Abstract

We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.

© 2014 Optical Society of America

1. Introduction

In quantum computing, a quantum algorithm is usually realized by a sequence of quantum gates [1]. Constructing compact quantum gates is crucial for building a quantum computer. It has been proven that any quantum entangling gate supplementing with single-qubit gates can implement a universal quantum computing [2]. The controlled-not (CNOT) gate is a universal two-qubit gate and it attracts much attention. As for multi-qubit quantum systems, attention was mainly focused on the three-qubit Toffoli and Fredkin gates as they can be used to implement any multi-qubit quantum computing with Hadamard gates [3,4].

Up to now, many important proposals have been proposed for physically implementing quantum gates [57]. For example, in 2001, Knill et al. [8] proposed a probabilistic scheme for implementing a CNOT gate on two photonic qubits by using linear optical elements, additional photons, and postselection. Based on cross-Kerr nonlinearity or charge detection, Nemoto et al. [9], Lin et al. [10], and Beenakker et al. [11] provided some interesting proposals for a deterministic quantum computing. In these schemes, some additional qubits are employed. A strong cross-Kerr nonlinearity is still a big challenge in experiment at present. To achieve a nontrivial nonlinearity between two individual qubits for a deterministic quantum computation with the present experimental techniques, an appealing platform for quantum information processing with an artificial atom and a cavity is proposed [12,13].

A quantum system combining a cavity and an artificial atom, such as a quantum dot (QD), a superconducting qubit, or a diamond nitrogen-vacancy center, is a perfect platform for quantum information processing because of its long coherence time and its good scalability. By utilizing such a platform, some interesting schemes were proposed for implementing the quantum gates on hybrid photon-matter systems [1215]. Based on the QD-cavity platform, a scalable deterministic quantum computation on photonic qubits [1618] and a deterministic photonic spatial-polarization hyper-CNOT gate [19] were proposed recently. The quantum circuits for the universal gates on superconducting qubits [20, 21] or diamond nitrogen-vacancy center qubits [2224] assisted by optical microcavities were designed as well. Constructing universal quantum gates compactly can reduce the quantum resource needed and their errors.

A QD system is one of the promising candidates for quantum information processing and quantum state storage in solid-state quantum systems. The coherence time of a QD can be extended to μs by using spin echo techniques [2527]. The single QD spin manipulation which is crucial for the implementation of single-qubit gates, can be achieved by using pulsed magnetic resonance techniques, nanosecond microwave pulses, or picosecond/femtosecond optical pulses [2830]. Due to the external magnetic field and the short dephasing time, the magnetic resonance techniques are not compatible with our work. In our work, the 90° rotation on the electron-spin qubit around the optical axis can be achieved by using a single photon, and the 180° rotation can be achieved by using a single photon which interacts with the QD twice [31].

In this paper, we present some compact quantum circuits for a universal quantum computing on an electron-spin system assisted by the QDs inside single-side optical microcavities. Based on the giant circular birefringence induced by a QD-cavity system as a result of cavity quantum electrodynamics [12,13], we construct the CNOT, Toffoli, and Fredkin gates on a stationary electron-spin system, achieved by some input-output processes of a single photon. Our schemes are simple and economic. They are accomplished with a success probability of 100% in principle and they do not require the additional electron-spin qubits which are employed in [911]. Our circuits for implementing the CNOT and Toffoli gates are especially compact. The electron qubits involved in these gates are stationary, which reduces the interaction between the spins and their environments, different from [11]. Moreover, our quantum circuits for the Toffoli and Fredkin gates beat their synthesis with two-qubit entangling gates and single-qubit gates largely. With current technology, these universal solid-state quantum gates are feasible.

2. Compact quantum circuit for a CNOT gate on a stationary electron-spin system

2.1. A singly charged quantum dot in a single-side optical resonant microcavity

Figure 1 depicts the single-side QD-cavity system used in our schemes, i.e., a self-assembled In(Ga)As QD or a GaAs interface QD embedded in an optical resonant microcavity with one mirror partially reflective and the another one 100% reflective [12, 13]. According to Pauli’s exclusion principle, a negatively charged exciton (X) consisting of two electrons bound to one hole can be optically excited when an excess electron is injected into the QD [19]. In Fig. 1, |↑〉 and |↓〉 represent the spins of the excess electron with the angular momentum projections Jz = +1/2 and Jz = −1/2 along the cavity axis, respectively. |⇑〉 and |⇓〉 represent the hole-spin states with Jz = +3/2 and Jz = −3/2, respectively. |R〉 and |L〉 present the right-circularly polarized photon and the left-circularly polarized photon, respectively. In 2008, Hu et al. [12,13] showed that the L-polarized photon (|L〉) drives |↑〉 transform into |↑↓⇑〉 and the R-polarized photon (|R〉) drives |↓〉 transform into |↓↑⇓〉, respectively, due to Pauli’s exclusion principle. The coupled R-polarized (L-polarized) photon and the uncoupled L-polarized (R-polarized) photon acquire different phases and amplitudes when they are reflected by the cavity. The reflection coefficient

r(ω)=|r(ω)|eiφ(ω)=1κ[i(ωXω)+γ2][i(ωXω)+γ2][i(ωcω)+κ2+κs2]+g2
can be obtain by solving the Heisenberg equations of the motion for the cavity mode â and the dipole operation σ driven by the input field âin, and combing the relation between the input field âin and the output field âout in the weak excitation approximation [32]
da^dt=[i(ωcω)+κ2+κs2]a^gσκa^in+H^,dσdt=[i(ωXω)+γ2]σgσza^+G^,a^out=a^in+κa^.
Here ωc and ω are the frequencies of the cavity mode and the input single photon, respectively. ωX is the frequency of the dipole transition of the negatively charged exciton X. g is the coupling strength between the cavity mode and X. κ/2 and κs/2 are the decay rate and the side leakage rate of the cavity field, respectively. γ/2 represents the decay rate of X. Ĥ and Ĝ are the noise operators related to the reservoirs.

 

Fig. 1 (a) Schematic diagram of a coupled single-side QD-cavity system. (b) The energy-level structure of a QD-cavity system [12,13]. |↑〉 → |↑↓⇑〉 is driven by the left-circularly polarized photon (|L〉) and |↓〉 → |↓↑⇓〉 is driven by the right-circularly polarized photon (|R〉), respectively.

Download Full Size | PPT Slide | PDF

Hu et al. [12, 13] showed that |r0(ω)| ≃ 1 for all ω if κsκ. If κsκ and g > (κ, γ), one can see that |rh(ω)| ≃ 1 when |ωωc| ≪ g. Here r0(ω) and rh(ω) are given by Eq. (1) with g = 0 and g ≠ 0, respectively. When κs is negligible, the transformations induced by the interaction between the QD and the input single photon can be expressed as follows:

(|R+|L)|cav(eiφ0|R+eiφh|L)|=eiφ0(|R+ei(φhφ0)|L)|,(|R+|L)|caveiφh|R|+eiφ0|L|=eiφ0(ei(φhφ0)|R+|L)|.
Here φ0 = arg[r0(ω)] and φh = arg[rh(ω)]. We consider the case that the QD is resonant with the cavity mode and it interacts with the resonant single photon (i.e., ωX = ωc = ω) in the conditions κsκ and g > (κ, γ) below. In this case, e0 = −1 and eh = 1. That is, φhφ0 = ±π. The rules of the input states changing under the interaction of the photon and the cavity can be summarized as follows:
|R|cav|R|,|L|cav|L|,|R|cav|R|,|L|cav|L|.
In 2011, Young et al. [33] measured the macroscopic phase shift of the reflected photon from a single-side pillar microcavity induced by a single QD in experiment. In a realistic cavity system, although it is hard to achieve the phase shift φhφ0 = ±π due to the side leakage and the cavity loss [34], the phase shift ±π/2 can be actually achieved in a QD-single-side-cavity system and it has been demonstrated by Hu’s group [31]. When κs < 1.3κ, the phase shift ±π/2 can be achieved; otherwise, it cannot be achieved. The phase shift π in our schemes can be achieved by a single photon which interacts with the QD twice. The above model works for a general polarization-degenerate cavity mode, including the micropillar [3537], H1 photonic crystal [38,39], and fiber-based [40] cavities.

