantum well structure is not optimized here and it is believed that the χ2ω(2) can be further increased as discussed below when the structure is optimized for the double-resonance condition. In Fig. 4(a), it is worth noting that, the highest peaks from the resonance at 2ω=E31 in the second-harmonic spectra are no longer located at lower energy positions, but at higher energy positions, just opposite to that in single quantum well. A very small third peak located at even higher energy position can be seen in each spectrum, which stems from the resonance at ω=E31. As shown in the inset in Fig. 4(a), different from the monotonic increase in single quantum well, the maximal χ2ω(2) in step quantum well first decreases and then increases when x1 increases from 0.5 to 1, and has a minimum at x1 = 0.6. This strange feature is not difficult to understand. The product of the matrix elements (z12, z23, z31) is minimum and SHG process is also far away from the double-resonance condition when x1 = 0.6, as depicted in Fig. 4(b). When x1 further increases from 0.8 to 1, although z12z23z31 declines, the energy spacing between E21 and E32 becomes narrower, meaning that the SHG process is closer to the double-resonance condition. Therefore, the second-order susceptibility χ2ω(2) still increases sharply.

 figure: Fig. 4

Fig. 4 (a) Second-order susceptibility χ2ω(2) as a function of the fundamental photon energy ω for different Al mole compositions of the barrier, (b) intersubband transition energies (E21, E32, E31) and the product of dipole matrix elements (z12, z23, z31) as a function of Al mole compositions of the barrier in step quantum well, with x1 = 2xs, lw = 3 nm, and lsw = 6 nm. The inset in (a) shows the maximal χ2ω(2) as a function of x1.

Download Full Size | PPT Slide | PDF

The second-harmonic spectra for different step well widths in step quantum well structure are depicted in Fig. 5(a). It can be observed that the step well width has a significant impact on the second-order susceptibilityχ2ω(2). Very different from that in single quantum well, theχ2ω(2) first decreases slightly and then increases sharply with an increase of the step well width, as seen in the inset in Fig. 5(a). It is interesting that χ2ω(2) is nearly zero when step well width is 4 nm. A possible reason is that the three envelop wave functions are almost symmetrical in this asymmetrical structure, which can be confirmed by the nearly zero product of the matrix elements (z12, z23, z31) shown in Fig. 5(b). In Fig. 5(b), the intersubband transition energies (E32, E31) decrease monotonically with increasing the step well width except for E21, whereas the product of the matrix elements shows a zigzag change, which is very different from that in single quantum well structure. This is because there are more factors affecting the distributions of the envelop wave functions and energy levels, as described in Ref. 20.

 figure: Fig. 5

Fig. 5 (a) Second-order susceptibility χ2ω(2) as a function of the fundamental photon energy ω for different step well widths, (b) intersubband transition energies (E21, E32, E31) and the product of dipole matrix elements (z12, z23, z31) as a function of step well width in step quantum well, with x1 = 2xs = 1 and lw = 3 nm. The inset in (a) shows the maximal χ2ω(2) as a function of step well width.

Download Full Size | PPT Slide | PDF

It should be pointed out that it is difficult to qualify double-resonance condition in single quantum well structure since the energy spacing becomes narrower as energy level increases, refering to the energy levels in Fig. 1(a). However, the situation is different in step quantum well structure where double-resonance condition can be readily satisfied since there are more degrees of freedom to be explored. To search for this condition, four structure parameters (lw, lsw, x1, xs) have been optimized and results are shown in Fig. 6 and Table 1 and Table 2. Figure 6(a) shows the energy difference of the E32 and E21 as a function of the Al mole composition of the barrier x1 for different Al mole compositions of the step well xs, meanwhile keeping lw = 3 nm and lsw = 6 nm. For each xs value (except for xs = 0.5), there exists two x1 values at which the double-resonance condition can be realized, i.e. E32 = E21. The corresponding maximal second-order susceptibilities χ2ω(2) are listed in Table 1. A huge χ2ω(2) as large as 4 × 10−6 m/V can be obtained with peak energy ω = E21 = 0.099 eV when xs = 0.3 and x1 = 0.68, which isabout an order of magnitude greater than that obtained in single quantum well. More importantly, all the maximal second-order susceptibilities at double-resonance condition reach 10−6 m/V magnitude, about one order of magnitude larger than that without structure optimization. It must be emphasized that the double-resonance peak energies listed in Table 1 are all very small, around 0.1 eV, meaning that the SHG process with huge χ2ω(2) works effectively in the mid-infrared wavelength range.

 figure: Fig. 6

Fig. 6 (a) Energy difference of the E32 and E21 as a function of the Al mole composition of the barrier x1 for different Al mole compositions of the step well xs with lw = 3 nm and lsw = 6 nm, (b) energy difference of the E32 and E21 as a function of the step well width for different well widths with x1 = 1 and xs = 0.5. The dashed horizontal line indicates zero energy difference for double-resonance condition.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Calculated χ2ω(2) and Peak Energy ω at Double-resonance Condition with lw = 3 nm and lsw = 6 nm

Tables Icon

Table 2. Calculated χ2ω(2) and Peak Energy ω at Double-resonance Condition with x1 = 1 and xs = 0.5

Figure 6(b) shows the energy difference of the E32 and E21 as a function of the step well width for different well widths, meanwhile keeping x1 = 1 and xs = 0.5. Similar to Fig. 6(a), for each lw value, there exists two lsw values at which the double-resonance condition is satisfied. Also, the corresponding maximal second-order susceptibilities χ2ω(2) are listed in Table 2. Different from that in Table 1, for each lw value, the two maximal χ2ω(2) are very different, that is, one is relatively small while the other is very large. According to Eq. (3), this difference can be attributed to the product of the dipole matrix elements and free carrier density. It is also found that the larger χ2ω(2) corresponds to the lower peak energy while the smaller χ2ω(2) to the higher peak energy, which further confirms that the SHG process with larger double-resonance enhanced χ2ω(2) in step quantum well structure performs effectively in the longer wavelength range.

