Abstract

A new kind of partially coherent beam with non-conventional correlation function named elliptical Laguerre-Gaussian correlated Schell-model (LGCSM) beam is introduced. Analytical propagation formula for an elliptical LGCSM beam passing through a stigmatic ABCD optical system is derived. The elliptical LGCSM beam exhibits unique features on propagation, e.g., its intensity in the far field (or in the focal plane) displays an elliptical ring-shaped beam profile, being qualitatively different from the circular ring-shaped beam profile of the circular LGCSM beam. Furthermore, we carry out experimental generation of an elliptical LGCSM beam with controllable ellipticity, and measure its focusing properties. Our experimental results are consistent with the theoretical predictions. The elliptical LGCSM beam will be useful in atomic optics.

© 2014 Optical Society of America

1. Introduction

Recently, more and more attention is being paid to partially coherent beams with nonconventional correlation functions (i.e., non-Gaussian correlation functions) [120]. Gori and collaborators first discussed the sufficient condition for devising the genuine correlation function of a scalar or vector partially coherent beam [1, 2]. Based on their pioneer work, a variety of partially coherent beams with nonconventional correlation functions have been introduced [317], and it was found that those beams exhibit unique and interesting propagation properties. Circular Laguerre-Gaussian correlated Schell-model (LGCSM) beam was introduced in [15], and such beam displays a circular ring-shaped beam profile (i.e., dark hollow (DH) beam profile) in the far field (or in the focal plane) although it has a Gaussian beam profile in the source plane. We introduced an experimental setup for generating partially coherent beams with nonconventional correlation functions in [16], and we reported experimental generation of a circular LGCSM beam for the first time. In [17], the statistical properties of a circular LGCSM beam in turbulent atmosphere were investigated, and it was found that such beam has advantage over a Gaussian Schell-model (GSM) beam for reducing the turbulence-induced degradation, which will be useful in free-space optical communications. In [18], we have found both theoretically and experimentally that we can generate a controllable optical cage by focusing a circular LGCSM beam near the focal plane, which will be useful for trapping particles or atoms. A circular LGCSM beam with vortex phase was proposed and generated just recently [19].

On the other hand, it is well-known that ring-shaped beams (also named DH beams) have important applications in free-space optical communications, laser optics, particles trapping, medical sciences, atomic and binary optics [2032]. Different theoretical models have been proposed to describe various circular DH beams [2632]. To describe a DH beam of elliptical symmetry (i.e., elliptical DH beam), several theoretical models have been introduced [3336]. Several methods have been developed to generate an elliptical DH beam with the help of triangular prism or elliptical hollow fiber or Mathieu and Bessel functions [3739]. In [40], it was found that the elliptical DH beam can be used to control atomic rotation. In [41], it was revealed that an elliptical DH beam displays smaller scintillation than a circular DH beam, a flat-topped beam and a Gaussian beam in turbulent atmosphere. Partially coherent DH beam of circular or elliptical symmetry has also been introduced [42], and experimental generation of a circular partially coherent DH beam with the help of a multimode fiber was reported in [43].

As shown in [3335], the elliptical DH beam profile of an elliptical DH beam usually disappears in the far field (or in the focal plane). In this paper, we introduce a new kind of partially coherent beam with nonconventional correlation function named elliptical LGCSM beam, which displays elliptical DH beam profile in the far field (or in the focal plane). We derive the analytical propagation formula for an elliptical LGCSM beam passing through a stigmatic ABCD optical system, and study its focusing properties both numerically and experimentally. Some interesting and useful results are found.

2. Ellipitcal Laguerre-Gaussian correlated Schell-model beam: theory

In the space-time domain, the statistical properties of a scalar partially coherent beam are characterized by the mutual coherence function [44]. According to [1], the mutual coherence function of a partially coherent beam should satisfy the condition of nonnegative definiteness and can be written in the following form

J0(r1,r2)=I(v)H*(r1,v)H(r2,v)d2v,
where H is an arbitrary kernel, and I is a nonnegative function,r1(x1,y1) and r2(x2,y2) are two arbitrary transverse position vectors. Equation (1) can be expressed in the following alternative form [16]
J0(r1,r2)=Ji(v1,v2)H*(r1,v1)H(r2,v2)d2v1d2v2,
where
Ji(v1,v2)=I(v1)I(v2)δ(v1v2).
One finds from Eqs. (2) and (3) that a partially coherent beam with special correlation function (i.e., special degree of coherence) can be generated from an incoherent source with mutual coherence function Ji(v1,v2) through propagation by choosing suitable expressions of H and I. Here H and I denote the response function of the optical path and the intensity of the incoherent source, respectively.

We set H and I as follows

H(r,v)=iλfT(r)exp[iπλf(v22rv)],
I(v)=(vx2ω0x2+vy2ω0y2)nexp(2vx2ω0x22vx2ω0y2),
with
T(r)=exp(r24σ02),
where H denotes the response function of the optical path which consists of free space with length f, a thin lens with focal length f and a Gaussian amplitude filter with transmission function T (see Fig. 1 of Ref [16].), I denotes the intensity of an incoherent elliptical DH beam [33] with ω0xand ω0ybeing the beam widths along the x and y directions, respectively.

 

Fig. 1 Density plot of the square of the modulus of the degree of coherence of the elliptical LGCSM beam for different values of δ0xand δ0ywith beam order n = 5.

Download Full Size | PPT Slide | PDF

Substituting Eqs. (4)-(6) into Eqs. (2) and (3), we obtain (after integration) the following expression for a partially coherent beam with special degree of coherence

J0(r1,r2)=G0exp[r12+r224σ02]γ(r1,r2),
where G0 is a constant which has dimension of an optical intensity, γ(r1,r2)denotes the degree of coherence given by
γ(r2r1)=exp[(x2x1)22δ0x2(y2y1)22δ0y2]Ln0[(x2x1)22δ0x2+(y2y1)22δ0y2],
where δ0x=λf/πω0x and δ0y=λf/πω0y denote the transverse coherence widths along x and y directions, respectively, Ln0 denotes the Laguerre polynomial of mode order n and 0. We call the partially coherent beam whose mutual coherence function and degree of coherence are given by Eqs. (7) and (8) as elliptical LGCSM beam. Under the condition of n = 0, elliptical LGCSM beam reduces to elliptical GSM beam [16]. Under the condition of δ0x=δ0y, elliptical LGCSM beam reduces to circular LGCSM beam [15, 16]. Under the condition of δ0x=δ0y and n = 0, elliptical LGCSM beam reduces to circular GSM beam [44]. Figure 1 shows the density plot of the square of the modulus of the degree of coherence of the elliptical LGCSM beam for different values of δ0xand δ0ywith beam order n = 5. One finds from Fig. 1 that the density plot is of elliptical symmetry and the ellipticity is controlled by δ0xand δ0y, which are controlled by the parameters ω0xand ω0yof the incoherent elliptical DH beam. Due to the ellipticity symmetry of the degree of coherence, the newly proposed elliptical LGCSM beam exhibits unique and interesting features on propagation as shown below, although its intensity distribution in the source plane has a circular Gaussian beam profile.