Utilizing the optical circular birefringence induced by cavity quantum electrodynamics, the QD-cavity platform has been used to generate the maximally entangled states [12, 13, 31, 4143], construct the conditional phase gate on hybrid photon-QD systems [12,13], and design the hyper-CNOT gate on photonic qubits [19]. Based on the double-side one [41], some universal quantum gates on photonic qubits [16, 17] and hybrid photon-QD systems [15] have been proposed. In 2011, Wang et al. [44] proposed a scheme for implementing a quantum repeater, resorting to the QDs in double-side cavities. In the following, we discuss the implementation of a deterministic quantum computing with QD-single-side-cavity systems, shown in Fig. 1. The QD-double-side-cavity system is robust to the transmission and the reflection coefficients, while the side leakage rate of the QD-single-side-cavity system is lower than the double-side one.

2.2. Compact circuit for a CNOT gate on a stationary electron-spin system

The principle for implementing a CNOT gate on the two stationary electron-spin qubits in the QDs confined in single-side resonant optical microcavities is shown in Fig. 2. It flips the state of the target qubit when the control qubit is in the state |↓〉. Suppose the input state of the quantum system composed of the control and the target qubits (confined in the cavities 1 and 2, respectively) are initially prepared as

|ψine=|c(α1|t+α2|t)+|c(α3|t+α4|t).
Here i=14|αi|2=1. The input single photon is prepared in the equal polarization superposition state |ψp=12(|R+|L).

 

Fig. 2 Compact quantum circuit for deterministically implementing a CNOT gate on two QD electron-spin qubits with a single-photon medium. The polarizing beam splitter PBSi (i = 1, 2, 3, 4) in the basis {|R〉, |L〉} transmits the R-polarized photon and reflects the L-polarized photon. BS is a 50:50 beam splitter. The ±–PBS transmits the photon in the state |+=(|R+|L)/2 and reflects the photon in the state |=(|R|L)/2. The half wave plate (HWP) set to 22.5° induces the transformations |RHp(|R+|L)/2 and |LHp(|R|L)/2. D+ and D represent two single-photon detectors.

Download Full Size | PPT Slide | PDF

Let us introduce the principle of our deterministic CNOT gate on two stationary electron-spin qubits. As depicted in Fig. 2, a single photon is injected into the input port in, and its R-polarized component is transmitted to the spatial model 1 by the polarizing beam splitter PBS1 and then arrives at PBS2 directly, while its L-polarized component is reflected to the spatial model 2 for interacting with the QD inside the cavity 1. After the photon emitting from the spatial models 1 and 3 arrives at PBS2 simultaneously, a Hadamard operation Hp is performed on it. That is, we let the photon pass through the half-wave plate (HWP) oriented at 22.5°, which results in the transformations as follows:

|RHp12(|R+|L),|LHp12(|R|L).
Before and after the photon passes through the block composed of PBS3, the QD inside the cavity 2, and PBS4, a Hadamard operation He is performed on the electron spin in the QD inside the cavity 2, respectively. Here He completes the transformations as follows:
|He12(|+|),|He12(||).
The evolution of the whole system composed of a single-photon medium and the QDs inside the cavities 1 and 2 induced by the above operations (PBS1 → cavity 1 → PBS2 → HWP → He2 → PBS3 → cavity 2 → PBS4He2) can be described as follows:
|ψp|ψine|R9|c(α1|t+α2|t)+|L9|c(α3|t+α4|t).
Here and below, we use |Ri (|Li) to denote the photon in the state |R〉 (|L〉) emitting from the spatial mode i and use Hei to denote a Hadamard operation performed on the i-th QD-spin qubit.

Next, the single photon is measured in the basis {|±=(|R±|L)/2} by the detectors D+ and D. From Eq. (8), one can see that the response of the detector D+ indicates that the CNOT gate on the two electron-spin qubits succeeds; if the detector D is clicked, after we perform a classical feed-forward operation σz = |↑〉〈↑| − |↓〉〈↓| on the control qubit, the CNOT gate is accomplished as well. That is, the output state of the system composed of the control and the target qubits confined in the cavities 1 and 2 becomes

|ψineCNOT|ψoute=α1|c|t+α2|c|t+α3|c|t+α4|c|t.
The quantum circuit shown in Fig. 2 can be used to implement a CNOT gate on the two-qubit electron-spin system in a deterministic way, which implements a not operation on the target qubit if and only if (iff) the control qubit is in the state |↓〉.

3. Compact quantum circuit for a Toffoli gate on three electron-spin qubits in QDs

The principle for implementing a Toffoli gate on a three-qubit electron-spin system is shown in Fig. 3. It is used to flip the state of the target qubit iff both the two control qubits are in the state |↓〉. Suppose the quantum system, which is composed of the three independent excess electrons inside the cavities 1, 2, and 3 that act as the first control qubit, the second control qubit, and the target qubit, respectively, is initially prepared in an arbitrary state

|Ξine=|c1|c2(α1|t+α2|t)+|c1|c2(α3|t+α4|t)+|c1|c2(α5|t+α6|t)+|c1|c2(α7|t+α8|t).
Here i=18|αi|2=1.

Next, we will specify the evolution of the system from the input state to the output state for characterizing the performance of our Toffoli gate. As illustrated in Fig. 3, our scheme for a Toffoli gate on a three-qubit electron-spin system can be achieved with four steps.

 

Fig. 3 Compact quantum circuit for deterministically implementing a Toffoli gate on three stationary electron-spin qubits in QDs with the input-output processes of a single-photon medium.

Download Full Size | PPT Slide | PDF

First, an input single photon in the state |Ξp=12(|R|L) goes through the block composed of PBS1, the QD inside the cavity 1, and PBS2, and then an Hp is performed on it (i.e., let the photon go though HWP1). Based on the argument as made in Sec. 2.2, one can see that the above operations (PBS1 → cavity 1 → PBS2 → HWP1) transform the state of the complicated system composed of the single photon and the three QD-spin qubits from |Ξ0〉 into |Ξ1〉. Here

|Ξ0=|Ξp|Ξine,|Ξ1=|L5|c1|c2(α1|t+α2|t)+|L5|c1|c2(α3|t+α4|t)+|R5|c1|c2(α5|t+α6|t)+|R5|c1|c2(α7|t+α8|t).

Second, PBS3 transforms |R5 and |L5 into |R6 and |L7, respectively. Before and after the component |R6 (|L7) of the photon goes through the block composed of PBS4, the QD inside the cavity 2, and PBS6 (PBS5, the QD inside the cavity 2, and PBS7), an Hp is performed on it with HWP2 and HWP4 (HWP3 and HWP5). The operations (HWP2 → PBS4 → cavity 2 → PBS6 → HWP4 and HWP3 → PBS5 → cavity 2 → PBS7 → HWP5) transform the state of the complicated system into

|Ξ2=|L18|c1|c2(α1|t+α2|t)+|R18|c1|c2(α3|t+α4|t)+|R19|c1|c2(α5|t+α6|t)+|L19|c1|c2(α7|t+α8|t).

Third, before and after the photon goes through the block composed of PBS8, the QD inside the cavity 3, and PBS9 when it emits from the spatial model 19, an He is performed on the electron spin in the QD inside the cavity 3, respectively. These operations (He3 → PBS8 → cavity 3 → PBS9He3) complete the transformation

|Ξ3=|L18|c1|c2(α1|t+α2|t)+|R18|c1|c2(α3|t+α4|t)+|R23|c1|c2(α5|t+α6|t)+|L23|c1|c2(α7|t+α8|t).
Subsequently, the wave packet emitting from the spatial model 23 arrives at the 50:50 beam splitter (BS) with the wave packet emitting from the spatial model 18 simultaneously.

