Abstract

Poor thermal stability has remained a severe obstacle for practical applications of optical fiber amplifiers based on quantum dots (QDs). We demonstrate that thermal stability at elevated temperatures can be achieved by using oleic-acid-capped QDs. Optical fiber amplifiers using oleic-acid-capped QDs for the gain medium exhibited stable gain of more than 5 dB at 1550 nm between 25 °C and 50 °C that did not degrade upon cooling. In contrast, fiber amplifiers employing oleylamine-capped QDs exhibited reduced gain when heated and subsequently cooled.

© 2014 Optical Society of America

1. Introduction

Quantum dots (QDs) have been under intensive investigation in optical devices due to their high quantum yield, tunable spectral profile and facile preparation [17]. Optical amplifiers are important components in optical communication technologies, and commercial optical amplifiers are based on rare-earth doped fibers. Though they are efficient and have high gain, rare-earth doped fibers cannot be applied to ultra-broad band optical communication due to their relatively narrow spectral bandwidth and lack of tunability. The spectral profile of QDs, e.g. PbS QDs, can be easily tuned to cover all optical communication bands [8]. Therefore, several studies have investigated QDs doped into amplifiers of various device architectures, including planar and fiber geometries [4, 911].

For QDs-based optical fiber amplifiers, different strategies have been explored to incorporate QDs into optical fiber amplifiers. For example, PbSe QDs were doped into silica optical fibers by using modified chemical vapor deposition (MCVD) technology, and an amplified spontaneous emission at 1537 nm has been achieved [12]. By filling the PbSe QD solution into a photonic bandgap fiber, PL at 1554 nm has been observed [13]. In addition, Cheng et al. realized a multiQD-doped fiber amplifier that used nanocrystals of different sizes [14]. Although these previous studies show the great potential of QD-based fibers, most of the approaches suffer from various drawbacks such as high temperature fabrication, low amplification, or coupling problems with single mode fibers (SMFs). There have been few investigations of the performance of QD-based fiber amplifiers at elevated temperatures. This is unfortunate because high-temperature stability is critical for application in wide-ranging environments.

To solve the coupling problem of fiber amplifiers with SMFs, our laboratory has developed a tapered twin SMF coupler structure onto which QDs-doped silica can be coated using a sol-gel process [1517]. The QDs in the silica coating around the tapered region are excited by an evanescent wave, through which amplification of signals is achieved. The characteristics of this tapered twin SMF coupler have been theoretically evaluated [18, 19]. While this structure is promising, poor thermal stability associated with QDs and hence vanishing amplification signals at higher temperature severely hinder applications for this structure. In order to resolve this thermal instability issue, we have exploited the usage of PbS/CdS core/shell QDs that have shown higher quantum yield and thermal stability [17]. In comparison with a PbS-based amplifier, the PbS/CdS-based amplifier did indeed exhibit better thermal stability. Nevertheless, the gain of the PbS/CdS-based amplifier also decreased with increasing temperature and the gain was essentially absent at 55 °C.

Given the limited success using PbS/CdS QDs, other methods are needed to ensure that QDs-based optical fiber amplifiers can reliably maintain their performance in a reasonable temperature range. Ligands play an important role in determining both the optical properties and stability of QDs [20, 21]. The QDs we investigated previously were capped with oleylamine ligands. Acid-containing ligands have stronger binding affinity towards the PbS surface than amine-based ligands [22], and PbS QDs capped with oleic acid have higher quantum yield and higher stability. As a result, optical amplifiers with oleic-acid-capped QDs may be expected to have better thermal stability.

Herein, we report a tapered twin SMF coupler optical fiber amplifier based on oleic-acid-capped PbS QDs (OLA-QDs) that maintained its amplification from 25 °C to 50 °C. OLA-QDs were prepared by ligand exchange starting from oleylamine-capped QDs (OLAm-QDs) [22]. A second key to the success of this stable fiber amplifier was to use a tailor-made well-defined amphiphilic block copolymer to disperse the hydrophobic OLA-QDs into silica sol. The amphiphilic block copolymer enabled the formation of a stable QDs dispersion in silica sol due to a higher degree of phase segregation, compared with the random amphiphilic copolymer used for our previous report [17].