4. Conclusion

In summary, we have presented a study of intersubband second-order nonlinear optical susceptibilities in GaN/AlGaN single quantum well and step quantum well structures. The related envelope wave functions and energy levels have been obtained by solving Schrödinger and Poisson equations self-consistently. In single quantum well structure, large second-order susceptibilities χ2ω(2) of several 10−7 m/V for SHG can be gained because of the large polarization-induced field. In step quantum well structure, even larger χ2ω(2) can be obtained with structure parameters optimized for double-resonance enhancement. Specifically, a huge χ2ω(2) as large as 4 × 10−6 m/V can be obtained when xs = 0.3, x1 = 0.68 and lw = 3 nm, lsw = 6 nm, which is about an order of magnitude greater than that obtained in single quantum well structure. In addition, the impacts of the structure parameters such as Al mole composition of the barrier and well or step well widths on the second-order susceptibility have also been investigated in detail. Calculated results show that, for single quantum well, large well width and small Al mole composition of the barrier lead to a high χ2ω(2), but it is not correct for step quantum well where the χ2ω(2) changes non-monotonically with the step well width and the Al mole composition of the barrier. The results indicate that nonlinear optical elements based on GaN/AlGaN step quantum wells are very promising for SHG in a wide range of wavelengths from telecommunication to mid-infrared, especially effective in longer wavelength range.

Acknowledgments

This work was supported by the National Basic Research Program of China (Grant No. 2012CB619302, 2010CB923204), the National Natural Science Foundation of China (Grant No. 60976042, 51002058, 10990102), the Science and Technology Bureau of Wuhan City (Grant No. 2014010101010003).

References and links

1. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008). [CrossRef]  

2. H. S. Zhang, J. Zhu, Z. D. Zhu, Y. H. Jin, Q. Q. Li, and G. F. Jin, “Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating,” Opt. Express 21(11), 13492–13501 (2013). [CrossRef]   [PubMed]  

3. H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008). [CrossRef]  

4. Y. Yamashita, M. Kuwabara, K. Torii, and H. Yoshida, “A 340-nm-band ultraviolet laser diode composed of GaN well layers,” Opt. Express 21(3), 3133–3137 (2013). [CrossRef]   [PubMed]  

5. W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012). [CrossRef]  

6. H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013). [CrossRef]  

7. S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, and F. H. Julien, “A simplified GaN/AlGaN quantum cascade detector with an alloy extractor,” Appl. Phys. Lett. 101(25), 251101 (2012). [CrossRef]  

8. S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, and F. H. Julien, “Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7μm,” Appl. Phys. Lett. 100(18), 181103 (2012). [CrossRef]  

9. D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497–2501 (1999). [CrossRef]  

10. H. Schmidt, A. C. Abare, J. E. Bowers, S. P. Denbaars, and A. Imamoglu, “Large interband second-order susceptibilities in InxGa1-xN/GaN quantum wells,” Appl. Phys. Lett. 75(23), 3611–3613 (1999). [CrossRef]  

11. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011). [CrossRef]   [PubMed]  

12. W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012). [CrossRef]  

13. M. K. Gurnick and T. A. DeTemple, “Synthetic nonlinear semiconductors,” IEEE J. Quantum Electron. 19(5), 791–794 (1983). [CrossRef]  

14. L. Tsang, D. Ahn, and S. L. Chuang, “Electric field control of optical second harmonic generation in a quantum well,” Appl. Phys. Lett. 52(9), 697–699 (1988). [CrossRef]  

15. M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris Jr., “Observation of extremely large quadratic susceptibility at 9.6-10.8 μm in electric-field-biased AlGaAs quantum wells,” Phys. Rev. Lett. 62(9), 1041–1044 (1989). [CrossRef]   [PubMed]  

16. E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second harmonic generation by intersub-band transitions in compositionally asymmetrical MQWs,” Electron. Lett. 25(16), 1063–1065 (1989). [CrossRef]  

17. C. Sirtori, F. Capasso, D. L. Sivco, S. N. G. Chu, and A. Cho, “Observation of large second order susceptibility via intersubband transitions at λ~10 μm in asymmetric coupled AlInAs/GaInAs quantum wells,” Appl. Phys. Lett. 59(18), 2302–2304 (1991). [CrossRef]  

18. A. S. Liu, S. L. Chuang, and C. Z. Ning, “Piezoelectric field-enhanced second-order nonlinear optical susceptibilities in wurtzite GaN/AlGaN quantum wells,” Appl. Phys. Lett. 76(3), 333–335 (2000). [CrossRef]  

19. L. Nevou, M. Tchernycheva, F. Julien, M. Raybaut, A. Godard, E. Rosencher, F. Guillot, and E. Monroy, “Intersubband resonant enhancement of second-harmonic generation in GaN/AlN quantum wells,” Appl. Phys. Lett. 89(15), 151101 (2006). [CrossRef]  

20. F. Wu, W. Tian, W. Y. Yan, J. Zhang, S. C. Sun, J. N. Dai, Y. Y. Fang, Z. H. Wu, and C. Q. Chen, “Terahertz intersubband transition in GaN/AlGaN step quantum well,” J. Appl. Phys. 113(15), 154505 (2013). [CrossRef]  