Fourth, the balanced BS, which completes the transformations

|R18BS12(|R24+|R25),|L18BS12(|L24+|L25),|R23BS12(|R24|R25),|L23BS12(|L24|L25),
transforms |Ξ3〉 into the state
BS|Ξ4=|+262[|c1|c2(α1|t+α2|t)+|c1|c2(α3|t+α4|t)+|c1|c2(α5|t+α6|t)+|c1|c2(α7|t+α8|t)]+|272[|c1|c2(α1|t+α2|t)+|c1|c2(α3|t+α4|t)+|c1|c2(α5|t+α6|t)|c1|c2(α7|t+α8|t)]+|+282[|c1|c2(α1|t+α2|t)+|c1|c2(α3|t+α4|t)|c1|c2(α5|t+α6|t)|c1|c2(α7|t+α8|t)]+|292[|c1|c2(α1|t+α2|t)+|c1|c2(α3|t+α4|t)|c1|c2(α5|t+α6|t)+|c1|c2(α7|t+α8|t)].
According to the outcomes of the measurement on the single photon in the basis {|±〉}, we perform the appropriate single-qubit operations on the qubits shown in Table 1, and then the state of the solid-state quantum system composed of the three electron-spin qubits becomes
|Ξoute=|c1|c2(α1|t+α2|t)+|c1|c2(α3|t+α4|t)+|c1|c2(α5|t+α6|t)+|c1|c2(α7|t+α8|t).

Tables Icon

Table 1. The relations between the measurement outcomes of the single photon and the classical feed-forward operations for implementing the Toffoli gate on the three stationary electron-spin qubits. σz = |↑〉〈↑| − |↓〉〈↓|. I2 = |↑〉〈↑| + |↓〉〈↓| is a 2 × 2 unit operation which means doing nothing on a qubit.

From Eqs. (11) and (16), one can see that the evolution |ΞineToffoli|Ξoute is accomplished. That is, the quantum circuit shown in Fig. 3 implements a Toffoli gate on the three stationary electron-spin qubits in QDs, and it flips the state of the target qubit inside the cavity 3 iff both the two control qubits inside the cavities 1 and 2, respectively, are in the state |↓〉 with a successful probability of 100% in principle.

4. Compact quantum circuit for a Fredkin gate on a three-qubit electron-spin system

Figure 4 depicts the principle of our scheme for implementing a Fredkin gate on a three-qubit electron-spin system assisted by the QDs inside single-side optical microcavities, which swaps the states of the two target qubits iff the control qubit is in the state |↓〉. Suppose the input state of the system composed of the control qubit, the first target qubit, and the second target qubit inside the cavities 1, 2, and 3, respectively, is initially prepared as

|Πine=|c|t1(α1|t2+α2|t2)+|c|t1(α3|t2+α4|t2)+|c|t1(α5|t2+α6|t2)+|c|t1(α7|t2+α8|t2).
Here i=18|αi|2=1. The input single photon is prepared in the state |Πp=12(|R|L).

 

Fig. 4 Compact quantum circuit for determinately implementing a Fredkin gate on three QD-spin qubits with the input-output processes of a single-photon medium. Wave plate WP performs a Hadamard operation on the photon who goes through it two times in succession.

Download Full Size | PPT Slide | PDF

Let us now describe the principle of our scheme for implementing a Fredkin gate on the three stationary electron-spin qubits in QDs in detail.

First, based on the argument as made in Sec. 3, after the input photon goes through the block composed of PBS1, the QD inside the cavity 1, and PBS2, an Hp (i.e., let it go through HWP1) is performed on it, and then the state of the whole system composed of the single photon and the three electron-spin qubits in the QDs confined in the cavities 1, 2, and 3 is transformed from |Π0〉 into |Π1〉 by the above operations (PBS1 → cavity 1 → PBS2 → HWP1). Here

|Π0=|Πp|Πine,|Π1=|L5|c|t1(α1|t2+α2|t2)+|L5|c|t1(α3|t2+α4|t2)+|R5|c|t1(α5|t2+α6|t2)+|R5|c|t1(α7|t2+α8|t2).

Second, PBS3 transforms |R5 and |L5 into |R6 and |L7, respectively. When the photon is in the state |L7, before and after it goes through the block composed of PBS5, the QDs inside the cavities 2 and 3, and PBS7, an Hp is performed on it with HWP3 and HWP5, respectively, and then it arrives at the balanced BS directly. When the photon is in the state |R6, after an Hp is performed on it with HWP2, the optical switch S leads it to the block composed of PBS4, the QDs inside the cavities 2 and 3, and PBS6, following with an Hp which is performed on the photon with a wave plate (WP) and a mirror. Here |R20WPmirrorWP(|R20+|L20)/2 and |L20WPmirrorWP(|R20|L20)/2. These operations (HWP3 → PBS5 → cavity 2 → cavity 3 → PBS7 → HWP5 and HWP2S → PBS4 → cavity 2 → cavity 3 → PBS6 → WP → mirror → WP) complete the transformation

|Ξ2=|c|t1(α1|L22|t2+α2|R22|t2)+|c|t1(α1|R22|t2+α2|L22|t2)+|c|t1(α1|R20|t2+α2|L20|t2)+|c|t1(α1|L20|t2+α2|R20|t2).

Third, the photon emitting from the spatial model 20 is injected into the block composed of PBS6, the QDs inside the cavities 2 and 3, and PBS4 again, and before and after the photon interacts with the QDs inside the cavities 3 and 2, an He is performed on the QDs inside the cavities 3 and 2, respectively. The optical switch S leads the wave packet to the spatial model 21 for interfering with the wave packet emitting from the spatial model 22. The above operations (He2, He3 → PBS6 → cavity 3 → cavity 2 → PBS4He2, He3S) complete the transformation

|Ξ3=|c|t1(α1|L22|t2+α2|R22|t2)+|c|t1(α3|R22|t2+α4|L22|t2)+|c(α5|R21|t1+α6|L21|t1|t2+|c(α7|L21|t1+α8|R21|t1|t2.

Fourth, the single photon is detected by the detectors Di± in the basis {|±〉} after the 50:50 BS transforms |Ξ3〉 into |Ξ4〉. Here

|Ξ4=|+252[|c|t1(α1|t2+α2|t2)+|c|t1(α3|t2+α4|t2)+|c(α5|t1+α6|t1)|t2+|c(α7|t1+α8|t1)|t2]+|262[|c|t1(α1|t2+α2|t2)+|c|t1(α3|t2α4|t2)+|c(α5|t1α6|t1)|t2+|c(α7|t1+α8|t1)|t2]+|+272[|c|t1(α1|t2+α2|t2)+|c|t1(α3|t2+α4|t2)|c(α5|t1+α6|t1)|t2|c(α7|t1+α8|t1)|t2]+|282[|c|t1(α1|t2+α2|t2)+|c|t1(α3|t2α4|t2)+|c(α5|t1+α6|t1)|t2+|c(α7|t1α8|t1)|t2].

Fifth, according to the outcomes of the measurement on the output single photon, we perform some appropriate classical feed-forward single-qubit operations, shown in Table 2, on the electron-spin qubits to make the state of the system composed of the three electrons inside the cavities 1, 2, and 3 to be

|Πoute=|c(α1|t1|t2+α2|t1|t2)+|c(α3|t1|t2+α4|t1|t2)+|c(α5|t1|t2+α6|t1|t2)+|c(α7|t1|t2+α8|t1|t2).

Tables Icon

Table 2. The relations between the measurement outcomes of the photon and the feed-forward operations for achieving a Fredkin gate on the three-qubit electron-spin system.

From Eqs. (18) and (22), one can see that the evolution |ΠinFredkin|Πout is completed. That is, the quantum circuit shown in Fig. 4 implements a Fredkin gate on the three-qubit electron-spin system in a deterministic way, which swaps the states of the two target qubits iff the state of the control qubit is in the state |↓〉.