Within the validity of the paraxial approximation, the propagation of the mutual coherence function of an elliptical LGCSM beam through a stigmatic ABCD optical system can be studied with the help of the following extended Collins formula [45, 46]

J(ρ1,ρ2,z)=1(λB)2exp[ikD2B(ρ12ρ22)]×J0(r1,r2)exp[ikA2B(r12r22)]exp[ikB(r1ρ1r2ρ2)]d2r1d2r2,
where ρ1(ρ1x,ρ1y) and ρ2(ρ2x,ρ2y) represents two arbitrary transverse position vectors in the output plane, A, B, C and D are the elements of a transfer matrix for an optical system, k=2π/λ is the wavenumber withλ being the wavelength.

For the convenience of integration, we introduce the following “sum” and “difference” coordinates

rs=r1+r22,Δr=r1r2,ρs=ρ1+ρ22,Δρ=ρ1ρ2.
Substituting Eqs. (7), (8) and (10) into Eq. (9), we obtain

J(ρ1,ρ2,z)=G0(λB)2exp[ikDBρsΔρ]×exp[12σ02rs2+(ikABΔr+ikBΔρ)rs]d2rs×exp[18σ02Δr2+ikBρsΔrΔx22δ0x2Δy22δ0y2]Ln0[Δx22δ0x2+Δy22δ0y2]d2Δr.

After integration over rs, Eq. (11) reduces to

J(ρ1,ρ2,z)=2πG0σ02(λB)2exp[ikDBρsΔρσ022(kB)2(AΔr+Δρ)2]×exp[18σ02Δr2+ikBρsΔrΔx22δ0x2Δy22δ0y2]Ln0[Δx22δ0x2+Δy22δ0y2]d2Δr.

Applying the following expansion formulae [47]

Ln(x)=p=0n(np)(1)pp!xp,
(x2+y2)p=m=0p(pm)x2(pm)y2m.
Equation (12) can be expressed in the following alternative form

J(ρ1,ρ2,z)=2πG0σ02(λB)2exp[ikDBρsΔρ]exp[σ022(kB)2Δρ2]p=0nm=0p(np)(pm)(1)pp!(12δ0x)2(pm)(12δ0y)2mexp[(σ022(AkB)218σ0212δ0x2)Δx2]exp[(σ02(kB)2AΔρ+ikBρs)Δr]exp[(σ022(AkB)218σ0212δ0y2)Δy2]Δx2(pm)Δy2mdΔxdΔy.

Applying the following integral formula

xnexp[(xβ)2]dx=(2i)nπHn(iβ),
where Hndenotes the Hermite polynomial of the mode order n, Eq. (15) becomes
J(ρ1,ρ2,z)=2G0π2σ02(λB)2exp[ikDBρsΔρ]exp[σ022(kB)2Δρ2]×p=0nm=0p(np)(pm)(1)pp!(12δ0x)2(pm)(12δ0y)2m×(2i)2paxay(ax)(pm)(ay)mH2(pm)(ibx2ax)H2m(iby2ay)×exp[bx22ax+by22ay],
where
ax=σ022(AkB)2+18σ02+12δ0x2,ay=σ022(AkB)2+18σ02+12δ0y2,
bx=(σ02(kB)2AΔρx+ikBρsx),by=(σ02(kB)2AΔρy+ikBρsy).
Equation (17) represents the mutual coherence function of the elliptical LGCSM beam in the output plane. The average intensity of the elliptical LGCSM beam is given as

I(ρ,z)=J(ρ,ρ,z).

As a numerical example, we study the focusing properties of an elliptical LGCSM beam by applying the derived formula. We assume that an elliptical LGCSM beam is focused by a thin lens with focal length f located in the source plane. The output plane is located in the geometrical plane. Then the transfer matrix between the source plane and the output plane reads as

(ABCD)=(1f01)(101/f1)=(0f1/f1).

Applying Eqs. (17)-(21), we calculate in Fig. 2 the density plot of the intensity distribution of an elliptical LGCSM beam in the geometrical focal plane for different values of δ0xand δ0ywith beam order n = 5, λ=632.8nm,f=400mm,σ0=1.0mm. It is interesting to find from Fig. 2 that we can obtain elliptical DH (i.e., elliptical ring-shaped) beam profile in the focal plane, in other words elliptical DH beam profile can be formed in the far field due to the fact that the beam profile of the far-field intensity is equivalent to that in the focal plane. The ellipticity of the elliptical DH beam profile in the focal plane (or in the far field) is controlled by the parameters δ0xand δ0y. Under the condition of δ0x = δ0y, circular DH (i.e. circular ring-shaped) beam profile is formed as expected (see Fig. 2(c)) [15,16]. Thus, modulating the correlation function of a partially coherent beam provides a novel way for generating an elliptical DH beam in the focal plane, which will be useful in atomic optics.

 

Fig. 2 Density plot of the intensity distribution of the elliptical LGCSM beam in the geometrical focal plane for different values of δ0xand δ0ywith beam order n = 5.

Download Full Size | PPT Slide | PDF

3. Elliptical Laguerre-Gaussian correlated Schell-model beam: experiment

In this section, we report experimental generation of an elliptical LGCSM beam with controllable spatial coherence and ellipticity, and carried out experimental measurement of its intensity in the geometrical focal plane.

Figure 3 shows our experimental setup for generating an elliptical LGCSM beam, measuring the square of the modulus of its degree of coherence and its focused intensity. Part 1 of Fig. 3 shows the experimental setup for generating an elliptical LGCSM beam with controllable parameters δ0xand δ0y. A beam emitted from a He-Ne laser (λ=632.8nm) is reflected by a reflecting mirror and passes through a beam expander, then it goes towards a spatial light modulator (SLM, Holoeye LC2002), which acts as a phase grating designed by the method of computer-generated holograms. To generate an elliptical DH beam whose intensity is given by Eq. (5), the grating pattern of holograms loaded on the SLM is calculated by the interference of a plane wave and the desired elliptical DH beam. The phase gratings for generating elliptical DH beams (n = 5) of different values of ω0x/ω0yare shown in Fig. 4. When the laser beam illuminates the SLM, diffraction patters appear, and the first-order diffraction pattern can be regarded as an elliptical DH beam and is selected out by a circular aperture. After passing through a thin lens L, the generated elliptical DH beam illuminates the RGGD, producing an incoherent elliptical DH beam. Here L is used to control the beam spot size on the RGGD through varying the distance between L and RGGD. The transmitted beam from the RGGD can be regarded as an incoherent elliptical DH beam if the diameter of the beam spot on the RGGD is larger than the inhomogeneity scale of the RGGD [48], and this condition is satisfied in our experiment. After passing through the thin lens L1 and the GAF, the incoherent elliptical DH beam becomes an elliptical LGCSM beam.

