Abstract

In this work, we present an innovative design of a dual-junction nanowire array solar cell. Using a dual-diameter nanowire structure, the solar spectrum is separated and absorbed in the core wire and the shell wire with respect to the wavelength. This solar cell provides high optical absorptivity over the entire spectrum due to an electromagnetic concentration effect. Microscopic simulations were performed in a three-dimensional setup, and the optical properties of the structure were evaluated by solving Maxwell’s equations. The Shockley-Queisser method was employed to calculate the current-voltage relationship of the dual-junction structure. Proper design of the geometrical and material parameters leads to an efficiency of 39.1%.

© 2012 OSA

1. Introduction

The photovoltaic technology has achieved significant results in recent years [1]. The market-dominating silicon solar cell provides a maximum achievable efficiency of 25%, and features mature production technologies. Meanwhile, by applying thin-film technology, different material layers are grown on top of each other to form multi-junction cells, and the world record cells using highly absorptive III–V materials have been reported to reach efficiencies around 43%. However, high efficiency multi-junction solar cells are not widely applied in civilian industry due to their relatively expensive fabrication and material cost. Up to now, the cell efficiency has become the crucial factor for the entire photovoltaic industry [2], which still has a room for improvement. The aim is that the industrialized production and application of solar cell can be cost effective when compared with conventional electricity generation methods.

A semiconductor solar cell of high unit cell efficiency needs to satisfy two major requirements. One is to have superior optical properties, meaning the cell should have high cell absorption over a broad-band solar spectrum. The other one is to reduce the thermalization loss during the energy conversion, for which the multi-junction cell is often used [3]. Both points can benefit from the employment of nanowire array solar cells [4, 5]. It has been demonstrated that due to an optical concentration effect, the cell optical absorptivity of nanowires can reach or even surpass that of a thin film solar cell [69], yet with much less material consumption. The nanowire structure also allows lateral relaxation of built-in strain, thus for a nanowire multi-junction structure, the material selection is much more flexible [10, 11]. Furthermore, innovative structures that can only be realised in nanowire solar cells can bring new possibilities into solar cell development [1215].

The dual-diameter nanowire is a new nanowire structure. It has been shown that by forming a nanowire from two cylinders with different diameters, the optical absorptivity was enhanced over the visible spectrum [16]. According to previous work, the nature of optical concentration effect, which is the major factor for optical absorption enhancement in single-diameter nanowire array, can be explained as the superposition of dispersive optical modes. Their dispersion and overlap factor strongly depend on the geometry [6, 17]. In the concept presented here, (see Fig. 1) by applying the internal-device physics regarding the optical concentration effect on a dual-diameter nanowire array, we are able to tailor the nanowire array solar cell to provide high optical absorptivity, with the short wavelength spectrum and long wavelength spectrum concentrating within different nano-cylinders. By employing a dual-junction structure to spatially and spectrally accommodate the separated absorption spectrum, we aim at designing an innovative dual-junction solar cell whose performance is comparable to an ideal case.

 

Fig. 1 Dual-diameter nanowire array solar cell structure. Geometrical parameters are noted in the picture: a is the array pitch, d and D are the respective diameters of core and shell nanowire, h and H are the respective heights of core and shell nanowire. (a): Dual-diameter nanowire array. (b): Single wire structure: blue region is the core nanowire with a small diameter and a large bandgap (Eg_c), red region is the shell nanowire with a large diameter and a small band gap (Eg_s), yellow region is the substrate (Eg_sub). (c) Radially arranged dual-junction structure, the contacts for core and shell junctions are noted.

Download Full Size | PPT Slide | PDF

The optical absorptivity of the dual-diameter nanowire array is evaluated by solving Maxwell’s equations using a three-dimensional microscopic model. The Shockley-Queisser method is employed to calculate the thermal efficiency limit of the device as a dual-junction solar cell [18]. A brief introduction of our simulation model is given in Section 2, and the device design is given in Section 3, in the end, the simulation results are presented and discussed in Section 4.