5. The feasibilities and efficiencies of our schemes

So far, all the procedures in our schemes for the three universal quantum gates are described in the case that the side leakage rate ks is negligible. To present our ideas more realistically, ks should be taken into account. In this time, the rules of the input states changing under the interaction of the photon and the cavity become

|R|cav|r0||R|,|L|cav|rh||L|,|R|cav|rh||R|,|L|cav|r0||L|.
The fidelities and the efficiencies of the universal quantum gates are sensitive to ks as ks influences the amplitudes of the reflected photon (see Eq. (1)). Here the fidelity of a quantum gate is defined as
F=|Ψreal|Ψideal|2,
where |Ψideal〉 is the output state of the system composed of the QD-spin qubits involved in the gate and a single-photon medium in the ideal case (that is, the photon escapes through the input-output mode). |Ψreal〉 is the output state of the complicated system in the realistic case (that is, the cavities are imperfect and the side leakage κs is taken into account). The efficiency of the gate is considered as
η=nout/nin.
Here nin and nout are the numbers of the input photons and the output photons, respectively.

For perfect cavities, the fidelities of our universal quantum gates can reach unity. By considering the side leakage and combining the specific processes of the construction for the universal quantum gates discussed above, the fidelities of our CNOT gate FC, Toffoli gate FT, and Fredkin gate FF, and their efficiencies ηC, ηT, and ηF can be calculated as follows:

FC=12×(1+2|rh|+|r0||rh|)/[(1+|rh|)2+(1|r0|)2+|rh|2(1|rh|)2+|rh|2(1+|r0|)2],
FT=14×(3+2|r0|+|rh|[5+|rh|+|r0|(4+|r0|)])/((1+|rh|)4+2(|rh|21)2+2(|rh|1)2(|r0|1)2+(|r0|1)4+2(|r0|21)2+4(1+|rh|2(1+|r0|2)+|rh|2[(|rh|1)2+(1+|r0|)2]2),
FF=18×[4(1+|rh|)(1+|r0||rh|)+2(2+|r0|+|rh|)(2+|r0|2+|rh|2)+(1+|r0|)(4|rh|2|rh|4+2|rh|3|r0|+2|rh||r0|3+|r0|4)]/([(|rh|1)2+(1+|r0|)2][4+2(|rh||r0|2)+(|rh|2+|r0|2)2]+4[(1+|rh|)2+(|r0|1)2][8+2(|rh|2+|r0|2)2]+[2+|rh|(|rh|2)+|r0|(2+|r0|)]×[|rh|84|rh|7|r0|+4|rh|3|r0|5+8|rh|2|r0|6+4|rh||r0|7+|r0|84|rh|5|r0|(|r0|24)+8|rh|6(|r0|21)2|rh|4(4|r0|2+|r0|48)]),
ηC=(2+|rh|2+|r0|2)216,
ηT=(2+|rh|2+|r0|2)2(6+|rh|2+|r0|2)128,
ηF=(2+|rh|2+|r0|2)[4+(|rh|2+|r0|2)2][12+(|rh|2+|r0|2)2]512.

It is still a big challenge to achieve strong coupling in experiment at present [15]. However, strong coupling has been observed in the QD-cavity systems with the micropillar form [33, 4547] and the microdisk form [48, 49], and the QD-nanocavity systems [50] in experiment. In 2004, Reithmaier et al. [45] observed g/(κ + κs) ≃ 0.5 [g/(κ + κs) ≃ 2.4] in a d = 1.5 μm micropillar cavity with a quality factor of Q = 8800 [Q = 40000]. In 2011, Hu et al. [31] demonstrated g/(κ + κs) ≃ 1.0 in a micropillar cavity with κs ≃ 0.7 and Q ≃ 1.7 × 104. In 2010, Loo et al. [47] reported g = 16 μeV and κ = 20.5 μeV in a d = 7.3 μm micropillar with Q = 65000.

The fidelities and the efficiencies of our universal quantum gates, which vary with the coupling strength and the side leakage rate, are shown in Figs. 5 and 6, respectively. From these figures, one can see that our schemes are feasible in both the strong coupling regime and the weak coupling regime. κs can be made rather small by improving the sample growth or the etching process.

 

Fig. 5 The fidelities of our universal quantum gates vs the coupling strength g/(κ + κs) and the side leakage rate κs. (a) The fidelity of our CNOT gate (FC). (b) The fidelity of our Toffoli gate (FT). (c) The fidelity of our Fredkin gate (FF). We take ω = ωc = ωX and γ/κ = 0.1.

Download Full Size | PPT Slide | PDF

 

Fig. 6 The efficiencies of our universal quantum gates vs the coupling strength g/(κ + κs) and the side leakage rate κs. (a) The efficiency of our CNOT gate (ηC). (b) The efficiency of our Toffoli gate (ηT). (c) The efficiency of our Fredkin gate (ηF). We take ω = ωc = ωX and γ/κ = 0.1.

Download Full Size | PPT Slide | PDF

A QD system has the discrete atom-like energy levels and a spectrum of the ultra-narrow transition that is tunable with the size of the quantum dot. The growth techniques of QDs produce the size variations of the QDs. The spectral line-width inhomogeneous broadening is caused by the fluctuations in the size and shape of a QD, and it has gained the widespread attention [51]. The spectral inhomogeneity is an important property and it is not necessarily a negative consequence for their applications in quantum information processing. The imperfect QD in a realistic system, i.e., the shape of the sample and the strain field distribution are not symmetric, reduces the fidelities of the gates and it can be decreased by designing the shape and the size of the sample or encoding the qubits on a different type of QDs [13,31].

The information between the photon medium and the QD spins is transferred by the exciton. That is, the exciton dephasing reduces the fidelities of the gates. The exciton dephasing, including the optical dephasing and the spin dephasing, is sensitive to the dipole coherence time T2 and the cavity-photon coherence time τ. The exciton dephasing reduces the fidelities of the universal quantum gates less than 10% as it reduces the fidelities by a factor

1exp(τ/T2),
and the ultralong optical coherence time of the dipole T2 can reach several picoseconds at a low temperature [52, 53], while the cavity-photon coherence time τ is around 10 picoseconds in a InGaAs QD. The QD-hole spin coherence time T2 is long more than 100 nanoseconds [54].

6. Discussion and summary

Quantum logic gates are essential building blocks in quantum computing and quantum information processing [1]. CNOT gates are used widely in quantum computing. Directly physical realization of multiqubit gates is a main direction as the optimal length of the unconstructed circuit for a generic n-qubit gate is [(4n − 3n − 1)/4] [55].

Some significant progress has been made in realizing universal quantum gates. Refs. [14, 15, 23] present some interesting schemes for the quantum gates on hybrid light-matter or electron-nuclear qubits. Based on parity-check gates, the CNOT gate on moving electron qubits is proposed in 2004, assisted by an additional electron qubit [11]. A Toffoli gate on atom qubits with a success probability of 1/2 is constructed by Wei et al. in 2008 [56]. Our CNOT, Toffoli, and Fredkin gates are compact, simple, and economic as the ancilla qubits, employed in [911], are not required, and only a single-photon medium is employed. The proposals for the Toffoli and Fredkin gates beat their synthesis with two-qubit entangling gates and single-qubit gates largely. The optimal synthesis of a three-qubit Toffoli gate requires six CNOT gates [57] and five quantum entangling gates on two individual qubits are required to synthesize a three-qubit Fredkin gate [58]. All our schemes are deterministic and the qubits for the gates are stationary. The side leakage rate of a single-side cavity is usually lower than that of a double-side one [41]. Moreover, a QD is easier to be confined in a cavity than an atom [34,59].

