Abstract

Three different types of polarization-sensitive perfect absorbers are designed and numerically investigated. The bottle-like and the cup-like absorbers are narrowband absorbers, which strongly absorb light of a specific polarization and reflect almost all light of another polarization. By varying the geometric parameters, their absorption peaks can be tuned from 1300 nm to 2300 nm and 700 nm to 1400 nm, respectively. The broadband absorber is polarization-sensitive as well, exhibiting an average absorption efficiency of 88% over a wide range of wavelength (700-2300 nm). The proposed absorbers may have potential applications in polarization detectors, polarizers etc.

© 2012 OSA

Errata

Lijun Meng, Ding Zhao, Qiang Li, and Min Qiu, "Polarization-sensitive perfect absorbers at near-infrared wavelengths: Erratum," Opt. Express 21, A229-A230 (2013)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-S2-A229

1. Introduction

From gigahertz to visible regime, metal surfaces are usually high efficient reflectors, which can be utilized as mirrors. However, micro or nanostructured surfaces may become high-efficiency absorbers, which have aroused significant interest and attracted tremendous theoretical and experimental studies over the past few years. Many metallic nanostructures with either polarization-insensitive or polarization-sensitive absorption have been proposed and some promising applications have been discussed [128].

At visible and near-infrared regime, for polarization-insensitive absorption, T. V. Teperik et al [1] showed that total omnidirectional absorption of light can be achieved using the mesoporous gold surfaces. N. Liu et al [2] experimentally investigated a wide-angle perfect absorber at 1600 nm and utilized it as plasmonic sensor for refractive index sensing. K. Aydin et al [3] proposed an absorber consisting of a metal-insulator-metal stack, where the top silver film is nanostructured into crossed trapezoidal arrays. The absorber yielded polarization-independent light absorption over the entire visible spectrum (400-700 nm), which has the potential to improve the efficiency of solar cells. V. G. Kravets et al [4] theoretically and experimentally studied a thin nanostructured layer with silver nanoparticles in a dielectric matrix, which possesses wide-angle, polarization-independent, and high absorption over a wide optical wavelength range (240-850 nm). In recent work, our group has also fabricated and characterized ultrathin, wide-angle, subwavelength high performance metamaterial absorbers around the near-infrared wavelength near 1550 nm [5,6]. Further, we studied the photothermal effects arising in the structures and considered utilizing it to reshape the gold nanoparticles [7, 8].

For polarization-sensitive absorption, A. Polyakov et al [9] experimentally demonstrated an array of rectangular trenches in gold to form a subwavelength grating, which can strongly concentrate the polarized incident light. The effect can be used for generation of laser harmonics or polarization switch. V. G. Kravets et al [10] designed and investigated composite deep metallic gratings, which strongly absorb the light with electric field perpendicular to the gratings, while behave as good reflectors for the other polarized light.

In this paper, three different types of metallic nanostructures are presented and numerically investigated. First, a bottle-like narrowband absorber is presented, originating from the gap plasmon resonance, whose resonant peak can be tuned from 1300 nm to 2300 nm. Then a cup-like narrowband absorber is discussed, which is simple to fabricate. Its resonant peak can also be varied through a broad spectral range from 700 nm to 1400 nm. Finally a broadband absorber is investigated, and numerical simulations show that the average absorption efficiency is over 88% from 700 nm to 2300 nm. All three absorbers are high-performance and polarization-sensitive at near-infrared range, so they can be used as polarization detectors or reflective polarizers to manipulate the polarization of electromagnetic wave [11].

2. Bottle-like narrowband absorber

A bottle-like absorber consists of an array of dielectric (SiO2) strips embedded in gold, with small air gaps on the top of the dielectric strips, as illustrated in Fig. 1(a) . Figure 1(b) shows the cross-section of a unit cell, where a and b represent, respectively, the width and the depth of the air gaps, d and c denote the width and the thickness of the dielectric strips, respectively, and w is the period. In our numerical simulations using the commercial software COMSOL MULTIPHYSICS based on finite element method, the refractive index of the dielectric is 1.5, the permittivity of gold is given by the Drude Model εAu=9ωp2/(ω2+iωγ) with the plasmon frequency ωp=2π×2.175×1015s1 and the collision frequency γ=2π×1.5958×1013s1 [7]. All materials are assumed to be nonmagnetic (μ=μ0).

 

Fig. 1 (a) Schematic of the bottle-like absorber, the yellow region is gold and blue regions are the dielectric. (b) Cross-section of a unit cell. The width and the depth of the air gap are represented by a and b, respectively. c and d represent the thickness and the width of the dielectric strip, respectively, and w is the period.