21. H. Y. Zhang, X. H. He, Y. H. Shih, M. Schurman, Z. C. Feng, and R. A. Stall, “Study of nonlinear optical effects in GaN:Mg epitaxial film,” Appl. Phys. Lett. 69(20), 2953–2955 (1996). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
    [Crossref]
  2. H. S. Zhang, J. Zhu, Z. D. Zhu, Y. H. Jin, Q. Q. Li, and G. F. Jin, “Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating,” Opt. Express 21(11), 13492–13501 (2013).
    [Crossref] [PubMed]
  3. H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
    [Crossref]
  4. Y. Yamashita, M. Kuwabara, K. Torii, and H. Yoshida, “A 340-nm-band ultraviolet laser diode composed of GaN well layers,” Opt. Express 21(3), 3133–3137 (2013).
    [Crossref] [PubMed]
  5. W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
    [Crossref]
  6. H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
    [Crossref]
  7. S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, and F. H. Julien, “A simplified GaN/AlGaN quantum cascade detector with an alloy extractor,” Appl. Phys. Lett. 101(25), 251101 (2012).
    [Crossref]
  8. S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, and F. H. Julien, “Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7μm,” Appl. Phys. Lett. 100(18), 181103 (2012).
    [Crossref]
  9. D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497–2501 (1999).
    [Crossref]
  10. H. Schmidt, A. C. Abare, J. E. Bowers, S. P. Denbaars, and A. Imamoglu, “Large interband second-order susceptibilities in InxGa1-xN/GaN quantum wells,” Appl. Phys. Lett. 75(23), 3611–3613 (1999).
    [Crossref]
  11. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
    [Crossref] [PubMed]
  12. W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
    [Crossref]
  13. M. K. Gurnick and T. A. DeTemple, “Synthetic nonlinear semiconductors,” IEEE J. Quantum Electron. 19(5), 791–794 (1983).
    [Crossref]
  14. L. Tsang, D. Ahn, and S. L. Chuang, “Electric field control of optical second harmonic generation in a quantum well,” Appl. Phys. Lett. 52(9), 697–699 (1988).
    [Crossref]
  15. M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris., “Observation of extremely large quadratic susceptibility at 9.6-10.8 μm in electric-field-biased AlGaAs quantum wells,” Phys. Rev. Lett. 62(9), 1041–1044 (1989).
    [Crossref] [PubMed]
  16. E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second harmonic generation by intersub-band transitions in compositionally asymmetrical MQWs,” Electron. Lett. 25(16), 1063–1065 (1989).
    [Crossref]
  17. C. Sirtori, F. Capasso, D. L. Sivco, S. N. G. Chu, and A. Cho, “Observation of large second order susceptibility via intersubband transitions at λ~10 μm in asymmetric coupled AlInAs/GaInAs quantum wells,” Appl. Phys. Lett. 59(18), 2302–2304 (1991).
    [Crossref]
  18. A. S. Liu, S. L. Chuang, and C. Z. Ning, “Piezoelectric field-enhanced second-order nonlinear optical susceptibilities in wurtzite GaN/AlGaN quantum wells,” Appl. Phys. Lett. 76(3), 333–335 (2000).
    [Crossref]
  19. L. Nevou, M. Tchernycheva, F. Julien, M. Raybaut, A. Godard, E. Rosencher, F. Guillot, and E. Monroy, “Intersubband resonant enhancement of second-harmonic generation in GaN/AlN quantum wells,” Appl. Phys. Lett. 89(15), 151101 (2006).
    [Crossref]
  20. F. Wu, W. Tian, W. Y. Yan, J. Zhang, S. C. Sun, J. N. Dai, Y. Y. Fang, Z. H. Wu, and C. Q. Chen, “Terahertz intersubband transition in GaN/AlGaN step quantum well,” J. Appl. Phys. 113(15), 154505 (2013).
    [Crossref]
  21. H. Y. Zhang, X. H. He, Y. H. Shih, M. Schurman, Z. C. Feng, and R. A. Stall, “Study of nonlinear optical effects in GaN:Mg epitaxial film,” Appl. Phys. Lett. 69(20), 2953–2955 (1996).
    [Crossref]

2013 (4)

H. S. Zhang, J. Zhu, Z. D. Zhu, Y. H. Jin, Q. Q. Li, and G. F. Jin, “Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating,” Opt. Express 21(11), 13492–13501 (2013).
[Crossref] [PubMed]

Y. Yamashita, M. Kuwabara, K. Torii, and H. Yoshida, “A 340-nm-band ultraviolet laser diode composed of GaN well layers,” Opt. Express 21(3), 3133–3137 (2013).
[Crossref] [PubMed]

H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
[Crossref]

F. Wu, W. Tian, W. Y. Yan, J. Zhang, S. C. Sun, J. N. Dai, Y. Y. Fang, Z. H. Wu, and C. Q. Chen, “Terahertz intersubband transition in GaN/AlGaN step quantum well,” J. Appl. Phys. 113(15), 154505 (2013).
[Crossref]

2012 (4)

S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, and F. H. Julien, “A simplified GaN/AlGaN quantum cascade detector with an alloy extractor,” Appl. Phys. Lett. 101(25), 251101 (2012).
[Crossref]

S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, and F. H. Julien, “Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7μm,” Appl. Phys. Lett. 100(18), 181103 (2012).
[Crossref]

W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

2011 (1)

2008 (2)

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[Crossref]

2006 (1)

L. Nevou, M. Tchernycheva, F. Julien, M. Raybaut, A. Godard, E. Rosencher, F. Guillot, and E. Monroy, “Intersubband resonant enhancement of second-harmonic generation in GaN/AlN quantum wells,” Appl. Phys. Lett. 89(15), 151101 (2006).
[Crossref]

2000 (1)

A. S. Liu, S. L. Chuang, and C. Z. Ning, “Piezoelectric field-enhanced second-order nonlinear optical susceptibilities in wurtzite GaN/AlGaN quantum wells,” Appl. Phys. Lett. 76(3), 333–335 (2000).
[Crossref]

1999 (2)

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497–2501 (1999).
[Crossref]

H. Schmidt, A. C. Abare, J. E. Bowers, S. P. Denbaars, and A. Imamoglu, “Large interband second-order susceptibilities in InxGa1-xN/GaN quantum wells,” Appl. Phys. Lett. 75(23), 3611–3613 (1999).
[Crossref]