In summary, we have proposed some compact schemes for implementing quantum computing on solid-state electron-spin qubits in the QDs assisted by single-side resonant optical micro-cavities in a deterministic way. Based on the fact that the R-polarized and the L-polarized photons reflected by the QD-cavity contribute different phase shifts, the compact quantum circuits for the CNOT, Toffoli, and Fredkin gates on the stationary electron-spin qubits are achieved by some input-output processes of a single-photon medium and some classical feed-forward operations. Our proposals are compact and economic as the additional QD-spin qubits are not required and our schemes for implementing the multiqubit gates beat their synthesis with two-qubit entangling gates and single-qubit gates largely. The success probabilities of our universal quantum gates are 100% in principle. With current technology, our schemes are feasible. Together with single-qubit gates, our universal quantum gates are sufficient for any quantum computing in solid-state QD-spin systems.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 11174039, NECT-11-0031, and the Open Foundation of State key Laboratory of Networking and Switching Technology ( Beijing University of Posts and Telecommunications) under Grant No. SKLNST-2013-1-13.

References and links

1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

2. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995). [CrossRef]   [PubMed]  

3. Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput. 3, 084–092 (2003).

4. E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982). [CrossRef]  

5. G. L. Long and L. Xiao, “Parallel quantum computing in a single ensemble quantum computer,” Phys. Rev. A 69, 052303 (2004). [CrossRef]  

6. G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012). [CrossRef]   [PubMed]  

7. G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013). [CrossRef]   [PubMed]  

8. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001). [CrossRef]  

9. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]  

10. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009). [CrossRef]  

11. C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, and M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004). [CrossRef]   [PubMed]  

12. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008). [CrossRef]  

13. C. Y. Hu, W. J. Munro, and J. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008). [CrossRef]  

14. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010). [CrossRef]   [PubMed]  

15. H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities,” Phys. Rev. A 87, 022305 (2013). [CrossRef]  

16. H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013). [CrossRef]   [PubMed]  

17. H. F. Wang, A. D. Zhu, S. Zhang, and K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013). [CrossRef]  

18. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, and D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003). [CrossRef]   [PubMed]  

19. B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013). [CrossRef]  

20. T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003). [CrossRef]  

21. J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008). [CrossRef]  

22. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010). [CrossRef]  

23. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004). [CrossRef]   [PubMed]  

24. B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013). [CrossRef]  

25. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005). [CrossRef]   [PubMed]  

26. A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006). [CrossRef]   [PubMed]  

27. D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010). [CrossRef]  

28. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008). [CrossRef]   [PubMed]  

29. D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008). [CrossRef]  

30. J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001). [CrossRef]   [PubMed]  

31. C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011). [CrossRef]  

32. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).

33. A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, and S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011). [CrossRef]  

34. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004). [CrossRef]   [PubMed]  

35. C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009). [CrossRef]  

36. J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011). [CrossRef]  

37. C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011). [CrossRef]  

38. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012). [CrossRef]  

39. J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012). [CrossRef]   [PubMed]  

40. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013). [CrossRef]  

41. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009). [CrossRef]  

42. A. B. Young, C. Y. Hu, and J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87, 012332 (2013). [CrossRef]  

43. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012). [CrossRef]   [PubMed]  

44. T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012). [CrossRef]  

45. J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004). [CrossRef]  

46. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007). [CrossRef]  

47. V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010). [CrossRef]  

48. E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005). [CrossRef]   [PubMed]  

49. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007). [CrossRef]  

50. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004). [CrossRef]  

51. J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013). [CrossRef]   [PubMed]  

52. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001). [CrossRef]   [PubMed]  

53. D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001). [CrossRef]   [PubMed]  

54. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009). [CrossRef]   [PubMed]  

55. V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004). [CrossRef]  

56. H. Wei, W. L. Yang, Z. B. Deng, and M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008). [CrossRef]  

57. V. V. Shende and I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quant. Inf. Comput. 9, 0461–0468 (2009).

58. J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855–2856 (1996). [CrossRef]   [PubMed]  

59. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
    [Crossref] [PubMed]
  3. Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput. 3, 084–092 (2003).
  4. E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
    [Crossref]
  5. G. L. Long and L. Xiao, “Parallel quantum computing in a single ensemble quantum computer,” Phys. Rev. A 69, 052303 (2004).
    [Crossref]
  6. G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
    [Crossref] [PubMed]
  7. G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
    [Crossref] [PubMed]
  8. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
    [Crossref]
  9. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
    [Crossref]
  10. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
    [Crossref]
  11. C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, and M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004).
    [Crossref] [PubMed]
  12. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
    [Crossref]
  13. C. Y. Hu, W. J. Munro, and J. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
    [Crossref]
  14. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
    [Crossref] [PubMed]
  15. H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
    [Crossref]
  16. H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
    [Crossref] [PubMed]
  17. H. F. Wang, A. D. Zhu, S. Zhang, and K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013).
    [Crossref]
  18. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, and D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
    [Crossref] [PubMed]
  19. B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
    [Crossref]
  20. T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
    [Crossref]
  21. J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
    [Crossref]
  22. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
    [Crossref]
  23. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
    [Crossref] [PubMed]
  24. B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
    [Crossref]
  25. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
    [Crossref] [PubMed]
  26. A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
    [Crossref] [PubMed]
  27. D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
    [Crossref]
  28. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
    [Crossref] [PubMed]
  29. D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
    [Crossref]
  30. J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
    [Crossref] [PubMed]
  31. C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
    [Crossref]
  32. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).
  33. A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, and S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
    [Crossref]
  34. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
    [Crossref] [PubMed]
  35. C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
    [Crossref]
  36. J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
    [Crossref]
  37. C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
    [Crossref]
  38. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
    [Crossref]
  39. J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
    [Crossref] [PubMed]
  40. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
    [Crossref]
  41. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
    [Crossref]
  42. A. B. Young, C. Y. Hu, and J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87, 012332 (2013).
    [Crossref]
  43. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
    [Crossref] [PubMed]
  44. T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
    [Crossref]
  45. J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
    [Crossref]
  46. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
    [Crossref]
  47. V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
    [Crossref]
  48. E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
    [Crossref] [PubMed]
  49. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
    [Crossref]
  50. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
    [Crossref]
  51. J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
    [Crossref] [PubMed]
  52. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
    [Crossref] [PubMed]
  53. D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
    [Crossref] [PubMed]
  54. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
    [Crossref] [PubMed]
  55. V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
    [Crossref]
  56. H. Wei, W. L. Yang, Z. B. Deng, and M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008).
    [Crossref]
  57. V. V. Shende and I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quant. Inf. Comput. 9, 0461–0468 (2009).
  58. J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855–2856 (1996).
    [Crossref] [PubMed]
  59. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
    [Crossref]

2013 (9)

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[Crossref] [PubMed]

H. F. Wang, A. D. Zhu, S. Zhang, and K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013).
[Crossref]

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[Crossref]

A. B. Young, C. Y. Hu, and J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87, 012332 (2013).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[Crossref] [PubMed]

2012 (5)

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[Crossref] [PubMed]

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[Crossref] [PubMed]

G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
[Crossref] [PubMed]

2011 (4)

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[Crossref]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, and S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

2010 (4)

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[Crossref]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[Crossref]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

2009 (6)

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

V. V. Shende and I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quant. Inf. Comput. 9, 0461–0468 (2009).

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

2008 (6)

H. Wei, W. L. Yang, Z. B. Deng, and M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, and J. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[Crossref]

J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
[Crossref]

2007 (2)

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[Crossref]

2006 (1)

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

2005 (2)

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

2004 (8)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[Crossref]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, and M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004).
[Crossref] [PubMed]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

G. L. Long and L. Xiao, “Parallel quantum computing in a single ensemble quantum computer,” Phys. Rev. A 69, 052303 (2004).
[Crossref]

2003 (3)

Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput. 3, 084–092 (2003).