2. Synthesis of PbS QDs

OLAm-QDs were synthesized according to the procedure of Cademartiri et al [23]. The QDs were then ligand-exchanged with oleic acid to produce OLA-QDs [22]. Their photoluminescence (PL) spectra and temperature-dependent PL intensity are shown in Fig. 1. After ligand exchange, the OLA-QDs exhibit higher PL intensity than the OLAm-QDs at the same QD concentration. More importantly, the PL intensity of OLA-QDs increases with temperature, showing a PL temperature antiquenching effect [24, 25], and the PL intensity is essentially reversible during a heating-cooling cycle. While the exact nature of the antiquenching effect in this particular case is unknown at the current stage, it may be related to the QD surface state rearrangement as previously suggested for other QDs [24, 25]. On the other hand, the PL intensity of OLAm-QDs is reduced upon heating, as expected, and the PL intensity does not recover during the cooling process. These results are consistent with oleic acid binding more strongly to the PbS QD surface than oleylamine, leading to an improved electronic passivation of the surface [22].

 figure: Fig. 1

Fig. 1 PL spectra of PbS QDs in chloroform (A) and PL intensity temperature profiles in 1-octadecene (B).

Download Full Size | PPT Slide | PDF

3. Fabrication and characteristics of QDs-based optical fiber amplifiers

Both OLAm- and OLA-capped QDs are hydrophobic. Thus they were first modified with a designer amphiphilic block copolymer, poly(polyethylene glycol methyl ether methacrylate)28-block-poly(dodecyl methacrylate)50, to disperse the QDs into silica sol, which was then coated on the tapered region of the optical fiber coupler [15, 17]. By using this twin fiber structure, a signal and a pump can be injected into the active region simultaneously. The pump excites the doped QDs through an evanescent wave and the signal interacts with excited QDs through an evanescent wave and then can be amplified. The test system is illustrated in Fig. 2. A 980 nm laser diode is used as the pump, a 1550 nm semiconductor light emitting diode is used as the signal source, and the amplified signal is analyzed on an optical spectrum analyzer.

 figure: Fig. 2

Fig. 2 The test set-up for quantum dots fiber amplifiers.

Download Full Size | PPT Slide | PDF

Figure 3 shows the output spectra of the fiber amplifiers based on OLAm-QDs and OLA-QDs when the input signal or the pump is used individually and the amplified spectrum when both the signal and pump are simultaneously applied. At ambient temperature, both fiber amplifiers show signal enhancement at 1550 nm with a 100 mW 980 nm pump - 4.8 dB for OLAm-QD and 6.47 dB for OLA-QD. The gain for both amplifiers increases with increasing pump power and reaches saturation values of 5.06 dB at 140 mW for OLAm-QD and 7.56 dB at 140 mW for OLA-QD. These results are consistent with the more stable nature and the higher solution PL intensity of OLA-QD in comparison with OLAm-QD.

 figure: Fig. 3

Fig. 3 Output spectra with input signal only, pump only, and signal + pump for fiber amplifiers based on OLAm-QDs (A) and OLA-QDs (B). Dependence of gain at 1550 nm on pump power for fiber amplifiers based on OLAm-QDs and OLA-QDs (C).

Download Full Size | PPT Slide | PDF

4. Thermal stability of QDs-based optical fiber amplifiers

Encouraged by the enhanced solution PL properties and higher amplification signals of OLA-QDs in comparison with those of OLAm-QDs, we next compared the thermal stability of fiber amplifiers based on both types of QDs (Fig. 4). For the fiber amplifier based on OLAm-QDs, the gain undergoes an obvious reduction from 4.8 dB to 2.96 dB upon heating from 25 °C to 50 °C, similar to the reduction in PL intensity for OLAm-QDs in solution. When cooled the gain does not recover, but continues to degrade to even lower values. For the fiber amplifier based on OLA-QDs, the gain experiences only a slight drop from 6.02 dB to 5.44 dB on heating from 25 °C to 50 °C, representing only 9.6% gain loss. More importantly, the gain recovers and essentially returns to its original value upon cooling, suggesting that heating the fiber amplifier does not lead to permanent damage to the OLA-QDs due to the superior thermal stability of OLA-QDs. In contrast to the thermal profile of the PL of OLA-QDs in solution, which shows an antiquenching effect, the gain of the OLA-QD-doped fiber exhibits a slight decrease on heating. These results reflect the effects of the microenvironment in which the QDs reside on their surface and optical properties. It is likely that in solution the ligands are more flexible and are able to reorganize to adopt a more optimized passivation of the QD surface on heating, while in the solid state this type of ligand reorganization is to a large extent suppressed and the usual thermal quenching effect is exhibited.

 figure: Fig. 4

Fig. 4 Temperature-dependent gain of QDs-based optical fiber amplifiers at a pump power of 100 mW.