 

Fig. 3 Experimental setup for generating an elliptical LGCSM beam, measuring the square of the modulus of its degree of coherence and its focused intensity. RM, reflecting mirror; BE, beam expander; SLM, spatial light modulator; CA, circular aperture; RGGD, rotating ground-disk; L,L1,L2,L3, thin lenses; GAF, Gaussian amplitude filter; CCD, charge-coupled device; BPA, beam profile analyzer; PC1,PC2, personal computers.

Download Full Size | PPT Slide | PDF

 

Fig. 4 Phase gratings for generating an elliptical DH beams (n = 5) of different values of ω0x/ω0ywithω0x=0.8mm. (a)ω0x/ω0y=0.4, (b)ω0x/ω0y=0.8,(c) ω0x/ω0y=1, (d) ω0x/ω0y=1.2, (e) ω0x/ω0y=2.5.

Download Full Size | PPT Slide | PDF

Part 2 of Fig. 3 shows our experiment setup for measuring the degree of coherence of the generated elliptical LGCSM beam. The generated elliptical LGCSM beam from the GAF passes through the thin lens L2with focal lengthf2, and arrives at the charge-coupled device (CCD), which is used to measure the instantaneous intensity. Both distances from GAF to L2 and from L2 to CCD are 2f2(i.e., 2f-imaging system). Thus, the degree of coherence of the beam in the plane of the CCD is the same as that just behind the GAF. The output signal from the CCD is sent to a personal computer to measure the normalized fourth-order correlation function (FOCF) of the beam which is defined as

g(2)(r1,r2)=I(r1,t)I(r2,t)I(r1,t)I(r2,t),
whereI(r,t)denotes the instantaneous intensity distribution, and the angular brackets denote the ensemble average. With the help of the Gaussian moment theorem [44], the normalized FOCF can be expanded in terms of the degree of coherence as follows
g(2)(r1,r2)=1+|γ(r1,r2)|2.
In our experiment, the CCD records 2000 pictures totally, and each picture denotes one realization of the beam cross section, the integration time of the CCD for measuring the intensity samples is 20ms. Each realization can be represented by a matrix I(m)(x,y)with x and y being pixel spatial coordinates. Here m denotes each realization and ranges from 1 to 2000. Then the square of the modulus of the degree of coherence of the generated elliptical LGCSM beam is obtained as
|γ(r1,r2=0)|2=1Mm=1MI(m)(x1,y1)I(m)(0,0)I¯(x1,y1)I¯(0,0)1,
where
I¯(x1,y1)=m=1MI(m)(x1,y1)/M,
I¯(0,0)=m=1MI(m)(0,0)/M.
Here I¯(x1,y1) and I¯(0,0)denote the average intensity of all realizations and the average intensity at the central point, respectively.

Part 3 shows our experimental setup for measuring the intensity at the focal plane. The generated elliptical LGSM beam passes through a thin lens L3 with focal length f3=400mm which is located just behind the GAF, then arrives at the beam profile analyzer (BPA), which is used to measure its intensity at the focal plane. The transfer matrix between the GAF and the BPA is given by

(ABCD)=(0f31/f30).

Figure 5 shows our experimental results of the intensity distribution and the corresponding cross line (dotted curve) of the generated elliptical LGCSM beam just behind the GAF. One finds that the generated elliptical LGCSM beam has a Gaussian beam profile in the source plane as expected, and the beam width σ0 is determined by the transmission function of the GAF. Via theoretical fit (solid curve) of the experimental results, we obtain that σ0 is about 1mm in our experiment.

 

Fig. 5 Experimental results of (a) the intensity distribution and (b) the corresponding cross line (dotted curve) of the generated elliptical LGCSM beam (n = 5) just behind the GAF. The solid curve is a result of the theoretical fit.

Download Full Size | PPT Slide | PDF

Figure 6 shows our experimental results of the square of the modulus of the degree of coherence and the corresponding cross lines (dotted curves) of the generated elliptical LGCSM beam (n = 5) just behind the GAF for different values of coherence widths δ0xand δ0y. One finds that the distribution of the square of the modulus of the degree of coherence of the beam just behind the GAF indeed exhibits elliptical symmetry when δ0xδ0y, and the ellipticity varies as the parameter ω0x/ω0yin Fig. 4 varies. Via theoretical fit (solid curve) of the experimental results, the values of δ0xand δ0yin Fig. 6(a)-(e) are obtained as (a) δ0x=0.2mm,δ0y=0.08mm,(b) δ0x=0.2mm,,δ0y=0.16mm (c) δ0x=δ0y=0.2mm,(d) δ0x=0.2mm, δ0y=0.24mm, (d) δ0x=0.2mm,δ0y=0.5mm,respectively.

 

Fig. 6 Experimental results of the square of the modulus of the degree of coherence and the corresponding cross lines (dotted curves) of the generated elliptical LGCSM beam (n = 5) just behind the GAF for different values of coherence widths δ0xand δ0y. The solid curve is a result of the theoretical fit.

Download Full Size | PPT Slide | PDF

Figure 7 shows our experimental results of the intensity distribution and corresponding cross lines (dotted curve) of the generated elliptical LGCSM beam (n = 5) in the geometrical focal plane for different values of coherence widths δ0xand δ0y. For the convenience of comparison, the corresponding theoretical results (solid curves) calculated by Eqs. (17)-(21) are also shown in Fig. 7. One finds that elliptical DH (i.e., elliptical ring-shaped) beam profile indeed is formed in the geometrical focal plane, and the ellipticity is controlled by the values of the parameters δ0xandδ0y, as expected in Fig. 2. Our experimental results agree well with theoretical predictions.

 

Fig. 7 Experimental results of the intensity distribution of the generated elliptical LGCSM beam (n = 5) and the corresponding cross lines in the geometrical focal plane for different values of coherence widths δ0xand δ0y. The solid curves denote the theoretical results calculated by Eqs. (17)-(20) and (27).

Download Full Size | PPT Slide | PDF

4. Summary

We have introduced a kind of partially coherent beam with nonconventional correlation function named elliptical LGCSM beam as a natural extension of recently introduced circular LGCSM beam. We have derived analytical propagation formula for such beam passing through a stigmatic ABCD optical system. Furthermore, we have reported experimental generation of the newly proposed beam and studied its focusing properties both theoretically and experimentally. We have found that the elliptical LGCSM beam exhibits interesting properties, i.e., its intensity in the focal plane (or in the far field) displays an elliptical DH beam profile, which is quite different from that of a circular LGCSM beam. One can control the ellipticity of the elliptical DH beam profile through varying the initial values of the coherence widths δ0xandδ0y. Thus, our methods provides a novel way for generating elliptical DH beam profile in the focal plane (or in the far field) or for beam shaping. Our results will be useful in atomic optics.