1996 (1)

H. Y. Zhang, X. H. He, Y. H. Shih, M. Schurman, Z. C. Feng, and R. A. Stall, “Study of nonlinear optical effects in GaN:Mg epitaxial film,” Appl. Phys. Lett. 69(20), 2953–2955 (1996).
[Crossref]

1991 (1)

C. Sirtori, F. Capasso, D. L. Sivco, S. N. G. Chu, and A. Cho, “Observation of large second order susceptibility via intersubband transitions at λ~10 μm in asymmetric coupled AlInAs/GaInAs quantum wells,” Appl. Phys. Lett. 59(18), 2302–2304 (1991).
[Crossref]

1989 (2)

M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris., “Observation of extremely large quadratic susceptibility at 9.6-10.8 μm in electric-field-biased AlGaAs quantum wells,” Phys. Rev. Lett. 62(9), 1041–1044 (1989).
[Crossref] [PubMed]

E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second harmonic generation by intersub-band transitions in compositionally asymmetrical MQWs,” Electron. Lett. 25(16), 1063–1065 (1989).
[Crossref]

1988 (1)

L. Tsang, D. Ahn, and S. L. Chuang, “Electric field control of optical second harmonic generation in a quantum well,” Appl. Phys. Lett. 52(9), 697–699 (1988).
[Crossref]

1983 (1)

M. K. Gurnick and T. A. DeTemple, “Synthetic nonlinear semiconductors,” IEEE J. Quantum Electron. 19(5), 791–794 (1983).
[Crossref]

Abare, A. C.

H. Schmidt, A. C. Abare, J. E. Bowers, S. P. Denbaars, and A. Imamoglu, “Large interband second-order susceptibilities in InxGa1-xN/GaN quantum wells,” Appl. Phys. Lett. 75(23), 3611–3613 (1999).
[Crossref]

Ahn, D.

L. Tsang, D. Ahn, and S. L. Chuang, “Electric field control of optical second harmonic generation in a quantum well,” Appl. Phys. Lett. 52(9), 697–699 (1988).
[Crossref]

Balakrishnan, K.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Beeler, M.

H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
[Crossref]

Bois, P.

E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second harmonic generation by intersub-band transitions in compositionally asymmetrical MQWs,” Electron. Lett. 25(16), 1063–1065 (1989).
[Crossref]

Bowers, J. E.

H. Schmidt, A. C. Abare, J. E. Bowers, S. P. Denbaars, and A. Imamoglu, “Large interband second-order susceptibilities in InxGa1-xN/GaN quantum wells,” Appl. Phys. Lett. 75(23), 3611–3613 (1999).
[Crossref]

Byer, R. L.

M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris., “Observation of extremely large quadratic susceptibility at 9.6-10.8 μm in electric-field-biased AlGaAs quantum wells,” Phys. Rev. Lett. 62(9), 1041–1044 (1989).
[Crossref] [PubMed]

Capasso, F.

C. Sirtori, F. Capasso, D. L. Sivco, S. N. G. Chu, and A. Cho, “Observation of large second order susceptibility via intersubband transitions at λ~10 μm in asymmetric coupled AlInAs/GaInAs quantum wells,” Appl. Phys. Lett. 59(18), 2302–2304 (1991).
[Crossref]

Chauvat, M. P.

H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
[Crossref]

Chen, C. Q.

F. Wu, W. Tian, W. Y. Yan, J. Zhang, S. C. Sun, J. N. Dai, Y. Y. Fang, Z. H. Wu, and C. Q. Chen, “Terahertz intersubband transition in GaN/AlGaN step quantum well,” J. Appl. Phys. 113(15), 154505 (2013).
[Crossref]

W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
[Crossref]

Cho, A.

C. Sirtori, F. Capasso, D. L. Sivco, S. N. G. Chu, and A. Cho, “Observation of large second order susceptibility via intersubband transitions at λ~10 μm in asymmetric coupled AlInAs/GaInAs quantum wells,” Appl. Phys. Lett. 59(18), 2302–2304 (1991).
[Crossref]

Chu, S. N. G.

C. Sirtori, F. Capasso, D. L. Sivco, S. N. G. Chu, and A. Cho, “Observation of large second order susceptibility via intersubband transitions at λ~10 μm in asymmetric coupled AlInAs/GaInAs quantum wells,” Appl. Phys. Lett. 59(18), 2302–2304 (1991).
[Crossref]

Chuang, S. L.

A. S. Liu, S. L. Chuang, and C. Z. Ning, “Piezoelectric field-enhanced second-order nonlinear optical susceptibilities in wurtzite GaN/AlGaN quantum wells,” Appl. Phys. Lett. 76(3), 333–335 (2000).
[Crossref]

L. Tsang, D. Ahn, and S. L. Chuang, “Electric field control of optical second harmonic generation in a quantum well,” Appl. Phys. Lett. 52(9), 697–699 (1988).
[Crossref]

Dai, J. N.

F. Wu, W. Tian, W. Y. Yan, J. Zhang, S. C. Sun, J. N. Dai, Y. Y. Fang, Z. H. Wu, and C. Q. Chen, “Terahertz intersubband transition in GaN/AlGaN step quantum well,” J. Appl. Phys. 113(15), 154505 (2013).
[Crossref]

W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
[Crossref]

De Mierry, P.

H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
[Crossref]

Delaitre, S.

E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second harmonic generation by intersub-band transitions in compositionally asymmetrical MQWs,” Electron. Lett. 25(16), 1063–1065 (1989).
[Crossref]

Denbaars, S. P.

H. Schmidt, A. C. Abare, J. E. Bowers, S. P. Denbaars, and A. Imamoglu, “Large interband second-order susceptibilities in InxGa1-xN/GaN quantum wells,” Appl. Phys. Lett. 75(23), 3611–3613 (1999).
[Crossref]

DeTemple, T. A.