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, and D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
[Crossref]

2001 (4)

J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[Crossref] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[Crossref]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[Crossref] [PubMed]

1996 (1)

J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855–2856 (1996).
[Crossref] [PubMed]

1995 (1)

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

1982 (1)

E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[Crossref]

Ahmadi, E. D.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Albrecht, R.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

An, J. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

Astafiev, O.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
[Crossref]

Awschalom, D. D.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[Crossref] [PubMed]

Bakker, M.

Barenco, A.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Bawendi, M. G.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[Crossref] [PubMed]

Bayer, M.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Becher, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Beenakker, C. W. J.

C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, and M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004).
[Crossref] [PubMed]

Beirne, G. J.

Bennett, C. H.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Berezovsky, J.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

Beyler, A. P.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[Crossref] [PubMed]

Bimberg, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Birkedal, D.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[Crossref] [PubMed]

Bloch, J.

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Bommer, A.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Bonato, C.

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[Crossref] [PubMed]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

Borri, P.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Bouwmeester, D.

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[Crossref] [PubMed]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

Brokmann, X.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[Crossref] [PubMed]

Brunner, D.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

Bullock, S. S.

V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[Crossref]

Chen, O.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[Crossref] [PubMed]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Clarke, J.

J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
[Crossref]

Cleve, R.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Coldren, L. A.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

Cui, J.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[Crossref] [PubMed]

Dalgarno, P. A.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

De Greve, K.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

Deng, F. G.

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[Crossref] [PubMed]

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[Crossref] [PubMed]

Deng, Z. B.

H. Wei, W. L. Yang, Z. B. Deng, and M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008).
[Crossref]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Deutsch, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Ding, D.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

DiVincenzo, D. P.

C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, and M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004).
[Crossref] [PubMed]

J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855–2856 (1996).
[Crossref] [PubMed]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Domhan, M.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Du, J. F.

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[Crossref]

Duan, L. M.

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

Efros, A. L.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Emary, C.

C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, and M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004).
[Crossref] [PubMed]

Feng, G. R.

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

Feng, M.

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[Crossref]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

H. Wei, W. L. Yang, Z. B. Deng, and M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008).
[Crossref]

Forchel, A.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Fox, A. M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Fredkin, E.

E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[Crossref]

Friess, B.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

Gaebel, T.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Gammon, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, and D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Gérard, J. M.

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Gerardot, B. D.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Gorbunov, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Gossard, A. C.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Greilich, A.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Gruber, A.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Gudat, J.

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

Gupta, J. A.

J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[Crossref] [PubMed]

Hagemeier, J.

Hanson, M. P.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Harris, D. K.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[Crossref] [PubMed]

Haupt, F.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Hennessy, K.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[Crossref]

Höfing, S.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Höfling, S.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, and S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

Hofmann, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Hours, J.

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Hu, C. Y.

A. B. Young, C. Y. Hu, and J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87, 012332 (2013).
[Crossref]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, and S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, and J. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

Hu, E.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[Crossref]

Hua, M.

Hugues, M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Hvam, J. M.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[Crossref] [PubMed]

Jelezko, F.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Johnson, A. C.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Johnson, T. J.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[Crossref]

Kamp, M.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, and S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Karrai, K.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

Katzer, D. S.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, and D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Kim, H.

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[Crossref] [PubMed]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[Crossref]

Kimble, H. J.

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

Kindermann, M.

C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, and M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004).
[Crossref] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[Crossref]

Knobel, R.

J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[Crossref] [PubMed]

Krebs, O.

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[Crossref]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Kwek, L. C.

G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
[Crossref] [PubMed]

Kwon, S. H.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Ladd, T. D.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[Crossref]

Laird, E. A.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Lanco, L.

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[Crossref]

Langbein, W.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Lee, K. H.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[Crossref]

LemaÎtre, A.

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[Crossref]

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Leosson, K.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[Crossref] [PubMed]

Li, J.

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
[Crossref]

Li, T.

Li, X.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, and D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Lin, Q.

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
[Crossref]

Löffer, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Long, G. L.

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

G. L. Long and L. Xiao, “Parallel quantum computing in a single ensemble quantum computer,” Phys. Rev. A 69, 052303 (2004).
[Crossref]

Loo, V.

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[Crossref]

Lukin, M. D.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Luo, Y. Q.

Luxmoore, B. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Luxmoore, I. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Marcus, C. M.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Margolus, N.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Markov, I. L.

V. V. Shende and I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quant. Inf. Comput. 9, 0461–0468 (2009).

V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[Crossref]

Marshall, L. F.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[Crossref] [PubMed]

Martrou, D.

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

McMahon, P. L.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

Michael, C. P.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[Crossref]

Mikkelsen, M. H.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).

Munro, W. J.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, W. J. Munro, and J. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

Nakamura, Y.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
[Crossref]

Nemoto, K.

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

O’Brien, J. L.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Oemrawsingh, S. S. R.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

Oh, C. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

Oulton, R.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, and S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Painter, O.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[Crossref]

Pashkin, Y. A.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
[Crossref]

Peter, E.

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Petroff, P.

Petroff, P. M.

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

Petta, J. R.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Popa, I.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Press, D.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[Crossref]

Rarity, J.

C. Y. Hu, W. J. Munro, and J. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

Rarity, J. G.

A. B. Young, C. Y. Hu, and J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87, 012332 (2013).
[Crossref]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Reichel, J.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Reitzenstein, S.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Reizenstein, S.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, and S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

Ren, B. C.

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[Crossref] [PubMed]

Reuter, D.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Sagnes, I.

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[Crossref]

Samarth, N.

J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[Crossref] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Schneider, C.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, and S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Senellart, P.

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[Crossref]

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Shabaev, A.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Shende, V. V.

V. V. Shende and I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quant. Inf. Comput. 9, 0461–0468 (2009).

V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[Crossref]

Shi, Y. Y.

Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput. 3, 084–092 (2003).

Shor, P.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Sjöqvist, E.

G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
[Crossref] [PubMed]

Skolnick, M. S.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Sleator, T.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Smolin, J. A.

J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855–2856 (1996).
[Crossref] [PubMed]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Song, S. Y.

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

Srinivasan, K.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[Crossref]

Stavarache, V.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Steel, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, and D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Stievater, T. H.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, and D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Stoltz, N. G.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

Strauß, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Tartakovskii, A. I.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Taylor, J. M.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Thijssen, A. C. T.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, and S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

Thon, S.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

Toffoli, T.

E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[Crossref]

Tong, D. M.

G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
[Crossref] [PubMed]

Truong, T. A.

Tsai, J. S.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
[Crossref]

van Exter, M. P.

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[Crossref] [PubMed]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

van Nieuwenburg, E.

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

Voisin, P.

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[Crossref]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).

Wang, H. F.

H. F. Wang, A. D. Zhu, S. Zhang, and K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013).
[Crossref]

Wang, T. J.

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

Wanger, D. D.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[Crossref] [PubMed]

Warburton, R. J.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

Wasley, N. A.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Wei, H.

H. Wei, W. L. Yang, Z. B. Deng, and M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008).
[Crossref]

Wei, H. R.

H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[Crossref] [PubMed]

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[Crossref] [PubMed]

Weinfurter, H.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Wieck, A.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Wilhelm, F. K.

J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
[Crossref]

Woggon, U.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Wrachtrup, J.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Wu, Y.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, and D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Wüst, G.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

Xiao, L.

G. L. Long and L. Xiao, “Parallel quantum computing in a single ensemble quantum computer,” Phys. Rev. A 69, 052303 (2004).
[Crossref]

Xu, G. F.

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
[Crossref] [PubMed]

Xu, Z. Y.

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[Crossref]

Yacoby, A.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Yakovlev, D. R.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Yamamoto, T.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
[Crossref]

Yamamoto, Y.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[Crossref]

Yang, W. L.

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[Crossref]

H. Wei, W. L. Yang, Z. B. Deng, and M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008).
[Crossref]

Yeon, K. H.

H. F. Wang, A. D. Zhu, S. Zhang, and K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013).
[Crossref]

Yin, Z. Q.