Acknowledgments

This research is supported by the National Natural Science Foundation of China under Grant Nos. 11274005, 11104195 and 11374222, the Huo Ying Dong Education Foundation of China under Grant No. 121009, the Key Project of Chinese Ministry of Education under Grant No. 210081, the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Universities Natural Science Research Project of Jiangsu Province under Grant No. 11KJB140007, the Key Lab Foundation of The Modern Optical Technology of Jiangsu Province, Soochow University, PR China (KJS1301),and the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

References and links

1. F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32(24), 3531–3533 (2007). [CrossRef]   [PubMed]  

2. F. Gori, V. Ramírez-Sánchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A, Pure Appl. Opt. 11(8), 085706 (2009). [CrossRef]  

3. H. Lajunen and T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36(20), 4104–4106 (2011). [CrossRef]   [PubMed]  

4. Z. Tong and O. Korotkova, “Non-uniformly correlated beams in uniformly correlated random media,” Opt. Lett. 37(15), 3240–3242 (2012). [CrossRef]   [PubMed]  

5. Z. Tong and O. Korotkova, “Electromagnetic nonuniformly correlated beams,” J. Opt. Soc. Am. A 29(10), 2154–2158 (2012). [CrossRef]   [PubMed]  

6. Y. Gu and G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013). [CrossRef]   [PubMed]  

7. S. Sahin and O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37(14), 2970–2972 (2012). [CrossRef]   [PubMed]  

8. O. Korotkova, S. Sahin, and E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29(10), 2159–2164 (2012). [CrossRef]   [PubMed]  

9. O. Korotkova, “Random sources for rectangular far fields,” Opt. Lett. 39(1), 64–67 (2014). [CrossRef]   [PubMed]  

10. S. Du, Y. Yuan, C. Liang, and Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013). [CrossRef]  

11. Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013). [CrossRef]  

12. Y. Zhang, L. Liu, C. Zhao, and Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378(9), 750–754 (2014). [CrossRef]  

13. C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014). [CrossRef]   [PubMed]  

14. Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, and O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89(1), 013801 (2014). [CrossRef]  

15. Z. Mei and O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38(2), 91–93 (2013). [CrossRef]   [PubMed]  

16. F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013). [CrossRef]   [PubMed]  

17. R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, and Y. Cai, “Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 22(2), 1871–1883 (2014). [CrossRef]   [PubMed]  

18. Y. Chen and Y. Cai, “Generation of a controllable optical cage by focusing a Laguerre-Gaussian correlated Schell-model beam,” Opt. Lett. 39(9), 2549–2552 (2014). [CrossRef]   [PubMed]  

19. Y. Chen, F. Wang, C. Zhao, and Y. Cai, “Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam,” Opt. Express 22(5), 5826–5838 (2014). [CrossRef]   [PubMed]  

20. J. Yin, W. Gao, and Y. Zhu, “Generation of dark hollow beams and their applications,” in Progress in Optics, E. Wolf, ed. (North-Holland, 2003), Vol. 44, pp. 119–204.

21. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999). [CrossRef]   [PubMed]  

22. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001). [CrossRef]   [PubMed]  

23. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995). [CrossRef]   [PubMed]  

24. X. Xu, V. G. Minogin, K. Lee, Y. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60(6), 4796–4804 (1999). [CrossRef]  

25. J. Yin, Y. Zhu, W. Jhe, and Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58(1), 509–513 (1998). [CrossRef]  

26. T. Kuga, T. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beams,” Phys. Rev. Lett. 78(25), 4713–4716 (1997). [CrossRef]  

27. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987). [CrossRef]  

28. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25(20), 1493–1495 (2000). [CrossRef]   [PubMed]  

29. Y. Cai, X. Lu, and Q. Lin, “Hollow Gaussian beam and its propagation,” Opt. Lett. 28(13), 1084–1086 (2003). [CrossRef]   [PubMed]  

30. Z. Mei and D. Zhao, “Controllable dark-hollow beams and their propagation characteristics,” J. Opt. Soc. Am. A 22(9), 1898–1902 (2005). [CrossRef]   [PubMed]  

31. Y. Cai, “Model for an anomalous hollow beam and its paraxial propagation,” Opt. Lett. 32(21), 3179–3181 (2007). [CrossRef]   [PubMed]  

32. Y. Cai, Z. Wang, and Q. Lin, “An alternative theoretical model for an anomalous hollow beam,” Opt. Express 16(19), 15254–15267 (2008). [CrossRef]   [PubMed]  

33. Y. Cai and Q. Lin, “Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems,” J. Opt. Soc. Am. A 21(6), 1058–1065 (2004). [CrossRef]   [PubMed]  

34. Y. Cai and S. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14(4), 1353–1367 (2006). [CrossRef]   [PubMed]  

35. Z. Mei and D. Zhao, “Controllable elliptical dark-hollow beams,” J. Opt. Soc. Am. A 23(4), 919–925 (2006). [CrossRef]   [PubMed]  

36. J. C. Gutiérrez-Vega, “Characterization of elliptical dark hollow beams,” Proc. SPIE 7062, 706207 (2008). [CrossRef]  

37. C. Zhao, X. Lu, L. Wang, and H. Chen, “Hollow elliptical Gaussian beams generated by a triangular prism,” Opt. Laser Technol. 40(3), 575–580 (2008). [CrossRef]  

38. H. Li and J. Yin, “Generation of a vectorial elliptic hollow beam by an elliptic hollow fiber,” Opt. Lett. 36(4), 457–459 (2011). [CrossRef]   [PubMed]  

39. R. Chakraborty and A. Ghosh, “Generation of an elliptical hollow beam using Mathieu and Bessel functions,” J. Opt. Soc. Am. A 23(9), 2278–2282 (2006). [CrossRef]  

40. Z. Wang, Q. Lin, and Y. Wang, “Control of atomic rotation by elliptical hollow beam carrying zero angular momentum,” Opt. Commun. 240(4-6), 357–362 (2004). [CrossRef]  

41. Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation of astigmatic dark hollow beams in weak atmospheric turbulence,” J. Opt. Soc. Am. A 25, 1497–1503 (2008). [CrossRef]  

42. X. Lü and Y. Cai, “Partially coherent circular and elliptical dark hollow beams and their paraxial propagations,” Phys. Lett. A 369(1-2), 157–166 (2007). [CrossRef]  

43. C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33(12), 1389–1391 (2008). [CrossRef]   [PubMed]  

44. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University, 1995).