M. K. Gurnick and T. A. DeTemple, “Synthetic nonlinear semiconductors,” IEEE J. Quantum Electron. 19(5), 791–794 (1983).
[Crossref]

Ding, Y. Y.

W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
[Crossref]

Dussaigne, A.

S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, and F. H. Julien, “Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7μm,” Appl. Phys. Lett. 100(18), 181103 (2012).
[Crossref]

Fang, Y. Y.

F. Wu, W. Tian, W. Y. Yan, J. Zhang, S. C. Sun, J. N. Dai, Y. Y. Fang, Z. H. Wu, and C. Q. Chen, “Terahertz intersubband transition in GaN/AlGaN step quantum well,” J. Appl. Phys. 113(15), 154505 (2013).
[Crossref]

W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
[Crossref]

Fejer, M. M.

M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris., “Observation of extremely large quadratic susceptibility at 9.6-10.8 μm in electric-field-biased AlGaAs quantum wells,” Phys. Rev. Lett. 62(9), 1041–1044 (1989).
[Crossref] [PubMed]

Feng, Z. C.

H. Y. Zhang, X. H. He, Y. H. Shih, M. Schurman, Z. C. Feng, and R. A. Stall, “Study of nonlinear optical effects in GaN:Mg epitaxial film,” Appl. Phys. Lett. 69(20), 2953–2955 (1996).
[Crossref]

Fong, K. Y.

Giraud, E.

S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, and F. H. Julien, “A simplified GaN/AlGaN quantum cascade detector with an alloy extractor,” Appl. Phys. Lett. 101(25), 251101 (2012).
[Crossref]

S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, and F. H. Julien, “Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7μm,” Appl. Phys. Lett. 100(18), 181103 (2012).
[Crossref]

Godard, A.

L. Nevou, M. Tchernycheva, F. Julien, M. Raybaut, A. Godard, E. Rosencher, F. Guillot, and E. Monroy, “Intersubband resonant enhancement of second-harmonic generation in GaN/AlN quantum wells,” Appl. Phys. Lett. 89(15), 151101 (2006).
[Crossref]

Grandjean, N.

S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, and F. H. Julien, “Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7μm,” Appl. Phys. Lett. 100(18), 181103 (2012).
[Crossref]

S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, and F. H. Julien, “A simplified GaN/AlGaN quantum cascade detector with an alloy extractor,” Appl. Phys. Lett. 101(25), 251101 (2012).
[Crossref]

Guillot, F.

L. Nevou, M. Tchernycheva, F. Julien, M. Raybaut, A. Godard, E. Rosencher, F. Guillot, and E. Monroy, “Intersubband resonant enhancement of second-harmonic generation in GaN/AlN quantum wells,” Appl. Phys. Lett. 89(15), 151101 (2006).
[Crossref]

Gurnick, M. K.

M. K. Gurnick and T. A. DeTemple, “Synthetic nonlinear semiconductors,” IEEE J. Quantum Electron. 19(5), 791–794 (1983).
[Crossref]

Hahn, D. N.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497–2501 (1999).
[Crossref]

Harris, J. S.

M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris., “Observation of extremely large quadratic susceptibility at 9.6-10.8 μm in electric-field-biased AlGaAs quantum wells,” Phys. Rev. Lett. 62(9), 1041–1044 (1989).
[Crossref] [PubMed]

Harwit, A.

M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris., “Observation of extremely large quadratic susceptibility at 9.6-10.8 μm in electric-field-biased AlGaAs quantum wells,” Phys. Rev. Lett. 62(9), 1041–1044 (1989).
[Crossref] [PubMed]

He, X. H.

H. Y. Zhang, X. H. He, Y. H. Shih, M. Schurman, Z. C. Feng, and R. A. Stall, “Study of nonlinear optical effects in GaN:Mg epitaxial film,” Appl. Phys. Lett. 69(20), 2953–2955 (1996).
[Crossref]

Hui, X.

W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
[Crossref]

Imamoglu, A.

H. Schmidt, A. C. Abare, J. E. Bowers, S. P. Denbaars, and A. Imamoglu, “Large interband second-order susceptibilities in InxGa1-xN/GaN quantum wells,” Appl. Phys. Lett. 75(23), 3611–3613 (1999).
[Crossref]

Isac, N.

S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, and F. H. Julien, “A simplified GaN/AlGaN quantum cascade detector with an alloy extractor,” Appl. Phys. Lett. 101(25), 251101 (2012).
[Crossref]

Jin, G. F.

Jin, Y. H.

Julien, F.

L. Nevou, M. Tchernycheva, F. Julien, M. Raybaut, A. Godard, E. Rosencher, F. Guillot, and E. Monroy, “Intersubband resonant enhancement of second-harmonic generation in GaN/AlN quantum wells,” Appl. Phys. Lett. 89(15), 151101 (2006).
[Crossref]

Julien, F. H.

H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
[Crossref]

S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, and F. H. Julien, “A simplified GaN/AlGaN quantum cascade detector with an alloy extractor,” Appl. Phys. Lett. 101(25), 251101 (2012).
[Crossref]

S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, and F. H. Julien, “Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7μm,” Appl. Phys. Lett. 100(18), 181103 (2012).
[Crossref]

Kan, H.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[Crossref]

Katona, T.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Ketterson, J. B.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497–2501 (1999).
[Crossref]

Khan, A.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Kiehne, G. T.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497–2501 (1999).
[Crossref]

Kotsar, Y.

H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
[Crossref]

Kung, P.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497–2501 (1999).
[Crossref]

Kuwabara, M.

Y. Yamashita, M. Kuwabara, K. Torii, and H. Yoshida, “A 340-nm-band ultraviolet laser diode composed of GaN well layers,” Opt. Express 21(3), 3133–3137 (2013).
[Crossref] [PubMed]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[Crossref]

Li, Q. Q.