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[Crossref]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Young, A.

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Young, A. B.

A. B. Young, C. Y. Hu, and J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87, 012332 (2013).
[Crossref]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, and S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

Yugova, I. A.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Zhang, B. Y.

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[Crossref]

Zhang, J.

G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
[Crossref] [PubMed]

Zhang, S.

H. F. Wang, A. D. Zhu, S. Zhang, and K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013).
[Crossref]

Zhu, A. D.

H. F. Wang, A. D. Zhu, S. Zhang, and K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013).
[Crossref]

Appl. Phys. Lett. (7)

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[Crossref]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[Crossref]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[Crossref]

Int. J. Theor. Phys. (1)

E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[Crossref]

Laser Phys. Lett. (2)

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[Crossref]

Nat. Photonics (1)

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

Nature (London) (6)

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
[Crossref]

J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
[Crossref]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Nature Chemistry (1)

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. A (12)

H. F. Wang, A. D. Zhu, S. Zhang, and K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
[Crossref]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

G. L. Long and L. Xiao, “Parallel quantum computing in a single ensemble quantum computer,” Phys. Rev. A 69, 052303 (2004).
[Crossref]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, and S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

A. B. Young, C. Y. Hu, and J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87, 012332 (2013).
[Crossref]

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[Crossref]

H. Wei, W. L. Yang, Z. B. Deng, and M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008).
[Crossref]

J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855–2856 (1996).
[Crossref] [PubMed]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

Phys. Rev. B (5)

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, and J. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

Phys. Rev. Lett. (11)

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, and M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004).
[Crossref] [PubMed]

G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
[Crossref] [PubMed]

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[Crossref] [PubMed]

Quant. Inf. Comput. (1)

V. V. Shende and I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quant. Inf. Comput. 9, 0461–0468 (2009).

Quantum Inf. Comput. (1)

Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput. 3, 084–092 (2003).

Science (6)

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, and D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[Crossref] [PubMed]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

Other (2)

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of a coupled single-side QD-cavity system. (b) The energy-level structure of a QD-cavity system [12,13]. |↑〉 → |↑↓⇑〉 is driven by the left-circularly polarized photon (|L〉) and |↓〉 → |↓↑⇓〉 is driven by the right-circularly polarized photon (|R〉), respectively.
Fig. 2
Fig. 2 Compact quantum circuit for deterministically implementing a CNOT gate on two QD electron-spin qubits with a single-photon medium. The polarizing beam splitter PBSi (i = 1, 2, 3, 4) in the basis {|R〉, |L〉} transmits the R-polarized photon and reflects the L-polarized photon. BS is a 50:50 beam splitter. The ±–PBS transmits the photon in the state | + = ( | R + | L ) / 2 and reflects the photon in the state | = ( | R | L ) / 2. The half wave plate (HWP) set to 22.5° induces the transformations | R H p ( | R + | L ) / 2 and | L H p ( | R | L ) / 2. D+ and D represent two single-photon detectors.
Fig. 3
Fig. 3 Compact quantum circuit for deterministically implementing a Toffoli gate on three stationary electron-spin qubits in QDs with the input-output processes of a single-photon medium.
Fig. 4
Fig. 4 Compact quantum circuit for determinately implementing a Fredkin gate on three QD-spin qubits with the input-output processes of a single-photon medium. Wave plate WP performs a Hadamard operation on the photon who goes through it two times in succession.
Fig. 5
Fig. 5 The fidelities of our universal quantum gates vs the coupling strength g/(κ + κs) and the side leakage rate κs. (a) The fidelity of our CNOT gate (FC). (b) The fidelity of our Toffoli gate (FT). (c) The fidelity of our Fredkin gate (FF). We take ω = ωc = ωX and γ/κ = 0.1.
Fig. 6
Fig. 6 The efficiencies of our universal quantum gates vs the coupling strength g/(κ + κs) and the side leakage rate κs. (a) The efficiency of our CNOT gate (ηC). (b) The efficiency of our Toffoli gate (ηT). (c) The efficiency of our Fredkin gate (ηF). We take ω = ωc = ωX and γ/κ = 0.1.

Tables (2)

Tables Icon

Table 1 The relations between the measurement outcomes of the single photon and the classical feed-forward operations for implementing the Toffoli gate on the three stationary electron-spin qubits. σz = |↑〉〈↑| − |↓〉〈↓|. I2 = |↑〉〈↑| + |↓〉〈↓| is a 2 × 2 unit operation which means doing nothing on a qubit.

Tables Icon

Table 2 The relations between the measurement outcomes of the photon and the feed-forward operations for achieving a Fredkin gate on the three-qubit electron-spin system.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