Download Full Size | PPT Slide | PDF

5. Conclusion

The addition of capping ligands has profound, beneficial effects on the strength and thermal stability of luminescence for PbS QDs. For this work, we examined the performance of an optical amplifier with a gain region comprised of OLA-QDs (ligand-capped) coated on the tapered region of twin SMF couplers. The OLA-QDs-based optical amplifier exhibited gain that decreased only slightly at elevated temperatures and that returned to its original values when cooled. The results are consistent with use of the OLA-QDs-based optical amplifiers for applications such as broadband optical communications in environments for which the ambient temperature may vary over a wide range and for which thermal control may not be economical.

Acknowledgments

The work was funded by National Natural Science Foundation of China (61006083, 61377040, 61205172, 61275090, 60937003).

References and links

1. V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009). [CrossRef]   [PubMed]  

2. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000). [CrossRef]   [PubMed]  

3. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007). [CrossRef]  

4. C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008). [CrossRef]  

5. S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005). [CrossRef]   [PubMed]  

6. T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009). [CrossRef]  

7. J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011). [CrossRef]   [PubMed]  

8. E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005). [CrossRef]  

9. Y. Ding, R. Aviles-Espinosa, M. A. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012). [CrossRef]   [PubMed]  

10. M. Matsuura, N. Calabretta, O. Raz, and H. J. S. Dorren, “Multichannel wavelength conversion of 50-Gbit/s NRZ-DQPSK signals using a quantum-dot semiconductor optical amplifier,” Opt. Express 19(26), B560–B566 (2011). [CrossRef]   [PubMed]  

11. C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011). [CrossRef]  

12. P. R. Watekar, L. Aoxiang, J. Seongmin, and H. Won-Taek, “1537 nm emission upon 980 nm pumping in PbSe quantum dots doped optical fiber,” in OFC/NFOEC 2008. 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2008), pp. 3030–3032. [CrossRef]  

13. S. Kawanishi, T. Komukai, M. Ohmori, and H. Sakaki, “Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber,” in CLEO '07.2007 Conference on Lasers and Electro-Optics (2007), pp. 1343–1344. [CrossRef]  

14. C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26(11), 1404–1410 (2008). [CrossRef]  

15. F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, and T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18(13), 14024–14030 (2010). [CrossRef]   [PubMed]  

16. X. Sun, Y. Dong, C. Li, X. Liu, G. Liu, and L. Xie, “PbSe quantum dots fiber amplifier based on sol-gel self-assembly method,” in Passive Components and Fiber-Based Devices VII, P. P. Shum, ed. (SPIE, 2011).

17. X. Sun, L. Xie, W. Zhou, F. Pang, T. Wang, A. R. Kost, and Z. An, “Optical fiber amplifiers based on PbS/CdS QDs modified by polymers,” Opt. Express 21(7), 8214–8219 (2013). [CrossRef]   [PubMed]  

18. H. Guo, F. Pang, X. Zeng, and T. Wang, “PbS quantum dot fiber amplifier based on a tapered SMF fiber,” Opt. Commun. 285(13-14), 3222–3227 (2012). [CrossRef]  

19. H. Guo, F. Pang, X. Zeng, and T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013). [CrossRef]  

20. X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008). [CrossRef]   [PubMed]  

21. B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, and J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009). [CrossRef]   [PubMed]  

22. I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011). [CrossRef]   [PubMed]  

23. L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006). [CrossRef]   [PubMed]  

24. S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots: Role of the Solvent,” J. Am. Chem. Soc. 126(33), 10397–10402 (2004). [CrossRef]   [PubMed]  