2. Simulation methods

2.1. Optical properties

By solving Maxwell’s equations, the spatial electromagnetic (EM) field distribution can be evaluated for each optical wavelength. This is done by a three-dimnesional finite-element implementation of the vectorial Helmholtz equation in frequency domain. Material dispersion as well as the substrate is included in the calculation. The optical properties of the investigated structure are then deduced from the EM field solution. The optical absorptivity can be expressed as follows [6]:

a(r,λ)=Pabs(r,λ)/PAM1.5D(λ)
Here a(r⃗, λ) is the optical absorptivity, r⃗ is the position vector, and λ is the wavelength. Pabs(r⃗, λ) is the absorbed light power, and PAM1.5D(λ) is the AM1.5D solar spectrum. The optical generation rate is expressed by:
g(r,λ)=a(r,λ)PAM1.5D(λ)λ/hc
g(r⃗, λ) is the generation rate, h is the Planck constant, and c is the speed of light.

2.2. Detailed balance calculation

The detailed balance limit (Shockley-Queisser limit) calculation gives a theoretical limit of solar cell efficiency [19]. In this method, the output current is composed of the sum of photocurrent and diode current, and only radiative recombination is considered as recombination mechanism. The current-voltage relationship is given by:

I=IscI0(expV/Vc1)
I is the output current, Isc is the photocurrent (short-circuit current), I0 is the reverse saturation current, and V is the voltage. Vc is the thermal voltage, and can be given by:
Vc=kBTcq
Here kB is the Boltzmann constant, Tc is the cell temperature, and q is the elementary charge. The photocurrent can be evaluated by integrating the optical generation over the entire active structure and the solar spectrum:
Isc=qVol0g(r,λ)drdλ

3. Device design

The prototype of the dual-diameter nanowire array solar cell is depicted in Fig. 1. Being arranged in a square array, each dual-diameter nanowire is composed of a core wire with a small diameter and a shell wire with a large diameter. As shown in previous work, the optical absorptivity of nanowire is strongly affected by the nanowire geometry [6]. Assuming that the space fill factor is kept constant, and the material band gap is sufficiently small to absorb the entire solar spectrum, the optical absorptivity of the long wavelength spectrum increases with the diameter of the nanowire. This is due to the waveguide modal dispersion of the wire array; a thinner wire carries less higher order modes, which are responsible for the absorption process [6]. Hence, the basic idea of the dual-diameter nanowire structure is to have the short wavelength spectrum being absorbed by the thinner wire and the large wavelength part by the thicker wire.

As shown in Fig. 1(b), the core wire is much longer than the shell wire, so the solar power of short wavelength spectrum can be sufficiently absorbed within the core. This principle enhances the wavelength separation, as most of the short wavelength spectrum is absorbed in the top section. A large bandgap material is assigned to the core wire to suppress the thermalization loss, and the shell wire is assigned with a small bandgap material. The dual-diameter structure is viewed as a radially arranged dual-junction cell, as depicted in Fig. 1(c).

The optical absorption property of the dual-diameter nanowire array is sensitive to both the geometry and the constituent material. Here an optimized structure has been designed with140 nm diameter (d) and 4.5 μm long (h) core wire and 250 nm diameter (D) and 2.5 μm long (H) shell wire, the array pitch (a) is 360 nm. The materials for core and shell wire are GaInP and InAsP, respectively [20]. Other material combinations can be envisioned employing the same principle. A technological implementation of this geometry requires arranging the double p-n-junctions and the tunnel junction within the radial dimension of 250nm, as shown in Fig. 1(c). To prevent the short circuit condition, the substrate should be insulating. This is a challenging task, which requires tight control of the involved process, and is left for future work.

4. Results and discussion

The spectral optical absorptivity of the dual-diameter nanowire array solar cell is shown in Fig. 2. The result shows a clear spectral split between the core and the shell wire, with near perfect optical absorption of short wavelength range in the core wire, and an average above 90% absorptivity of large wavelength spectrum in shell wire. The absorptive property of dual-diameter nanowire array is close to an ideal absorber for a dual-junction solar cell.

 

Fig. 2 Normalized optical absorptivity of dual-diameter nanowire array solar cell. The short wavelength spectrum (λ <= 800 nm) is absorbed in the core nanowire with absorptivity above 90%. The long wavelength spectrum is absorbed in the shell nanowire. The band gap positions are noted with arrows in the figure.