Li, S. L.

W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
[Crossref]

Li, Y.

W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
[Crossref]

Liu, A. S.

A. S. Liu, S. L. Chuang, and C. Z. Ning, “Piezoelectric field-enhanced second-order nonlinear optical susceptibilities in wurtzite GaN/AlGaN quantum wells,” Appl. Phys. Lett. 76(3), 333–335 (2000).
[Crossref]

Machhadani, H.

H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
[Crossref]

Monroy, E.

H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
[Crossref]

L. Nevou, M. Tchernycheva, F. Julien, M. Raybaut, A. Godard, E. Rosencher, F. Guillot, and E. Monroy, “Intersubband resonant enhancement of second-harmonic generation in GaN/AlN quantum wells,” Appl. Phys. Lett. 89(15), 151101 (2006).
[Crossref]

Nagle, J.

E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second harmonic generation by intersub-band transitions in compositionally asymmetrical MQWs,” Electron. Lett. 25(16), 1063–1065 (1989).
[Crossref]

Nataf, G.

H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
[Crossref]

Nevou, L.

L. Nevou, M. Tchernycheva, F. Julien, M. Raybaut, A. Godard, E. Rosencher, F. Guillot, and E. Monroy, “Intersubband resonant enhancement of second-harmonic generation in GaN/AlN quantum wells,” Appl. Phys. Lett. 89(15), 151101 (2006).
[Crossref]

Ning, C. Z.

A. S. Liu, S. L. Chuang, and C. Z. Ning, “Piezoelectric field-enhanced second-order nonlinear optical susceptibilities in wurtzite GaN/AlGaN quantum wells,” Appl. Phys. Lett. 76(3), 333–335 (2000).
[Crossref]

Palacios, T.

Pernice, W.

W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[Crossref] [PubMed]

Quach, P.

S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, and F. H. Julien, “A simplified GaN/AlGaN quantum cascade detector with an alloy extractor,” Appl. Phys. Lett. 101(25), 251101 (2012).
[Crossref]

Raybaut, M.

L. Nevou, M. Tchernycheva, F. Julien, M. Raybaut, A. Godard, E. Rosencher, F. Guillot, and E. Monroy, “Intersubband resonant enhancement of second-harmonic generation in GaN/AlN quantum wells,” Appl. Phys. Lett. 89(15), 151101 (2006).
[Crossref]

Razeghi, M.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497–2501 (1999).
[Crossref]

Rosencher, E.

L. Nevou, M. Tchernycheva, F. Julien, M. Raybaut, A. Godard, E. Rosencher, F. Guillot, and E. Monroy, “Intersubband resonant enhancement of second-harmonic generation in GaN/AlN quantum wells,” Appl. Phys. Lett. 89(15), 151101 (2006).
[Crossref]

E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second harmonic generation by intersub-band transitions in compositionally asymmetrical MQWs,” Electron. Lett. 25(16), 1063–1065 (1989).
[Crossref]

Ruterana, P.

H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
[Crossref]

Ryu, K. K.

Sakr, S.

H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
[Crossref]

S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, and F. H. Julien, “Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7μm,” Appl. Phys. Lett. 100(18), 181103 (2012).
[Crossref]

S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, and F. H. Julien, “A simplified GaN/AlGaN quantum cascade detector with an alloy extractor,” Appl. Phys. Lett. 101(25), 251101 (2012).
[Crossref]

Saxler, A.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497–2501 (1999).
[Crossref]

Schmidt, H.

H. Schmidt, A. C. Abare, J. E. Bowers, S. P. Denbaars, and A. Imamoglu, “Large interband second-order susceptibilities in InxGa1-xN/GaN quantum wells,” Appl. Phys. Lett. 75(23), 3611–3613 (1999).
[Crossref]

Schuck, C.

W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[Crossref] [PubMed]

Schurman, M.

H. Y. Zhang, X. H. He, Y. H. Shih, M. Schurman, Z. C. Feng, and R. A. Stall, “Study of nonlinear optical effects in GaN:Mg epitaxial film,” Appl. Phys. Lett. 69(20), 2953–2955 (1996).
[Crossref]

Shih, Y. H.

H. Y. Zhang, X. H. He, Y. H. Shih, M. Schurman, Z. C. Feng, and R. A. Stall, “Study of nonlinear optical effects in GaN:Mg epitaxial film,” Appl. Phys. Lett. 69(20), 2953–2955 (1996).
[Crossref]

Sirtori, C.

C. Sirtori, F. Capasso, D. L. Sivco, S. N. G. Chu, and A. Cho, “Observation of large second order susceptibility via intersubband transitions at λ~10 μm in asymmetric coupled AlInAs/GaInAs quantum wells,” Appl. Phys. Lett. 59(18), 2302–2304 (1991).
[Crossref]

Sivco, D. L.

C. Sirtori, F. Capasso, D. L. Sivco, S. N. G. Chu, and A. Cho, “Observation of large second order susceptibility via intersubband transitions at λ~10 μm in asymmetric coupled AlInAs/GaInAs quantum wells,” Appl. Phys. Lett. 59(18), 2302–2304 (1991).
[Crossref]

Stall, R. A.

H. Y. Zhang, X. H. He, Y. H. Shih, M. Schurman, Z. C. Feng, and R. A. Stall, “Study of nonlinear optical effects in GaN:Mg epitaxial film,” Appl. Phys. Lett. 69(20), 2953–2955 (1996).
[Crossref]

Sun, S. C.

F. Wu, W. Tian, W. Y. Yan, J. Zhang, S. C. Sun, J. N. Dai, Y. Y. Fang, Z. H. Wu, and C. Q. Chen, “Terahertz intersubband transition in GaN/AlGaN step quantum well,” J. Appl. Phys. 113(15), 154505 (2013).
[Crossref]

Tang, H. X.