25. S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, and A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009).
    [Crossref] [PubMed]
  2. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
    [Crossref] [PubMed]
  3. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
    [Crossref]
  4. C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
    [Crossref]
  5. S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
    [Crossref] [PubMed]
  6. T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
    [Crossref]
  7. J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
    [Crossref] [PubMed]
  8. E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005).
    [Crossref]
  9. Y. Ding, R. Aviles-Espinosa, M. A. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
    [Crossref] [PubMed]
  10. M. Matsuura, N. Calabretta, O. Raz, and H. J. S. Dorren, “Multichannel wavelength conversion of 50-Gbit/s NRZ-DQPSK signals using a quantum-dot semiconductor optical amplifier,” Opt. Express 19(26), B560–B566 (2011).
    [Crossref] [PubMed]
  11. C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
    [Crossref]
  12. P. R. Watekar, L. Aoxiang, J. Seongmin, and H. Won-Taek, “1537 nm emission upon 980 nm pumping in PbSe quantum dots doped optical fiber,” in OFC/NFOEC 2008. 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2008), pp. 3030–3032.
    [Crossref]
  13. S. Kawanishi, T. Komukai, M. Ohmori, and H. Sakaki, “Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber,” in CLEO '07.2007 Conference on Lasers and Electro-Optics (2007), pp. 1343–1344.
    [Crossref]
  14. C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26(11), 1404–1410 (2008).
    [Crossref]
  15. F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, and T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18(13), 14024–14030 (2010).
    [Crossref] [PubMed]
  16. X. Sun, Y. Dong, C. Li, X. Liu, G. Liu, and L. Xie, “PbSe quantum dots fiber amplifier based on sol-gel self-assembly method,” in Passive Components and Fiber-Based Devices VII, P. P. Shum, ed. (SPIE, 2011).
  17. X. Sun, L. Xie, W. Zhou, F. Pang, T. Wang, A. R. Kost, and Z. An, “Optical fiber amplifiers based on PbS/CdS QDs modified by polymers,” Opt. Express 21(7), 8214–8219 (2013).
    [Crossref] [PubMed]
  18. H. Guo, F. Pang, X. Zeng, and T. Wang, “PbS quantum dot fiber amplifier based on a tapered SMF fiber,” Opt. Commun. 285(13-14), 3222–3227 (2012).
    [Crossref]
  19. H. Guo, F. Pang, X. Zeng, and T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013).
    [Crossref]
  20. X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008).
    [Crossref] [PubMed]
  21. B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, and J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
    [Crossref] [PubMed]
  22. I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
    [Crossref] [PubMed]
  23. L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
    [Crossref] [PubMed]
  24. S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots: Role of the Solvent,” J. Am. Chem. Soc. 126(33), 10397–10402 (2004).
    [Crossref] [PubMed]
  25. S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, and A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
    [Crossref] [PubMed]

2013 (2)

X. Sun, L. Xie, W. Zhou, F. Pang, T. Wang, A. R. Kost, and Z. An, “Optical fiber amplifiers based on PbS/CdS QDs modified by polymers,” Opt. Express 21(7), 8214–8219 (2013).
[Crossref] [PubMed]

H. Guo, F. Pang, X. Zeng, and T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013).
[Crossref]

2012 (2)

2011 (4)

M. Matsuura, N. Calabretta, O. Raz, and H. J. S. Dorren, “Multichannel wavelength conversion of 50-Gbit/s NRZ-DQPSK signals using a quantum-dot semiconductor optical amplifier,” Opt. Express 19(26), B560–B566 (2011).
[Crossref] [PubMed]

C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[Crossref]

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (3)

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, and J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[Crossref] [PubMed]

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[Crossref]

V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009).
[Crossref] [PubMed]

2008 (3)

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[Crossref]

C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26(11), 1404–1410 (2008).
[Crossref]

X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008).
[Crossref] [PubMed]

2007 (1)

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

2006 (1)

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

2005 (2)

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005).
[Crossref]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

2004 (2)

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots: Role of the Solvent,” J. Am. Chem. Soc. 126(33), 10397–10402 (2004).
[Crossref] [PubMed]

S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, and A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
[Crossref] [PubMed]

2000 (1)

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Accard, A.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Amassian, A.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

An, Z.

Asbury, J. B.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Aviles-Espinosa, R.

Bardella, P.

Bawendi, M. G.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Bertolotti, J.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

Bimberg, D.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[Crossref]

Boeberl, M.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[Crossref]

Bonk, R.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[Crossref]

Brenot, R.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Brzozowski, L.

V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009).
[Crossref] [PubMed]

Cademartiri, L.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

Calabretta, N.