Download Full Size | PPT Slide | PDF

Due to the optical micro-concentration effect, the absorption spectrum in a dual-diameter nanowire array is spatially separated perpendicular to the propagation direction of the optical modes. As an example, the optical generation rates of dual-diameter nanowire under illumination of 500 nm wavelength and 1040 nm wavelength are depicted in Fig. 3. The spatial separation of the solar spectrum is shown in the picture: at 500 nm wavelength, the optical generation concentrates in the core nanowire, while under 1040 nm wavelength illumination, the optical generation is localized in the shell wire. In [21] it has been pointed out that leaky modes have an influence on the absorptivity of core-shell structures composed of different materials. In our case, the refractive index difference between the core and the shell is small, therefore they do not play a major role (except for a minor optical effect as discussed before).

 

Fig. 3 Optical generation localization under different wavelength illumination. (a): 500 nm wavelength, the optical generation is localized in core nanowire. (b): 1040 nm wavelength, the optical generation is localized in shell nanowire. (c): Radial distribution of optical generation at 500 nm wavelength, generation localized in core nanowire. (d): Radial distribution of optical generation at 1040 nm wavelength, generation localized in shell nanowire.

Download Full Size | PPT Slide | PDF

By tuning the geometrical and material parameters, we are able to tailor our structure to approach an ideal absorber. Applying the detailed balance limit calculation for a dual-junction solar cell in each case, we select the optimum structure with the band gap of core wire being 1.52 eV, and the band gap of the shell wire being 0.94 eV. The normalized short circuit current density Jsc is 229.2 A/m2, and the open circuit voltage Voc is 1.92 V, the current-voltage relationship is shown in Fig. 4. The maximum cell efficiency is 39.1%.

 

Fig. 4 Current-voltage relationship of dual-diameter nanowire array solar cell evaluated by detailed balance limit calculation. For the output of dual-junction solar cell, Jsc is 229.2 A/m2, and Voc is 1.92 V. The maximum cell efficiency is 39.1%

Download Full Size | PPT Slide | PDF

The Shockley-Queisser limit of an ideal dual-junction absorber is around 44%, which means some improvement space is still left for this structure. This is due to the non-perfect optical absorption in the long wavelength part of the solar spectrum in the shell wire, and the decline of absorptivity near the bandgap in the short wavelength range within the core wire, which leads to a small part of short wavelength optical power leaking into the shell. Fine adjustments of geometrical parameters and material selection provide the possibility to enhance the device performance even further.

5. Conclusion

By adjusting the geometrical parameters, a dual-diameter nanowire array can be tailored to divide the optical absorption spectrum. Generally speaking, the small wavelength spectrum is absorbed in the core wire, which has a small diameter and large bandgap, and the long wavelength spectrum is absorbed in the shell wire, which has a large diameter and small bandgap. This is due to a combination of waveguide mode dispersion and top exposure of the large band gap material. The dual-diameter nanowire array is highly absorptive for both parts of the solar spectrum with an average optical absorptivity over 90%.

By optimizing the respective band profile, the optimum dual-junction solar cell structure is found to have Jsc of 229.2 A/m2, and Voc of 1.92 V, and provides a maximum efficiency of 39.1%. This structure can be further developed to a multi-diameter nanowire array. By shaping the structure to spatially and spectrally accommodate different requirements of absorption spectrum separation, it can be applied in the design of the multi-junction solar cell.

Acknowledgment

This work has been supported by European project AMON-RA.

References and links

1. L. Fraas and L. Partain, Solar cells and their applications (John Wiley & Sons, Inc., 2010). [CrossRef]  

2. M. A. Green, Third generation photovoltaics: advanced solar energy conversion (Springer, 2005).

3. P. Wuerfel, Physics of solar cells: from principles to new concepts (Wiley-VCH, 2005).

4. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nature Photon. 3, 569–576 (2009). [CrossRef]  

5. M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE. J. Sel. Top. Quant 17, 1050–1061 (2011). [CrossRef]  

6. J. Kupec and B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express 17, 10399–10410 (2009). [CrossRef]   [PubMed]  

7. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010). [CrossRef]   [PubMed]  

8. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007). [CrossRef]   [PubMed]  

9. Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82, 205328 (2010). [CrossRef]  