45. S. A. Collins Jr., “Lens-system diffraction integral written in terms ofmatrix optics,” J. Opt. Soc. Am. 60(9), 1168–1177 (1970). [CrossRef]  

46. Q. Lin and Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett. 27(4), 216–218 (2002). [CrossRef]   [PubMed]  

47. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U. S. Department of Commerce, 1970).

48. P. De Santis, F. Gori, G. Guattari, and C. Palma, “An example of Collet-Wolf source,” Opt. Commun. 29(3), 256–260 (1979). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. F. Gori, M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32(24), 3531–3533 (2007).
    [CrossRef] [PubMed]
  2. F. Gori, V. Ramírez-Sánchez, M. Santarsiero, T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A, Pure Appl. Opt. 11(8), 085706 (2009).
    [CrossRef]
  3. H. Lajunen, T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36(20), 4104–4106 (2011).
    [CrossRef] [PubMed]
  4. Z. Tong, O. Korotkova, “Non-uniformly correlated beams in uniformly correlated random media,” Opt. Lett. 37(15), 3240–3242 (2012).
    [CrossRef] [PubMed]
  5. Z. Tong, O. Korotkova, “Electromagnetic nonuniformly correlated beams,” J. Opt. Soc. Am. A 29(10), 2154–2158 (2012).
    [CrossRef] [PubMed]
  6. Y. Gu, G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013).
    [CrossRef] [PubMed]
  7. S. Sahin, O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37(14), 2970–2972 (2012).
    [CrossRef] [PubMed]
  8. O. Korotkova, S. Sahin, E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29(10), 2159–2164 (2012).
    [CrossRef] [PubMed]
  9. O. Korotkova, “Random sources for rectangular far fields,” Opt. Lett. 39(1), 64–67 (2014).
    [CrossRef] [PubMed]
  10. S. Du, Y. Yuan, C. Liang, Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013).
    [CrossRef]
  11. Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
    [CrossRef]
  12. Y. Zhang, L. Liu, C. Zhao, Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378(9), 750–754 (2014).
    [CrossRef]
  13. C. Liang, F. Wang, X. Liu, Y. Cai, O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014).
    [CrossRef] [PubMed]
  14. Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89(1), 013801 (2014).
    [CrossRef]
  15. Z. Mei, O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38(2), 91–93 (2013).
    [CrossRef] [PubMed]
  16. F. Wang, X. Liu, Y. Yuan, Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013).
    [CrossRef] [PubMed]
  17. R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, Y. Cai, “Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 22(2), 1871–1883 (2014).
    [CrossRef] [PubMed]
  18. Y. Chen, Y. Cai, “Generation of a controllable optical cage by focusing a Laguerre-Gaussian correlated Schell-model beam,” Opt. Lett. 39(9), 2549–2552 (2014).
    [CrossRef] [PubMed]
  19. Y. Chen, F. Wang, C. Zhao, Y. Cai, “Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam,” Opt. Express 22(5), 5826–5838 (2014).
    [CrossRef] [PubMed]
  20. J. Yin, W. Gao, and Y. Zhu, “Generation of dark hollow beams and their applications,” in Progress in Optics, E. Wolf, ed. (North-Holland, 2003), Vol. 44, pp. 119–204.
  21. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
    [CrossRef] [PubMed]
  22. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
    [CrossRef] [PubMed]
  23. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
    [CrossRef] [PubMed]
  24. X. Xu, V. G. Minogin, K. Lee, Y. Wang, W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60(6), 4796–4804 (1999).
    [CrossRef]
  25. J. Yin, Y. Zhu, W. Jhe, Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58(1), 509–513 (1998).
    [CrossRef]
  26. T. Kuga, T. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beams,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
    [CrossRef]
  27. F. Gori, G. Guattari, C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987).
    [CrossRef]
  28. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25(20), 1493–1495 (2000).
    [CrossRef] [PubMed]
  29. Y. Cai, X. Lu, Q. Lin, “Hollow Gaussian beam and its propagation,” Opt. Lett. 28(13), 1084–1086 (2003).
    [CrossRef] [PubMed]
  30. Z. Mei, D. Zhao, “Controllable dark-hollow beams and their propagation characteristics,” J. Opt. Soc. Am. A 22(9), 1898–1902 (2005).
    [CrossRef] [PubMed]
  31. Y. Cai, “Model for an anomalous hollow beam and its paraxial propagation,” Opt. Lett. 32(21), 3179–3181 (2007).
    [CrossRef] [PubMed]
  32. Y. Cai, Z. Wang, Q. Lin, “An alternative theoretical model for an anomalous hollow beam,” Opt. Express 16(19), 15254–15267 (2008).
    [CrossRef] [PubMed]
  33. Y. Cai, Q. Lin, “Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems,” J. Opt. Soc. Am. A 21(6), 1058–1065 (2004).
    [CrossRef] [PubMed]
  34. Y. Cai, S. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14(4), 1353–1367 (2006).
    [CrossRef] [PubMed]
  35. Z. Mei, D. Zhao, “Controllable elliptical dark-hollow beams,” J. Opt. Soc. Am. A 23(4), 919–925 (2006).
    [CrossRef] [PubMed]
  36. J. C. Gutiérrez-Vega, “Characterization of elliptical dark hollow beams,” Proc. SPIE 7062, 706207 (2008).
    [CrossRef]
  37. C. Zhao, X. Lu, L. Wang, H. Chen, “Hollow elliptical Gaussian beams generated by a triangular prism,” Opt. Laser Technol. 40(3), 575–580 (2008).
    [CrossRef]
  38. H. Li, J. Yin, “Generation of a vectorial elliptic hollow beam by an elliptic hollow fiber,” Opt. Lett. 36(4), 457–459 (2011).
    [CrossRef] [PubMed]
  39. R. Chakraborty, A. Ghosh, “Generation of an elliptical hollow beam using Mathieu and Bessel functions,” J. Opt. Soc. Am. A 23(9), 2278–2282 (2006).
    [CrossRef]
  40. Z. Wang, Q. Lin, Y. Wang, “Control of atomic rotation by elliptical hollow beam carrying zero angular momentum,” Opt. Commun. 240(4-6), 357–362 (2004).
    [CrossRef]
  41. Y. Cai, H. T. Eyyuboğlu, Y. Baykal, “Scintillation of astigmatic dark hollow beams in weak atmospheric turbulence,” J. Opt. Soc. Am. A 25, 1497–1503 (2008).
    [CrossRef]
  42. X. Lü, Y. Cai, “Partially coherent circular and elliptical dark hollow beams and their paraxial propagations,” Phys. Lett. A 369(1-2), 157–166 (2007).
    [CrossRef]
  43. C. Zhao, Y. Cai, F. Wang, X. Lu, Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33(12), 1389–1391 (2008).
    [CrossRef] [PubMed]
  44. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University, 1995).
  45. S. A. Collins., “Lens-system diffraction integral written in terms ofmatrix optics,” J. Opt. Soc. Am. 60(9), 1168–1177 (1970).
    [CrossRef]
  46. Q. Lin, Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett. 27(4), 216–218 (2002).
    [CrossRef] [PubMed]
  47. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U. S. Department of Commerce, 1970).
  48. P. De Santis, F. Gori, G. Guattari, C. Palma, “An example of Collet-Wolf source,” Opt. Commun. 29(3), 256–260 (1979).
    [CrossRef]