Capua, A.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[Crossref]

Cataluna, M. A.

Cha, D.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Chen, Z.

Cheng, C.

C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[Crossref]

C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26(11), 1404–1410 (2008).
[Crossref]

Cheng, X.

C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[Crossref]

Chou, K. W.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Copenhaver, D.

X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008).
[Crossref] [PubMed]

Cyr, P. W.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Dagens, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

De Geyter, B.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

de Mello Donegá, C.

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots: Role of the Solvent,” J. Am. Chem. Soc. 126(33), 10397–10402 (2004).
[Crossref] [PubMed]

S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, and A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
[Crossref] [PubMed]

Debnath, R.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Derouin, E.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Ding, Y.

Dorren, H. J. S.

Drisse, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Duan, G.-H.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Eisenstein, G.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[Crossref]

Eisler, H. J.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Fischer, A.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Fritzinger, B.

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, and J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[Crossref] [PubMed]

Fuerst, J.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[Crossref]

Furukawa, M.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Guo, H.

H. Guo, F. Pang, X. Zeng, and T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013).
[Crossref]

H. Guo, F. Pang, X. Zeng, and T. Wang, “PbS quantum dot fiber amplifier based on a tapered SMF fiber,” Opt. Commun. 285(13-14), 3222–3227 (2012).
[Crossref]

F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, and T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18(13), 14024–14030 (2010).
[Crossref] [PubMed]

Haustraete, K.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

Hayden, O.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[Crossref]

Heiss, W.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[Crossref]

Hens, Z.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, and J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[Crossref] [PubMed]

Hesser, G.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[Crossref]

Hinds, S.

V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009).
[Crossref] [PubMed]

Hollingsworth, J. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Hoogland, S.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Jeong, K. S.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Ji, X.

X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008).
[Crossref] [PubMed]

Jiang, H.

C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[Crossref]

Justo, Y.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

Kapsalis, A.

Kemp, K. W.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Kim, J.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[Crossref]

Klem, E. J. D.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Klimov, V. I.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Konstantatos, G.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Koole, R.

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, and J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[Crossref] [PubMed]

Kost, A. R.

Kovalenko, M. V.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[Crossref]

Kovsh, A. R.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[Crossref]

Krakowski, M.

Krestnikov, I.

Krestnikov, I. L.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[Crossref]

Laemmlin, M.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[Crossref]

Landreau, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Le Gouezigou, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Lelarge, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Lemmer, U.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[Crossref]

Leuthold, J.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[Crossref]

Levina, L.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Liebich, S.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[Crossref]

Liu, H.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Livshits, D.

Lommens, P.

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, and J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[Crossref] [PubMed]

Loza-Alvarez, P.

Ma, D.

C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[Crossref]

Make, D.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Martins, J. C.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, and J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[Crossref] [PubMed]

Matsuura, M.

McDonald, S. A.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Meijerink, A.

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots: Role of the Solvent,” J. Am. Chem. Soc. 126(33), 10397–10402 (2004).
[Crossref] [PubMed]

S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, and A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
[Crossref] [PubMed]

Mesaritakis, C.

Meuer, C.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[Crossref]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Montrosset, I.

Moreels, I.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, and J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[Crossref] [PubMed]

Nikitichev, D.

Ozin, G. A.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

Pang, F.

X. Sun, L. Xie, W. Zhou, F. Pang, T. Wang, A. R. Kost, and Z. An, “Optical fiber amplifiers based on PbS/CdS QDs modified by polymers,” Opt. Express 21(7), 8214–8219 (2013).
[Crossref] [PubMed]

H. Guo, F. Pang, X. Zeng, and T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013).
[Crossref]

H. Guo, F. Pang, X. Zeng, and T. Wang, “PbS quantum dot fiber amplifier based on a tapered SMF fiber,” Opt. Commun. 285(13-14), 3222–3227 (2012).
[Crossref]

F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, and T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18(13), 14024–14030 (2010).
[Crossref] [PubMed]

Peng, X.

X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008).
[Crossref] [PubMed]

Poingt, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Pommereau, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Provost, J.-G.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Rafailov, E.

Rauch, T.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[Crossref]

Raz, O.

Renaudier, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Robert, Y.

Rossetti, M.

Rousseau, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Ruiz, M.