10. A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, and J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

11. H. Nguyen, Y. Chang, I. Shih, and Z. Mi, “InN p-i-n nanowire solar cells on Si,” IEEE. J. Sel. Top. Quant 17, 1062–1069 (2011). [CrossRef]  

12. H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapour phase epitaxy,” Appl. Phys. Expr. 2, 035004 (2009). [CrossRef]  

13. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007). [CrossRef]   [PubMed]  

14. L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002). [CrossRef]   [PubMed]  

15. S. Yu, J. Kupec, and B. Witzigmann, “Efficiency analysis of III–V axial and core-shell nanowire solar cells”, J Comput. Theor. Nanosci. 9, 688–695 (2012). [CrossRef]  

16. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010). [CrossRef]   [PubMed]  

17. J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18, 27589–27605 (2010). [CrossRef]  

18. N. Huang, C. Lin, and M. L. Povinelli, ”Limiting efficiencies of tandem solar cells consisting of III–V nanowire arrays on silicon,” J. Appl. Phys. 112, 064321 (2012). [CrossRef]  

19. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961). [CrossRef]  

20. E. D. Palik, Handbook of optical constants of solids (Academic Press, 1985).

21. Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett. 7, 3674–3681 (2012). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. L. Fraas, L. Partain, Solar cells and their applications (John Wiley & Sons, Inc., 2010).
    [CrossRef]
  2. M. A. Green, Third generation photovoltaics: advanced solar energy conversion (Springer, 2005).
  3. P. Wuerfel, Physics of solar cells: from principles to new concepts (Wiley-VCH, 2005).
  4. R. Yan, D. Gargas, P. Yang, “Nanowire photonics,” Nature Photon. 3, 569–576 (2009).
    [CrossRef]
  5. M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE. J. Sel. Top. Quant 17, 1050–1061 (2011).
    [CrossRef]
  6. J. Kupec, B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express 17, 10399–10410 (2009).
    [CrossRef] [PubMed]
  7. E. Garnett, P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
    [CrossRef] [PubMed]
  8. L. Hu, G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
    [CrossRef] [PubMed]
  9. Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82, 205328 (2010).
    [CrossRef]
  10. A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.
  11. H. Nguyen, Y. Chang, I. Shih, Z. Mi, “InN p-i-n nanowire solar cells on Si,” IEEE. J. Sel. Top. Quant 17, 1062–1069 (2011).
    [CrossRef]
  12. H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapour phase epitaxy,” Appl. Phys. Expr. 2, 035004 (2009).
    [CrossRef]
  13. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
    [CrossRef] [PubMed]
  14. L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002).
    [CrossRef] [PubMed]
  15. S. Yu, J. Kupec, B. Witzigmann, “Efficiency analysis of III–V axial and core-shell nanowire solar cells”, J Comput. Theor. Nanosci. 9, 688–695 (2012).
    [CrossRef]
  16. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
    [CrossRef] [PubMed]
  17. J. Kupec, R. L. Stoop, B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18, 27589–27605 (2010).
    [CrossRef]
  18. N. Huang, C. Lin, M. L. Povinelli, ”Limiting efficiencies of tandem solar cells consisting of III–V nanowire arrays on silicon,” J. Appl. Phys. 112, 064321 (2012).
    [CrossRef]
  19. W. Shockley, H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
    [CrossRef]
  20. E. D. Palik, Handbook of optical constants of solids (Academic Press, 1985).
  21. Y. Yu, V. E. Ferry, A. P. Alivisatos, L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett. 7, 3674–3681 (2012).
    [CrossRef]

2012 (3)

S. Yu, J. Kupec, B. Witzigmann, “Efficiency analysis of III–V axial and core-shell nanowire solar cells”, J Comput. Theor. Nanosci. 9, 688–695 (2012).
[CrossRef]

N. Huang, C. Lin, M. L. Povinelli, ”Limiting efficiencies of tandem solar cells consisting of III–V nanowire arrays on silicon,” J. Appl. Phys. 112, 064321 (2012).
[CrossRef]

Y. Yu, V. E. Ferry, A. P. Alivisatos, L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett. 7, 3674–3681 (2012).
[CrossRef]

2011 (2)

M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE. J. Sel. Top. Quant 17, 1050–1061 (2011).
[CrossRef]