2014

2013

Z. Mei, O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38(2), 91–93 (2013).
[CrossRef] [PubMed]

Y. Gu, G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013).
[CrossRef] [PubMed]

F. Wang, X. Liu, Y. Yuan, Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013).
[CrossRef] [PubMed]

S. Du, Y. Yuan, C. Liang, Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013).
[CrossRef]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[CrossRef]

2012

2011

2009

F. Gori, V. Ramírez-Sánchez, M. Santarsiero, T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A, Pure Appl. Opt. 11(8), 085706 (2009).
[CrossRef]

2008

2007

2006

2005

2004

Y. Cai, Q. Lin, “Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems,” J. Opt. Soc. Am. A 21(6), 1058–1065 (2004).
[CrossRef] [PubMed]

Z. Wang, Q. Lin, Y. Wang, “Control of atomic rotation by elliptical hollow beam carrying zero angular momentum,” Opt. Commun. 240(4-6), 357–362 (2004).
[CrossRef]

2003

2002

2001

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

2000

1999

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
[CrossRef] [PubMed]

X. Xu, V. G. Minogin, K. Lee, Y. Wang, W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60(6), 4796–4804 (1999).
[CrossRef]

1998

J. Yin, Y. Zhu, W. Jhe, Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58(1), 509–513 (1998).
[CrossRef]

1997

T. Kuga, T. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beams,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

1995

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

1987

F. Gori, G. Guattari, C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987).
[CrossRef]

1979

P. De Santis, F. Gori, G. Guattari, C. Palma, “An example of Collet-Wolf source,” Opt. Commun. 29(3), 256–260 (1979).
[CrossRef]

1970

Anderson, D. Z.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Arlt, J.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Baykal, Y.

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Cai, Y.

C. Liang, F. Wang, X. Liu, Y. Cai, O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014).
[CrossRef] [PubMed]

Y. Chen, Y. Cai, “Generation of a controllable optical cage by focusing a Laguerre-Gaussian correlated Schell-model beam,” Opt. Lett. 39(9), 2549–2552 (2014).
[CrossRef] [PubMed]

Y. Zhang, L. Liu, C. Zhao, Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378(9), 750–754 (2014).
[CrossRef]

Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89(1), 013801 (2014).
[CrossRef]

R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, Y. Cai, “Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 22(2), 1871–1883 (2014).
[CrossRef] [PubMed]

Y. Chen, F. Wang, C. Zhao, Y. Cai, “Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam,” Opt. Express 22(5), 5826–5838 (2014).
[CrossRef] [PubMed]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[CrossRef]

F. Wang, X. Liu, Y. Yuan, Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013).
[CrossRef] [PubMed]

S. Du, Y. Yuan, C. Liang, Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013).
[CrossRef]

Y. Cai, H. T. Eyyuboğlu, Y. Baykal, “Scintillation of astigmatic dark hollow beams in weak atmospheric turbulence,” J. Opt. Soc. Am. A 25, 1497–1503 (2008).
[CrossRef]

C. Zhao, Y. Cai, F. Wang, X. Lu, Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33(12), 1389–1391 (2008).
[CrossRef] [PubMed]

Y. Cai, Z. Wang, Q. Lin, “An alternative theoretical model for an anomalous hollow beam,” Opt. Express 16(19), 15254–15267 (2008).
[CrossRef] [PubMed]

X. Lü, Y. Cai, “Partially coherent circular and elliptical dark hollow beams and their paraxial propagations,” Phys. Lett. A 369(1-2), 157–166 (2007).
[CrossRef]

Y. Cai, “Model for an anomalous hollow beam and its paraxial propagation,” Opt. Lett. 32(21), 3179–3181 (2007).
[CrossRef] [PubMed]

Y. Cai, S. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14(4), 1353–1367 (2006).
[CrossRef] [PubMed]

Y. Cai, Q. Lin, “Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems,” J. Opt. Soc. Am. A 21(6), 1058–1065 (2004).
[CrossRef] [PubMed]

Y. Cai, X. Lu, Q. Lin, “Hollow Gaussian beam and its propagation,” Opt. Lett. 28(13), 1084–1086 (2003).
[CrossRef] [PubMed]

Q. Lin, Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett. 27(4), 216–218 (2002).
[CrossRef] [PubMed]

Chakraborty, R.

Chávez-Cerda, S.

Chen, H.

C. Zhao, X. Lu, L. Wang, H. Chen, “Hollow elliptical Gaussian beams generated by a triangular prism,” Opt. Laser Technol. 40(3), 575–580 (2008).
[CrossRef]

Chen, R.

Chen, Y.

Y. Chen, F. Wang, C. Zhao, Y. Cai, “Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam,” Opt. Express 22(5), 5826–5838 (2014).
[CrossRef] [PubMed]

Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89(1), 013801 (2014).
[CrossRef]

Y. Chen, Y. Cai, “Generation of a controllable optical cage by focusing a Laguerre-Gaussian correlated Schell-model beam,” Opt. Lett. 39(9), 2549–2552 (2014).
[CrossRef] [PubMed]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[CrossRef]

Collins, S. A.

Cornell, E. A.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

De Santis, P.

P. De Santis, F. Gori, G. Guattari, C. Palma, “An example of Collet-Wolf source,” Opt. Commun. 29(3), 256–260 (1979).
[CrossRef]

Dholakia, K.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Du, S.

S. Du, Y. Yuan, C. Liang, Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013).
[CrossRef]

Eyyuboglu, H. T.

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[CrossRef]

Y. Cai, H. T. Eyyuboğlu, Y. Baykal, “Scintillation of astigmatic dark hollow beams in weak atmospheric turbulence,” J. Opt. Soc. Am. A 25, 1497–1503 (2008).
[CrossRef]

Gbur, G.

Ghosh, A.

Gori, F.

F. Gori, V. Ramírez-Sánchez, M. Santarsiero, T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A, Pure Appl. Opt. 11(8), 085706 (2009).
[CrossRef]

F. Gori, M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32(24), 3531–3533 (2007).
[CrossRef] [PubMed]

F. Gori, G. Guattari, C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987).
[CrossRef]

P. De Santis, F. Gori, G. Guattari, C. Palma, “An example of Collet-Wolf source,” Opt. Commun. 29(3), 256–260 (1979).
[CrossRef]

Gu, Y.

Guattari, G.