W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[Crossref] [PubMed]

Tchernycheva, M.

H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
[Crossref]

S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, and F. H. Julien, “A simplified GaN/AlGaN quantum cascade detector with an alloy extractor,” Appl. Phys. Lett. 101(25), 251101 (2012).
[Crossref]

S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, and F. H. Julien, “Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7μm,” Appl. Phys. Lett. 100(18), 181103 (2012).
[Crossref]

L. Nevou, M. Tchernycheva, F. Julien, M. Raybaut, A. Godard, E. Rosencher, F. Guillot, and E. Monroy, “Intersubband resonant enhancement of second-harmonic generation in GaN/AlN quantum wells,” Appl. Phys. Lett. 89(15), 151101 (2006).
[Crossref]

Tian, W.

F. Wu, W. Tian, W. Y. Yan, J. Zhang, S. C. Sun, J. N. Dai, Y. Y. Fang, Z. H. Wu, and C. Q. Chen, “Terahertz intersubband transition in GaN/AlGaN step quantum well,” J. Appl. Phys. 113(15), 154505 (2013).
[Crossref]

W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
[Crossref]

Tian, Y.

W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
[Crossref]

Torii, K.

Tsang, L.

L. Tsang, D. Ahn, and S. L. Chuang, “Electric field control of optical second harmonic generation in a quantum well,” Appl. Phys. Lett. 52(9), 697–699 (1988).
[Crossref]

Warde, E.

H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
[Crossref]

S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, and F. H. Julien, “A simplified GaN/AlGaN quantum cascade detector with an alloy extractor,” Appl. Phys. Lett. 101(25), 251101 (2012).
[Crossref]

Wong, G.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497–2501 (1999).
[Crossref]

Wu, F.

F. Wu, W. Tian, W. Y. Yan, J. Zhang, S. C. Sun, J. N. Dai, Y. Y. Fang, Z. H. Wu, and C. Q. Chen, “Terahertz intersubband transition in GaN/AlGaN step quantum well,” J. Appl. Phys. 113(15), 154505 (2013).
[Crossref]

Wu, Z. H.

F. Wu, W. Tian, W. Y. Yan, J. Zhang, S. C. Sun, J. N. Dai, Y. Y. Fang, Z. H. Wu, and C. Q. Chen, “Terahertz intersubband transition in GaN/AlGaN step quantum well,” J. Appl. Phys. 113(15), 154505 (2013).
[Crossref]

W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
[Crossref]

Xiong, C.

W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[Crossref] [PubMed]

Yamashita, Y.

Y. Yamashita, M. Kuwabara, K. Torii, and H. Yoshida, “A 340-nm-band ultraviolet laser diode composed of GaN well layers,” Opt. Express 21(3), 3133–3137 (2013).
[Crossref] [PubMed]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[Crossref]

Yan, W. Y.

F. Wu, W. Tian, W. Y. Yan, J. Zhang, S. C. Sun, J. N. Dai, Y. Y. Fang, Z. H. Wu, and C. Q. Chen, “Terahertz intersubband transition in GaN/AlGaN step quantum well,” J. Appl. Phys. 113(15), 154505 (2013).
[Crossref]

W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
[Crossref]

Yoo, S. J. B.

M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris., “Observation of extremely large quadratic susceptibility at 9.6-10.8 μm in electric-field-biased AlGaAs quantum wells,” Phys. Rev. Lett. 62(9), 1041–1044 (1989).
[Crossref] [PubMed]

Yoshida, H.

Y. Yamashita, M. Kuwabara, K. Torii, and H. Yoshida, “A 340-nm-band ultraviolet laser diode composed of GaN well layers,” Opt. Express 21(3), 3133–3137 (2013).
[Crossref] [PubMed]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[Crossref]

Yu, C. H.

W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
[Crossref]

Zhang, H. S.

Zhang, H. Y.

H. Y. Zhang, X. H. He, Y. H. Shih, M. Schurman, Z. C. Feng, and R. A. Stall, “Study of nonlinear optical effects in GaN:Mg epitaxial film,” Appl. Phys. Lett. 69(20), 2953–2955 (1996).
[Crossref]

Zhang, J.

F. Wu, W. Tian, W. Y. Yan, J. Zhang, S. C. Sun, J. N. Dai, Y. Y. Fang, Z. H. Wu, and C. Q. Chen, “Terahertz intersubband transition in GaN/AlGaN step quantum well,” J. Appl. Phys. 113(15), 154505 (2013).
[Crossref]

Zhu, J.

Zhu, Z. D.

Appl. Phys. Lett. (9)

S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, and F. H. Julien, “A simplified GaN/AlGaN quantum cascade detector with an alloy extractor,” Appl. Phys. Lett. 101(25), 251101 (2012).
[Crossref]

S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, and F. H. Julien, “Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7μm,” Appl. Phys. Lett. 100(18), 181103 (2012).
[Crossref]

H. Schmidt, A. C. Abare, J. E. Bowers, S. P. Denbaars, and A. Imamoglu, “Large interband second-order susceptibilities in InxGa1-xN/GaN quantum wells,” Appl. Phys. Lett. 75(23), 3611–3613 (1999).
[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

C. Sirtori, F. Capasso, D. L. Sivco, S. N. G. Chu, and A. Cho, “Observation of large second order susceptibility via intersubband transitions at λ~10 μm in asymmetric coupled AlInAs/GaInAs quantum wells,” Appl. Phys. Lett. 59(18), 2302–2304 (1991).
[Crossref]

A. S. Liu, S. L. Chuang, and C. Z. Ning, “Piezoelectric field-enhanced second-order nonlinear optical susceptibilities in wurtzite GaN/AlGaN quantum wells,” Appl. Phys. Lett. 76(3), 333–335 (2000).
[Crossref]