H. Nguyen, Y. Chang, I. Shih, Z. Mi, “InN p-i-n nanowire solar cells on Si,” IEEE. J. Sel. Top. Quant 17, 1062–1069 (2011).
[CrossRef]

2010 (4)

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
[CrossRef] [PubMed]

E. Garnett, P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef] [PubMed]

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82, 205328 (2010).
[CrossRef]

J. Kupec, R. L. Stoop, B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18, 27589–27605 (2010).
[CrossRef]

2009 (3)

J. Kupec, B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express 17, 10399–10410 (2009).
[CrossRef] [PubMed]

R. Yan, D. Gargas, P. Yang, “Nanowire photonics,” Nature Photon. 3, 569–576 (2009).
[CrossRef]

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapour phase epitaxy,” Appl. Phys. Expr. 2, 035004 (2009).
[CrossRef]

2007 (2)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

L. Hu, G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

2002 (1)

L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002).
[CrossRef] [PubMed]

1961 (1)

W. Shockley, H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Alivisatos, A. P.

Y. Yu, V. E. Ferry, A. P. Alivisatos, L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett. 7, 3674–3681 (2012).
[CrossRef]

Borgstrom, M. T.

M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE. J. Sel. Top. Quant 17, 1050–1061 (2011).
[CrossRef]

Cao, L.

Y. Yu, V. E. Ferry, A. P. Alivisatos, L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett. 7, 3674–3681 (2012).
[CrossRef]

Chang, Y.

H. Nguyen, Y. Chang, I. Shih, Z. Mi, “InN p-i-n nanowire solar cells on Si,” IEEE. J. Sel. Top. Quant 17, 1062–1069 (2011).
[CrossRef]

Chen, G.

L. Hu, G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

Chueh, Y.-L.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
[CrossRef] [PubMed]

Cui, Y.

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

Deppert, K.

M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE. J. Sel. Top. Quant 17, 1050–1061 (2011).
[CrossRef]

Ema, K.

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82, 205328 (2010).
[CrossRef]

Falt, S.

M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE. J. Sel. Top. Quant 17, 1050–1061 (2011).
[CrossRef]

Fan, S.

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

Fan, Z.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
[CrossRef] [PubMed]

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Ferry, V. E.

Y. Yu, V. E. Ferry, A. P. Alivisatos, L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett. 7, 3674–3681 (2012).
[CrossRef]

Fraas, L.

L. Fraas, L. Partain, Solar cells and their applications (John Wiley & Sons, Inc., 2010).
[CrossRef]

Fukui, T.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapour phase epitaxy,” Appl. Phys. Expr. 2, 035004 (2009).
[CrossRef]

Gargas, D.

R. Yan, D. Gargas, P. Yang, “Nanowire photonics,” Nature Photon. 3, 569–576 (2009).
[CrossRef]

Garnett, E.

E. Garnett, P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef] [PubMed]

Goto, H.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapour phase epitaxy,” Appl. Phys. Expr. 2, 035004 (2009).
[CrossRef]

Green, M. A.

M. A. Green, Third generation photovoltaics: advanced solar energy conversion (Springer, 2005).

Gu, A.

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

Gudiksen, M. S.

L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002).
[CrossRef] [PubMed]

Hara, S.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapour phase epitaxy,” Appl. Phys. Expr. 2, 035004 (2009).
[CrossRef]

Harris, J.

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

Heurlin, M.

M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE. J. Sel. Top. Quant 17, 1050–1061 (2011).
[CrossRef]

Hiruma, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapour phase epitaxy,” Appl. Phys. Expr. 2, 035004 (2009).
[CrossRef]

Hu, L.

L. Hu, G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

Hu, S.

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Huang, N.

N. Huang, C. Lin, M. L. Povinelli, ”Limiting efficiencies of tandem solar cells consisting of III–V nanowire arrays on silicon,” J. Appl. Phys. 112, 064321 (2012).
[CrossRef]

Huo, Y.

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

Inose, Y.

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82, 205328 (2010).
[CrossRef]

Jamshidi, A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
[CrossRef] [PubMed]

Javey, A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
[CrossRef] [PubMed]

Kapadia, R.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
[CrossRef] [PubMed]

Kempa, T. J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Kikuchi, A.