r ( ω ) = | r ( ω ) | e i φ ( ω ) = 1 κ [ i ( ω X ω ) + γ 2 ] [ i ( ω X ω ) + γ 2 ] [ i ( ω c ω ) + κ 2 + κ s 2 ] + g 2
d a ^ d t = [ i ( ω c ω ) + κ 2 + κ s 2 ] a ^ g σ κ a ^ in + H ^ , d σ d t = [ i ( ω X ω ) + γ 2 ] σ g σ z a ^ + G ^ , a ^ out = a ^ in + κ a ^ .
( | R + | L ) | cav ( e i φ 0 | R + e i φ h | L ) | = e i φ 0 ( | R + e i ( φ h φ 0 ) | L ) | , ( | R + | L ) | cav e i φ h | R | + e i φ 0 | L | = e i φ 0 ( e i ( φ h φ 0 ) | R + | L ) | .
| R | cav | R | , | L | cav | L | , | R | cav | R | , | L | cav | L | .
| ψ in e = | c ( α 1 | t + α 2 | t ) + | c ( α 3 | t + α 4 | t ) .
| R H p 1 2 ( | R + | L ) , | L H p 1 2 ( | R | L ) .
| H e 1 2 ( | + | ) , | H e 1 2 ( | | ) .
| ψ p | ψ in e | R 9 | c ( α 1 | t + α 2 | t ) + | L 9 | c ( α 3 | t + α 4 | t ) .
| ψ in e CNOT | ψ out e = α 1 | c | t + α 2 | c | t + α 3 | c | t + α 4 | c | t .
| Ξ in e = | c 1 | c 2 ( α 1 | t + α 2 | t ) + | c 1 | c 2 ( α 3 | t + α 4 | t ) + | c 1 | c 2 ( α 5 | t + α 6 | t ) + | c 1 | c 2 ( α 7 | t + α 8 | t ) .
| Ξ 0 = | Ξ p | Ξ in e , | Ξ 1 = | L 5 | c 1 | c 2 ( α 1 | t + α 2 | t ) + | L 5 | c 1 | c 2 ( α 3 | t + α 4 | t ) + | R 5 | c 1 | c 2 ( α 5 | t + α 6 | t ) + | R 5 | c 1 | c 2 ( α 7 | t + α 8 | t ) .
| Ξ 2 = | L 18 | c 1 | c 2 ( α 1 | t + α 2 | t ) + | R 18 | c 1 | c 2 ( α 3 | t + α 4 | t ) + | R 19 | c 1 | c 2 ( α 5 | t + α 6 | t ) + | L 19 | c 1 | c 2 ( α 7 | t + α 8 | t ) .
| Ξ 3 = | L 18 | c 1 | c 2 ( α 1 | t + α 2 | t ) + | R 18 | c 1 | c 2 ( α 3 | t + α 4 | t ) + | R 23 | c 1 | c 2 ( α 5 | t + α 6 | t ) + | L 23 | c 1 | c 2 ( α 7 | t + α 8 | t ) .
| R 18 BS 1 2 ( | R 24 + | R 25 ) , | L 18 BS 1 2 ( | L 24 + | L 25 ) , | R 23 BS 1 2 ( | R 24 | R 25 ) , | L 23 BS 1 2 ( | L 24 | L 25 ) ,
BS | Ξ 4 = | + 26 2 [ | c 1 | c 2 ( α 1 | t + α 2 | t ) + | c 1 | c 2 ( α 3 | t + α 4 | t ) + | c 1 | c 2 ( α 5 | t + α 6 | t ) + | c 1 | c 2 ( α 7 | t + α 8 | t ) ] + | 27 2 [ | c 1 | c 2 ( α 1 | t + α 2 | t ) + | c 1 | c 2 ( α 3 | t + α 4 | t ) + | c 1 | c 2 ( α 5 | t + α 6 | t ) | c 1 | c 2 ( α 7 | t + α 8 | t ) ] + | + 28 2 [ | c 1 | c 2 ( α 1 | t + α 2 | t ) + | c 1 | c 2 ( α 3 | t + α 4 | t ) | c 1 | c 2 ( α 5 | t + α 6 | t ) | c 1 | c 2 ( α 7 | t + α 8 | t ) ] + | 29 2 [ | c 1 | c 2 ( α 1 | t + α 2 | t ) + | c 1 | c 2 ( α 3 | t + α 4 | t ) | c 1 | c 2 ( α 5 | t + α 6 | t ) + | c 1 | c 2 ( α 7 | t + α 8 | t ) ] .
| Ξ out e = | c 1 | c 2 ( α 1 | t + α 2 | t ) + | c 1 | c 2 ( α 3 | t + α 4 | t ) + | c 1 | c 2 ( α 5 | t + α 6 | t ) + | c 1 | c 2 ( α 7 | t + α 8 | t ) .
| Π in e = | c | t 1 ( α 1 | t 2 + α 2 | t 2 ) + | c | t 1 ( α 3 | t 2 + α 4 | t 2 ) + | c | t 1 ( α 5 | t 2 + α 6 | t 2 ) + | c | t 1 ( α 7 | t 2 + α 8 | t 2 ) .
| Π 0 = | Π p | Π in e , | Π 1 = | L 5 | c | t 1 ( α 1 | t 2 + α 2 | t 2 ) + | L 5 | c | t 1 ( α 3 | t 2 + α 4 | t 2 ) + | R 5 | c | t 1 ( α 5 | t 2 + α 6 | t 2 ) + | R 5 | c | t 1 ( α 7 | t 2 + α 8 | t 2 ) .
| Ξ 2 = | c | t 1 ( α 1 | L 22 | t 2 + α 2 | R 22 | t 2 ) + | c | t 1 ( α 1 | R 22 | t 2 + α 2 | L 22 | t 2 ) + | c | t 1 ( α 1 | R 20 | t 2 + α 2 | L 20 | t 2 ) + | c | t 1 ( α 1 | L 20 | t 2 + α 2 | R 20 | t 2 ) .
| Ξ 3 = | c | t 1 ( α 1 | L 22 | t 2 + α 2 | R 22 | t 2 ) + | c | t 1 ( α 3 | R 22 | t 2 + α 4 | L 22 | t 2 ) + | c ( α 5 | R 21 | t 1 + α 6 | L 21 | t 1 | t 2 + | c ( α 7 | L 21 | t 1 + α 8 | R 21 | t 1 | t 2 .
| Ξ 4 = | + 25 2 [ | c | t 1 ( α 1 | t 2 + α 2 | t 2 ) + | c | t 1 ( α 3 | t 2 + α 4 | t 2 ) + | c ( α 5 | t 1 + α 6 | t 1 ) | t 2 + | c ( α 7 | t 1 + α 8 | t 1 ) | t 2 ] + | 26 2 [ | c | t 1 ( α 1 | t 2 + α 2 | t 2 ) + | c | t 1 ( α 3 | t 2 α 4 | t 2 ) + | c ( α 5 | t 1 α 6 | t 1 ) | t 2 + | c ( α 7 | t 1 + α 8 | t 1 ) | t 2 ] + | + 27 2 [ | c | t 1 ( α 1 | t 2 + α 2 | t 2 ) + | c | t 1 ( α 3 | t 2 + α 4 | t 2 ) | c ( α 5 | t 1 + α 6 | t 1 ) | t 2 | c ( α 7 | t 1 + α 8 | t 1 ) | t 2 ] + | 28 2 [ | c | t 1 ( α 1 | t 2 + α 2 | t 2 ) + | c | t 1 ( α 3 | t 2 α 4 | t 2 ) + | c ( α 5 | t 1 + α 6 | t 1 ) | t 2 + | c ( α 7 | t 1 α 8 | t 1 ) | t 2 ] .
| Π out e = | c ( α 1 | t 1 | t 2 + α 2 | t 1 | t 2 ) + | c ( α 3 | t 1 | t 2 + α 4 | t 1 | t 2 ) + | c ( α 5 | t 1 | t 2 + α 6 | t 1 | t 2 ) + | c ( α 7 | t 1 | t 2 + α 8 | t 1 | t 2 ) .
| R | cav | r 0 | | R | , | L | cav | r h | | L | , | R | cav | r h | | R | , | L | cav | r 0 | | L | .
F = | Ψ real | Ψ ideal | 2 ,
η = n out / n in .
F C = 1 2 × ( 1 + 2 | r h | + | r 0 | | r h | ) / [ ( 1 + | r h | ) 2 + ( 1 | r 0 | ) 2 + | r h | 2 ( 1 | r h | ) 2 + | r h | 2 ( 1 + | r 0 | ) 2 ] ,
F T = 1 4 × ( 3 + 2 | r 0 | + | r h | [ 5 + | r h | + | r 0 | ( 4 + | r 0 | ) ] ) / ( ( 1 + | r h | ) 4 + 2 ( | r h | 2 1 ) 2 + 2 ( | r h | 1 ) 2 ( | r 0 | 1 ) 2 + ( | r 0 | 1 ) 4 + 2 ( | r 0 | 2 1 ) 2 + 4 ( 1 + | r h | 2 ( 1 + | r 0 | 2 ) + | r h | 2 [ ( | r h | 1 ) 2 + ( 1 + | r 0 | ) 2 ] 2 ) ,
F F = 1 8 × [ 4 ( 1 + | r h | ) ( 1 + | r 0 | | r h | ) + 2 ( 2 + | r 0 | + | r h | ) ( 2 + | r 0 | 2 + | r h | 2 ) + ( 1 + | r 0 | ) ( 4 | r h | 2 | r h | 4 + 2 | r h | 3 | r 0 | + 2 | r h | | r 0 | 3 + | r 0 | 4 ) ] / ( [ ( | r h | 1 ) 2 + ( 1 + | r 0 | ) 2 ] [ 4 + 2 ( | r h | | r 0 | 2 ) + ( | r h | 2 + | r 0 | 2 ) 2 ] + 4 [ ( 1 + | r h | ) 2 + ( | r 0 | 1 ) 2 ] [ 8 + 2 ( | r h | 2 + | r 0 | 2 ) 2 ] + [ 2 + | r h | ( | r h | 2 ) + | r 0 | ( 2 + | r 0 | ) ] × [ | r h | 8 4 | r h | 7 | r 0 | + 4 | r h | 3 | r 0 | 5 + 8 | r h | 2 | r 0 | 6 + 4 | r h | | r 0 | 7 + | r 0 | 8 4 | r h | 5 | r 0 | ( | r 0 | 2 4 ) + 8 | r h | 6 ( | r 0 | 2 1 ) 2 | r h | 4 ( 4 | r 0 | 2 + | r 0 | 4 8 ) ] ) ,
η C = ( 2 + | r h | 2 + | r 0 | 2 ) 2 16 ,
η T = ( 2 + | r h | 2 + | r 0 | 2 ) 2 ( 6 + | r h | 2 + | r 0 | 2 ) 128 ,
η F = ( 2 + | r h | 2 + | r 0 | 2 ) [ 4 + ( | r h | 2 + | r 0 | 2 ) 2 ] [ 12 + ( | r h | 2 + | r 0 | 2 ) 2 ] 512 .
1 exp ( τ / T 2 ) ,

Metrics