Sapienza, R.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

Sargent, E. H.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009).
[Crossref] [PubMed]

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005).
[Crossref]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Sichmeller, C.

X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008).
[Crossref] [PubMed]

Simos, H.

Sukhovatkin, V.

V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009).
[Crossref] [PubMed]

Sun, X.

Syvridis, D.

Tang, J.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Tedde, S. F.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[Crossref]

Tran, M.

Vallaitis, T.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[Crossref]

van Dijk, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

van Houselt, A.

S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, and A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
[Crossref] [PubMed]

Vanmaekelbergh, D.

S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, and A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
[Crossref] [PubMed]

von Freymann, G.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

Wang, J.

Wang, T.

X. Sun, L. Xie, W. Zhou, F. Pang, T. Wang, A. R. Kost, and Z. An, “Optical fiber amplifiers based on PbS/CdS QDs modified by polymers,” Opt. Express 21(7), 8214–8219 (2013).
[Crossref] [PubMed]

H. Guo, F. Pang, X. Zeng, and T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013).
[Crossref]

H. Guo, F. Pang, X. Zeng, and T. Wang, “PbS quantum dot fiber amplifier based on a tapered SMF fiber,” Opt. Commun. 285(13-14), 3222–3227 (2012).
[Crossref]

F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, and T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18(13), 14024–14030 (2010).
[Crossref] [PubMed]

Wang, X.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Wiersma, D. S.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

Wuister, S. F.

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots: Role of the Solvent,” J. Am. Chem. Soc. 126(33), 10397–10402 (2004).
[Crossref] [PubMed]

S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, and A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
[Crossref] [PubMed]

Xie, L.

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Xu, T.

Yan, J.

Zeng, X.

H. Guo, F. Pang, X. Zeng, and T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013).
[Crossref]

H. Guo, F. Pang, X. Zeng, and T. Wang, “PbS quantum dot fiber amplifier based on a tapered SMF fiber,” Opt. Commun. 285(13-14), 3222–3227 (2012).
[Crossref]

F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, and T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18(13), 14024–14030 (2010).
[Crossref] [PubMed]

Zhang, S. G.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Zhou, W.

ACS Nano (1)

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, and A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, and I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

J. Am. Chem. Soc. (3)

X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008).
[Crossref] [PubMed]

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, and J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[Crossref] [PubMed]

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots: Role of the Solvent,” J. Am. Chem. Soc. 126(33), 10397–10402 (2004).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Phys. Chem. B (1)

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

Nat. Mater. (2)

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[Crossref]

Opt. Commun. (2)

C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[Crossref]

H. Guo, F. Pang, X. Zeng, and T. Wang, “PbS quantum dot fiber amplifier based on a tapered SMF fiber,” Opt. Commun. 285(13-14), 3222–3227 (2012).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

H. Guo, F. Pang, X. Zeng, and T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013).
[Crossref]

Science (2)

V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009).
[Crossref] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Other (3)

X. Sun, Y. Dong, C. Li, X. Liu, G. Liu, and L. Xie, “PbSe quantum dots fiber amplifier based on sol-gel self-assembly method,” in Passive Components and Fiber-Based Devices VII, P. P. Shum, ed. (SPIE, 2011).

P. R. Watekar, L. Aoxiang, J. Seongmin, and H. Won-Taek, “1537 nm emission upon 980 nm pumping in PbSe quantum dots doped optical fiber,” in OFC/NFOEC 2008. 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2008), pp. 3030–3032.
[Crossref]

S. Kawanishi, T. Komukai, M. Ohmori, and H. Sakaki, “Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber,” in CLEO '07.2007 Conference on Lasers and Electro-Optics (2007), pp. 1343–1344.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 PL spectra of PbS QDs in chloroform (A) and PL intensity temperature profiles in 1-octadecene (B).
Fig. 2
Fig. 2 The test set-up for quantum dots fiber amplifiers.
Fig. 3
Fig. 3 Output spectra with input signal only, pump only, and signal + pump for fiber amplifiers based on OLAm-QDs (A) and OLA-QDs (B). Dependence of gain at 1550 nm on pump power for fiber amplifiers based on OLAm-QDs and OLA-QDs (C).
Fig. 4
Fig. 4 Temperature-dependent gain of QDs-based optical fiber amplifiers at a pump power of 100 mW.

Metrics