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82, 205328 (2010).
[CrossRef]

Kishino, K.

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82, 205328 (2010).
[CrossRef]

Kupec, J.

Lauhon, L. J.

L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002).
[CrossRef] [PubMed]

Leene, J.

M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE. J. Sel. Top. Quant 17, 1050–1061 (2011).
[CrossRef]

Leu, P. W.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
[CrossRef] [PubMed]

Li, S.

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

Liang, D.

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

Lieber, C. M.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002).
[CrossRef] [PubMed]

Lin, A.

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

Lin, C.

N. Huang, C. Lin, M. L. Povinelli, ”Limiting efficiencies of tandem solar cells consisting of III–V nanowire arrays on silicon,” J. Appl. Phys. 112, 064321 (2012).
[CrossRef]

Magnusson, M. H.

M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE. J. Sel. Top. Quant 17, 1050–1061 (2011).
[CrossRef]

Mclntyre, P.

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

Mi, Z.

H. Nguyen, Y. Chang, I. Shih, Z. Mi, “InN p-i-n nanowire solar cells on Si,” IEEE. J. Sel. Top. Quant 17, 1062–1069 (2011).
[CrossRef]

Motohisa, J.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapour phase epitaxy,” Appl. Phys. Expr. 2, 035004 (2009).
[CrossRef]

Nguyen, H.

H. Nguyen, Y. Chang, I. Shih, Z. Mi, “InN p-i-n nanowire solar cells on Si,” IEEE. J. Sel. Top. Quant 17, 1062–1069 (2011).
[CrossRef]

Nosaki, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapour phase epitaxy,” Appl. Phys. Expr. 2, 035004 (2009).
[CrossRef]

Ohtsuki, T.

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82, 205328 (2010).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids (Academic Press, 1985).

Partain, L.

L. Fraas, L. Partain, Solar cells and their applications (John Wiley & Sons, Inc., 2010).
[CrossRef]

Pickett, E.

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

Povinelli, M. L.

N. Huang, C. Lin, M. L. Povinelli, ”Limiting efficiencies of tandem solar cells consisting of III–V nanowire arrays on silicon,” J. Appl. Phys. 112, 064321 (2012).
[CrossRef]

Queisser, H. J.

W. Shockley, H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Rathore, A. A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
[CrossRef] [PubMed]

Ruebusch, D. J.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
[CrossRef] [PubMed]

Sakai, M.

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82, 205328 (2010).
[CrossRef]

Samuelson, L.

M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE. J. Sel. Top. Quant 17, 1050–1061 (2011).
[CrossRef]

Sarmiento, T.

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

Shih, I.

H. Nguyen, Y. Chang, I. Shih, Z. Mi, “InN p-i-n nanowire solar cells on Si,” IEEE. J. Sel. Top. Quant 17, 1062–1069 (2011).
[CrossRef]

Shockley, W.

W. Shockley, H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Stoop, R. L.

Takei, K.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
[CrossRef] [PubMed]

Thombare, S.

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Tomioka, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapour phase epitaxy,” Appl. Phys. Expr. 2, 035004 (2009).
[CrossRef]

Wallentin, J.

M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE. J. Sel. Top. Quant 17, 1050–1061 (2011).
[CrossRef]

Wang, D.

L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002).
[CrossRef] [PubMed]

Wickert, P.

M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE. J. Sel. Top. Quant 17, 1050–1061 (2011).
[CrossRef]

Witzigmann, B.

Wu, M.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
[CrossRef] [PubMed]

Wuerfel, P.

P. Wuerfel, Physics of solar cells: from principles to new concepts (Wiley-VCH, 2005).

Yan, R.

R. Yan, D. Gargas, P. Yang, “Nanowire photonics,” Nature Photon. 3, 569–576 (2009).
[CrossRef]

Yang, P.

E. Garnett, P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef] [PubMed]

R. Yan, D. Gargas, P. Yang, “Nanowire photonics,” Nature Photon. 3, 569–576 (2009).
[CrossRef]

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Yu, K.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
[CrossRef] [PubMed]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Yu, S.

S. Yu, J. Kupec, B. Witzigmann, “Efficiency analysis of III–V axial and core-shell nanowire solar cells”, J Comput. Theor. Nanosci. 9, 688–695 (2012).
[CrossRef]

Yu, Y.