F. Gori, G. Guattari, C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987).
[CrossRef]

P. De Santis, F. Gori, G. Guattari, C. Palma, “An example of Collet-Wolf source,” Opt. Commun. 29(3), 256–260 (1979).
[CrossRef]

Gutiérrez-Vega, J. C.

He, S.

Hirano, T.

T. Kuga, T. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beams,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Iturbe-Castillo, M. D.

Jhe, W.

X. Xu, V. G. Minogin, K. Lee, Y. Wang, W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60(6), 4796–4804 (1999).
[CrossRef]

J. Yin, Y. Zhu, W. Jhe, Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58(1), 509–513 (1998).
[CrossRef]

Korotkova, O.

Kuga, T.

T. Kuga, T. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beams,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Lajunen, H.

Lee, K.

X. Xu, V. G. Minogin, K. Lee, Y. Wang, W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60(6), 4796–4804 (1999).
[CrossRef]

Li, H.

Liang, C.

C. Liang, F. Wang, X. Liu, Y. Cai, O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014).
[CrossRef] [PubMed]

S. Du, Y. Yuan, C. Liang, Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013).
[CrossRef]

Lin, Q.

Liu, L.

Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89(1), 013801 (2014).
[CrossRef]

Y. Zhang, L. Liu, C. Zhao, Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378(9), 750–754 (2014).
[CrossRef]

R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, Y. Cai, “Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 22(2), 1871–1883 (2014).
[CrossRef] [PubMed]

Liu, X.

Lu, X.

Lü, X.

X. Lü, Y. Cai, “Partially coherent circular and elliptical dark hollow beams and their paraxial propagations,” Phys. Lett. A 369(1-2), 157–166 (2007).
[CrossRef]

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Mehta, A. D.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
[CrossRef] [PubMed]

Mei, Z.

Minogin, V. G.

X. Xu, V. G. Minogin, K. Lee, Y. Wang, W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60(6), 4796–4804 (1999).
[CrossRef]

Montgomery, D.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Padovani, C.

F. Gori, G. Guattari, C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987).
[CrossRef]

Palma, C.

P. De Santis, F. Gori, G. Guattari, C. Palma, “An example of Collet-Wolf source,” Opt. Commun. 29(3), 256–260 (1979).
[CrossRef]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Qu, J.

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[CrossRef]

Ramírez-Sánchez, V.

F. Gori, V. Ramírez-Sánchez, M. Santarsiero, T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A, Pure Appl. Opt. 11(8), 085706 (2009).
[CrossRef]

Renn, M. J.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Rief, M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
[CrossRef] [PubMed]

Saastamoinen, T.

Sahin, S.

Santarsiero, M.

F. Gori, V. Ramírez-Sánchez, M. Santarsiero, T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A, Pure Appl. Opt. 11(8), 085706 (2009).
[CrossRef]

F. Gori, M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32(24), 3531–3533 (2007).
[CrossRef] [PubMed]

Sasada, H.

T. Kuga, T. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beams,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Shchepakina, E.

Shimizu, Y.

T. Kuga, T. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beams,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Shiokawa, N.

T. Kuga, T. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beams,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Shirai, T.

F. Gori, V. Ramírez-Sánchez, M. Santarsiero, T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A, Pure Appl. Opt. 11(8), 085706 (2009).
[CrossRef]

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Simmons, R. M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
[CrossRef] [PubMed]

Smith, D. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
[CrossRef] [PubMed]

Spudich, J. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
[CrossRef] [PubMed]

Tong, Z.

Torii, T.

T. Kuga, T. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beams,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Vdovin, O.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Wang, F.

Wang, L.

C. Zhao, X. Lu, L. Wang, H. Chen, “Hollow elliptical Gaussian beams generated by a triangular prism,” Opt. Laser Technol. 40(3), 575–580 (2008).
[CrossRef]

Wang, Y.

C. Zhao, Y. Cai, F. Wang, X. Lu, Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33(12), 1389–1391 (2008).
[CrossRef] [PubMed]

Z. Wang, Q. Lin, Y. Wang, “Control of atomic rotation by elliptical hollow beam carrying zero angular momentum,” Opt. Commun. 240(4-6), 357–362 (2004).
[CrossRef]

X. Xu, V. G. Minogin, K. Lee, Y. Wang, W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60(6), 4796–4804 (1999).
[CrossRef]

J. Yin, Y. Zhu, W. Jhe, Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58(1), 509–513 (1998).
[CrossRef]

Wang, Z.

Y. Cai, Z. Wang, Q. Lin, “An alternative theoretical model for an anomalous hollow beam,” Opt. Express 16(19), 15254–15267 (2008).
[CrossRef] [PubMed]

Z. Wang, Q. Lin, Y. Wang, “Control of atomic rotation by elliptical hollow beam carrying zero angular momentum,” Opt. Commun. 240(4-6), 357–362 (2004).
[CrossRef]

Wieman, C. E.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Wu, G.

Xu, X.

X. Xu, V. G. Minogin, K. Lee, Y. Wang, W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60(6), 4796–4804 (1999).
[CrossRef]

Yin, J.

H. Li, J. Yin, “Generation of a vectorial elliptic hollow beam by an elliptic hollow fiber,” Opt. Lett. 36(4), 457–459 (2011).
[CrossRef] [PubMed]

J. Yin, Y. Zhu, W. Jhe, Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58(1), 509–513 (1998).
[CrossRef]

Yuan, Y.

S. Du, Y. Yuan, C. Liang, Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013).
[CrossRef]

F. Wang, X. Liu, Y. Yuan, Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013).
[CrossRef] [PubMed]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[CrossRef]

Zhang, Y.

Y. Zhang, L. Liu, C. Zhao, Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378(9), 750–754 (2014).
[CrossRef]

Zhao, C.

Y. Zhang, L. Liu, C. Zhao, Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378(9), 750–754 (2014).
[CrossRef]

Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89(1), 013801 (2014).
[CrossRef]

Y. Chen, F. Wang, C. Zhao, Y. Cai, “Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam,” Opt. Express 22(5), 5826–5838 (2014).
[CrossRef] [PubMed]

C. Zhao, X. Lu, L. Wang, H. Chen, “Hollow elliptical Gaussian beams generated by a triangular prism,” Opt. Laser Technol. 40(3), 575–580 (2008).
[CrossRef]

C. Zhao, Y. Cai, F. Wang, X. Lu, Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33(12), 1389–1391 (2008).
[CrossRef] [PubMed]

Zhao, D.

Zhu, S.

Zhu, Y.

J. Yin, Y. Zhu, W. Jhe, Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58(1), 509–513 (1998).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

F. Gori, V. Ramírez-Sánchez, M. Santarsiero, T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A, Pure Appl. Opt. 11(8), 085706 (2009).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Commun.