L. Nevou, M. Tchernycheva, F. Julien, M. Raybaut, A. Godard, E. Rosencher, F. Guillot, and E. Monroy, “Intersubband resonant enhancement of second-harmonic generation in GaN/AlN quantum wells,” Appl. Phys. Lett. 89(15), 151101 (2006).
[Crossref]

L. Tsang, D. Ahn, and S. L. Chuang, “Electric field control of optical second harmonic generation in a quantum well,” Appl. Phys. Lett. 52(9), 697–699 (1988).
[Crossref]

H. Y. Zhang, X. H. He, Y. H. Shih, M. Schurman, Z. C. Feng, and R. A. Stall, “Study of nonlinear optical effects in GaN:Mg epitaxial film,” Appl. Phys. Lett. 69(20), 2953–2955 (1996).
[Crossref]

Electron. Lett. (1)

E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second harmonic generation by intersub-band transitions in compositionally asymmetrical MQWs,” Electron. Lett. 25(16), 1063–1065 (1989).
[Crossref]

IEEE J. Quantum Electron. (1)

M. K. Gurnick and T. A. DeTemple, “Synthetic nonlinear semiconductors,” IEEE J. Quantum Electron. 19(5), 791–794 (1983).
[Crossref]

J. Appl. Phys. (4)

F. Wu, W. Tian, W. Y. Yan, J. Zhang, S. C. Sun, J. N. Dai, Y. Y. Fang, Z. H. Wu, and C. Q. Chen, “Terahertz intersubband transition in GaN/AlGaN step quantum well,” J. Appl. Phys. 113(15), 154505 (2013).
[Crossref]

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497–2501 (1999).
[Crossref]

W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, “Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition,” J. Appl. Phys. 112(6), 063526 (2012).
[Crossref]

H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, P. Ruterana, G. Nataf, P. De Mierry, E. Monroy, and F. H. Julien, “Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells,” J. Appl. Phys. 113(14), 143109 (2013).
[Crossref]

Nat. Photonics (2)

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[Crossref]

Opt. Express (3)

Phys. Rev. Lett. (1)

M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris., “Observation of extremely large quadratic susceptibility at 9.6-10.8 μm in electric-field-biased AlGaAs quantum wells,” Phys. Rev. Lett. 62(9), 1041–1044 (1989).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Conduction band diagrams and squared envelope wave functions of the first three electronic levels in GaN/AlGaN (a) single quantum well with lw = 6 nm, x1 = 1, and (b) step quantum well with lw = 1 nm, lsw = 3 nm, x1 = 2xs = 1. The dashed lines in (a) and (b) represent the Fermi level. Insets are the schematic one-period cross-sections of both structures, which are doped with a donor density of 1 × 1019 cm−3.
Fig. 2
Fig. 2 (a) Second-order susceptibility χ 2ω ( 2 ) as a function of the fundamental photon energy ω for different Al mole compositions of the barrier, (b) intersubband transition energies (E21, E32, E31) and the product of dipole matrix elements (z12, z23, z31) as a function of Al mole compositions of the barrier in single quantum well, with well width of 6 nm. The inset in (a) shows the maximal χ 2ω ( 2 ) as a function of x1.
Fig. 3
Fig. 3 (a) Second-order susceptibility χ 2ω ( 2 ) as a function of the fundamental photon energy ω for different well widths, (b) intersubband transition energies (E21, E32, E31) and the product of dipole matrix elements (z12, z23, z31) as a function of well width in single quantum well, with x1 = 1. The inset in (a) shows the maximal χ 2ω ( 2 ) as a function of well width.
Fig. 4
Fig. 4 (a) Second-order susceptibility χ 2ω ( 2 ) as a function of the fundamental photon energy ω for different Al mole compositions of the barrier, (b) intersubband transition energies (E21, E32, E31) and the product of dipole matrix elements (z12, z23, z31) as a function of Al mole compositions of the barrier in step quantum well, with x1 = 2xs, lw = 3 nm, and lsw = 6 nm. The inset in (a) shows the maximal χ 2ω ( 2 ) as a function of x1.
Fig. 5
Fig. 5 (a) Second-order susceptibility χ 2ω ( 2 ) as a function of the fundamental photon energy ω for different step well widths, (b) intersubband transition energies (E21, E32, E31) and the product of dipole matrix elements (z12, z23, z31) as a function of step well width in step quantum well, with x1 = 2xs = 1 and lw = 3 nm. The inset in (a) shows the maximal χ 2ω ( 2 ) as a function of step well width.
Fig. 6
Fig. 6 (a) Energy difference of the E32 and E21 as a function of the Al mole composition of the barrier x1 for different Al mole compositions of the step well xs with lw = 3 nm and lsw = 6 nm, (b) energy difference of the E32 and E21 as a function of the step well width for different well widths with x1 = 1 and xs = 0.5. The dashed horizontal line indicates zero energy difference for double-resonance condition.

Tables (2)

Tables Icon

Table 1 Calculated χ 2ω ( 2 ) and Peak Energy ω at Double-resonance Condition with lw = 3 nm and lsw = 6 nm

Tables Icon

Table 2 Calculated χ 2ω ( 2 ) and Peak Energy ω at Double-resonance Condition with x1 = 1 and xs = 0.5

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

χ 2ω ( 2 ) = e 3 n ε 0 2 m,n z ln z nm z ml { 1 ( ω Ω nl i γ nl )( 2ω Ω ml i γ ml ) + 1 ( ω+ Ω nl i γ nl )( 2ω+ Ω ml i γ ml ) 1 ( 2ω Ω mn i γ mn ) [ 1 ω Ω ml i γ ml + 1 ω+ Ω nl i γ nl ] },
χ 2ω ( 2 ) = e 3 n ε 0 2 z 12 z 23 z 31 ( ωΩiγ )( 2ω2Ωiγ ) ,
χ 2ω,max ( 2 ) = e 3 n ε 0 z 12 z 23 z 31 ( γ ) 2 .

Metrics