Y. Yu, V. E. Ferry, A. P. Alivisatos, L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett. 7, 3674–3681 (2012).
[CrossRef]

Yu, Z.

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

Zhang, X.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
[CrossRef] [PubMed]

Zheng, X.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Appl. Phys. Expr. (1)

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapour phase epitaxy,” Appl. Phys. Expr. 2, 035004 (2009).
[CrossRef]

IEEE. J. Sel. Top. Quant (2)

H. Nguyen, Y. Chang, I. Shih, Z. Mi, “InN p-i-n nanowire solar cells on Si,” IEEE. J. Sel. Top. Quant 17, 1062–1069 (2011).
[CrossRef]

M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE. J. Sel. Top. Quant 17, 1050–1061 (2011).
[CrossRef]

J Comput. Theor. Nanosci. (1)

S. Yu, J. Kupec, B. Witzigmann, “Efficiency analysis of III–V axial and core-shell nanowire solar cells”, J Comput. Theor. Nanosci. 9, 688–695 (2012).
[CrossRef]

J. Appl. Phys. (2)

N. Huang, C. Lin, M. L. Povinelli, ”Limiting efficiencies of tandem solar cells consisting of III–V nanowire arrays on silicon,” J. Appl. Phys. 112, 064321 (2012).
[CrossRef]

W. Shockley, H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Nano Lett. (4)

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010).
[CrossRef] [PubMed]

E. Garnett, P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef] [PubMed]

L. Hu, G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

Y. Yu, V. E. Ferry, A. P. Alivisatos, L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett. 7, 3674–3681 (2012).
[CrossRef]

Nature (2)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002).
[CrossRef] [PubMed]

Nature Photon. (1)

R. Yan, D. Gargas, P. Yang, “Nanowire photonics,” Nature Photon. 3, 569–576 (2009).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82, 205328 (2010).
[CrossRef]

Other (5)

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.

L. Fraas, L. Partain, Solar cells and their applications (John Wiley & Sons, Inc., 2010).
[CrossRef]

M. A. Green, Third generation photovoltaics: advanced solar energy conversion (Springer, 2005).

P. Wuerfel, Physics of solar cells: from principles to new concepts (Wiley-VCH, 2005).

E. D. Palik, Handbook of optical constants of solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dual-diameter nanowire array solar cell structure. Geometrical parameters are noted in the picture: a is the array pitch, d and D are the respective diameters of core and shell nanowire, h and H are the respective heights of core and shell nanowire. (a): Dual-diameter nanowire array. (b): Single wire structure: blue region is the core nanowire with a small diameter and a large bandgap (Eg_c), red region is the shell nanowire with a large diameter and a small band gap (Eg_s), yellow region is the substrate (Eg_sub). (c) Radially arranged dual-junction structure, the contacts for core and shell junctions are noted.

Fig. 2
Fig. 2

Normalized optical absorptivity of dual-diameter nanowire array solar cell. The short wavelength spectrum (λ <= 800 nm) is absorbed in the core nanowire with absorptivity above 90%. The long wavelength spectrum is absorbed in the shell nanowire. The band gap positions are noted with arrows in the figure.

Fig. 3
Fig. 3

Optical generation localization under different wavelength illumination. (a): 500 nm wavelength, the optical generation is localized in core nanowire. (b): 1040 nm wavelength, the optical generation is localized in shell nanowire. (c): Radial distribution of optical generation at 500 nm wavelength, generation localized in core nanowire. (d): Radial distribution of optical generation at 1040 nm wavelength, generation localized in shell nanowire.

Fig. 4
Fig. 4

Current-voltage relationship of dual-diameter nanowire array solar cell evaluated by detailed balance limit calculation. For the output of dual-junction solar cell, Jsc is 229.2 A/m2, and Voc is 1.92 V. The maximum cell efficiency is 39.1%

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

a ( r , λ ) = P abs ( r , λ ) / P A M 1.5 D ( λ )
g ( r , λ ) = a ( r , λ ) P A M 1.5 D ( λ ) λ / h c
I = I s c I 0 ( exp V / V c 1 )
V c = k B T c q
I s c = q Vol 0 g ( r , λ ) d r d λ

Metrics