P. De Santis, F. Gori, G. Guattari, C. Palma, “An example of Collet-Wolf source,” Opt. Commun. 29(3), 256–260 (1979).
[CrossRef]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[CrossRef]

F. Gori, G. Guattari, C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987).
[CrossRef]

Z. Wang, Q. Lin, Y. Wang, “Control of atomic rotation by elliptical hollow beam carrying zero angular momentum,” Opt. Commun. 240(4-6), 357–362 (2004).
[CrossRef]

Opt. Express

Opt. Laser Technol.

C. Zhao, X. Lu, L. Wang, H. Chen, “Hollow elliptical Gaussian beams generated by a triangular prism,” Opt. Laser Technol. 40(3), 575–580 (2008).
[CrossRef]

S. Du, Y. Yuan, C. Liang, Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013).
[CrossRef]

Opt. Lett.

J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25(20), 1493–1495 (2000).
[CrossRef] [PubMed]

Q. Lin, Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett. 27(4), 216–218 (2002).
[CrossRef] [PubMed]

Y. Cai, X. Lu, Q. Lin, “Hollow Gaussian beam and its propagation,” Opt. Lett. 28(13), 1084–1086 (2003).
[CrossRef] [PubMed]

H. Li, J. Yin, “Generation of a vectorial elliptic hollow beam by an elliptic hollow fiber,” Opt. Lett. 36(4), 457–459 (2011).
[CrossRef] [PubMed]

H. Lajunen, T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36(20), 4104–4106 (2011).
[CrossRef] [PubMed]

S. Sahin, O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37(14), 2970–2972 (2012).
[CrossRef] [PubMed]

Z. Tong, O. Korotkova, “Non-uniformly correlated beams in uniformly correlated random media,” Opt. Lett. 37(15), 3240–3242 (2012).
[CrossRef] [PubMed]

Y. Cai, “Model for an anomalous hollow beam and its paraxial propagation,” Opt. Lett. 32(21), 3179–3181 (2007).
[CrossRef] [PubMed]

F. Gori, M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32(24), 3531–3533 (2007).
[CrossRef] [PubMed]

C. Liang, F. Wang, X. Liu, Y. Cai, O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014).
[CrossRef] [PubMed]

C. Zhao, Y. Cai, F. Wang, X. Lu, Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33(12), 1389–1391 (2008).
[CrossRef] [PubMed]

Z. Mei, O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38(2), 91–93 (2013).
[CrossRef] [PubMed]

Y. Gu, G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013).
[CrossRef] [PubMed]

F. Wang, X. Liu, Y. Yuan, Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013).
[CrossRef] [PubMed]

O. Korotkova, “Random sources for rectangular far fields,” Opt. Lett. 39(1), 64–67 (2014).
[CrossRef] [PubMed]

Y. Chen, Y. Cai, “Generation of a controllable optical cage by focusing a Laguerre-Gaussian correlated Schell-model beam,” Opt. Lett. 39(9), 2549–2552 (2014).
[CrossRef] [PubMed]

Phys. Lett. A

Y. Zhang, L. Liu, C. Zhao, Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378(9), 750–754 (2014).
[CrossRef]

X. Lü, Y. Cai, “Partially coherent circular and elliptical dark hollow beams and their paraxial propagations,” Phys. Lett. A 369(1-2), 157–166 (2007).
[CrossRef]

Phys. Rev. A

X. Xu, V. G. Minogin, K. Lee, Y. Wang, W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60(6), 4796–4804 (1999).
[CrossRef]

J. Yin, Y. Zhu, W. Jhe, Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58(1), 509–513 (1998).
[CrossRef]

Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89(1), 013801 (2014).
[CrossRef]

Phys. Rev. Lett.

T. Kuga, T. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beams,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Proc. SPIE

J. C. Gutiérrez-Vega, “Characterization of elliptical dark hollow beams,” Proc. SPIE 7062, 706207 (2008).
[CrossRef]

Science

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
[CrossRef] [PubMed]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Other

J. Yin, W. Gao, and Y. Zhu, “Generation of dark hollow beams and their applications,” in Progress in Optics, E. Wolf, ed. (North-Holland, 2003), Vol. 44, pp. 119–204.

L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University, 1995).

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U. S. Department of Commerce, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Density plot of the square of the modulus of the degree of coherence of the elliptical LGCSM beam for different values of δ 0x and δ 0y with beam order n = 5.

Fig. 2
Fig. 2

Density plot of the intensity distribution of the elliptical LGCSM beam in the geometrical focal plane for different values of δ 0x and δ 0y with beam order n = 5.

Fig. 3
Fig. 3

Experimental setup for generating an elliptical LGCSM beam, measuring the square of the modulus of its degree of coherence and its focused intensity. RM, reflecting mirror; BE, beam expander; SLM, spatial light modulator; CA, circular aperture; RGGD, rotating ground-disk; L, L 1 , L 2 , L 3 , thin lenses; GAF, Gaussian amplitude filter; CCD, charge-coupled device; BPA, beam profile analyzer; PC 1 , PC 2 , personal computers.

Fig. 4
Fig. 4

Phase gratings for generating an elliptical DH beams (n = 5) of different values of ω 0x / ω 0y with ω 0x =0.8mm . (a) ω 0x / ω 0y =0.4, (b) ω 0x / ω 0y =0.8, (c) ω 0x / ω 0y =1, (d) ω 0x / ω 0y =1.2, (e) ω 0x / ω 0y =2.5.

Fig. 5
Fig. 5

Experimental results of (a) the intensity distribution and (b) the corresponding cross line (dotted curve) of the generated elliptical LGCSM beam (n = 5) just behind the GAF. The solid curve is a result of the theoretical fit.

Fig. 6
Fig. 6

Experimental results of the square of the modulus of the degree of coherence and the corresponding cross lines (dotted curves) of the generated elliptical LGCSM beam (n = 5) just behind the GAF for different values of coherence widths δ 0x and δ 0y . The solid curve is a result of the theoretical fit.

Fig. 7
Fig. 7

Experimental results of the intensity distribution of the generated elliptical LGCSM beam (n = 5) and the corresponding cross lines in the geometrical focal plane for different values of coherence widths δ 0x and δ 0y . The solid curves denote the theoretical results calculated by Eqs. (17)-(20) and (27).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

J( ρ 1 , ρ 2 ,z )= 1 (λB) 2 exp[ ikD 2B ( ρ 1 2 ρ 2 2 ) ] × J 0 ( r 1 , r 2 )exp[ ikA 2B ( r 1 2 r 2 2 ) ]exp[ ik B ( r 1 ρ 1 r 2 ρ 2 ) ] d 2 r 1 d 2 r 2 ,
L n (x)= p=0 n ( n p ) (1) p p! x p ,
( x 2 + y 2 ) p = m=0 p ( p m ) x 2( pm ) y 2m .
x n exp[ ( xβ ) 2 ]dx= ( 2i ) n π H n ( iβ ),

Metrics