Download Full Size | PPT Slide | PDF

Gapped nanoparticles have been proved to be able to concentrate light and therefore cause electric field enhancement in the gap at resonant wavelength [2931]. In our absorber, the thin layers of gold on the dielectric strips are structured to form small air gaps. Assume that a p-polarized (electric field perpendicular to the gap) plane wave illuminates the structure at normal incidence. Here an optimized set of parameters for a perfect absorber with resonant wavelength near 1600 nm is used as a = 5 nm, b = 10 nm, c = 60 nm, d = 60 nm, and w = 600 nm. In the following simulations, if not particularly specified in the figure legends, the geometric parameters always keep constant. To investigate the relationship between the absorption spectra and the geometric parameters, the depth of the gap b, the width and the thickness of the dielectric strip d and c are, respectively, varied while the other parameters fixed. The results shown in Figs. 2(a) -2(c) demonstrate that resonant wavelength can be tuned over a very broad spectral range via varying the relevant parameters. The absorption is always above 97% for all different parameters. Figure 2(d) gives the absorbance for s-polarized normal incident light. Compared with the nearly total absorption under p-polarized light, the structure reflects almost all s-polarized light for the same wavelength range (average absorption is less than 1.8%), illustrating that it’s highly polarization-selective. Numerical simulations have also been carried out to extract the electric field distribution excited by the different polarized light radiation. We utilize a formula EIF=|E|2/|Einc|2 to describe the electric intensity enhancement [32], where Einc is the electric field of the incident wave and E is the total electric field. Under normal incidence at the resonant wavelength, comparison between the electric intensity enhancements under p- and s-polarized light radiations is shown in Fig. 3 to verify the effect. The values of electric intensity enhancements are plotted on log scale. Note that the lack of obvious enhancement for the s-polarized light radiation is in sharp contrast to the situation for the p-polarized.

 

Fig. 2 Dependence of absorption spectra on geometric parameters, if not particularly specified, a = 5 nm, b = 10 nm, c = 60 nm, d = 60 nm, w = 600 nm. (a)-(c) are for p-polarized light. (d) is for s- polarized light.

Download Full Size | PPT Slide | PDF

 

Fig. 3 Comparison between the electric intensity enhancements under (a) p-polarized light radiation and under (b) s-polarized light radiation at 1600 nm (plotted on log scale). Geometric parameters: a = 5 nm, b = 10 nm, c = 60 nm, d = 60 nm, and w = 600 nm.

Download Full Size | PPT Slide | PDF

In order to reveal the underlying physics of the relationship between the geometric parameters and the resonant wavelength, that is to answer why the resonant peaks can be tuned through varying the geometric parameters, further simulations were performed. Figure 4 shows the absorption efficiency and the electric intensity enhancement (plotted on log scale) in the center of the gap as functions of incident wavelength. It is clear that the resonant wavelength is achieved when the coupling strength is maximized. More numerical computations give similar results. Different sets of b, c, and d correspond to different resonant wavelength to maximize the electric field enhancement in the gap.

 

Fig. 4 Absorption and electric intensity enhancement (plotted on log scale) at the center of the air gap as functions of incident wavelengths under p-polarized light radiation. The geometric parameters are the same as those in Fig. 3.

Download Full Size | PPT Slide | PDF

We also utilized the effective medium theory to obtain the impendence Z and the refractive index n of the absorber [33]. As shown in Fig. 5 , both Z and n are complex numbers. At 1.6 μm (as predicted by the vertical dashed line), Z = 0.84 + 0.02i, which is close to that of the free space. Therefore the reflection is very low, since R(ω)=(Z(ω)1Z(ω)+1)2 [34]. Meanwhile, since n = 0.52 + 8.15i, the large imaginary part of refractive index gives rise to a high absorption.

 

Fig. 5 Retrieved impedance Z and refractive index n. The geometric parameters are the same as those in Fig. 3.

Download Full Size | PPT Slide | PDF

The absorption effect of this type of absorber is robust and highly polarization selective even for non-normal incident radiation. As shown in Fig. 6 , there is no obvious absorbance within the simulated wavelength region in the cases of E⊥Sxz and H⊥Syz. However, when the electric field is parallel to the xz plane, the structures strongly absorb the incident radiation at resonant wavelengths regardless of the incident planes. In the E⊥Syz case (incident plane is the yz plane), even if the angle is up to 65°, the absorption remains 80%. It is similar to H⊥Sxz case (incident plane is the xz plane), in which the absorption efficiency remains high while the oblique incident angle becomes very large.

 

Fig. 6 Absorbance as functions of wavelengths and incident angles. (a) E⊥Syz (b) H⊥Syz (c) E⊥Sxz (d) H⊥Sxz.

Download Full Size | PPT Slide | PDF

3. Cup-like narrowband absorber

Though the above type of structure possesses high performance and fine tunability, it’s fairly difficult to fabricate. Thus more simple structure is desirable in practice. For this purpose, another type of narrowband absorber is proposed.

As shown in Fig. 7(a) , the absorber is composed of an array of nanoscale grooves with a layer of dielectric on it. Figure 7(b) is its cross-section of a unit cell. The width and the depth of the grooves are represented by a and H, respectively. The thickness of the dielectric is denoted by d, and w is the period. When carefully designed, it can provide nearly total absorption at resonant wavelength resulting from the destructive interference between light reflected from the top surface and light from the bottom of the grooves. Furthermore, it is found that by adjusting the thickness of the deposited dielectric, resonant peaks can also be tuned. Figure 8 shows the dependence of the absorption spectra on the groove depth H and the thickness of the dielectric layer d with a = 20 nm, w = 600 nm under p-polarized (electric field perpendicular to the grooves) normal light radiation.

 

Fig. 7 (a) Schematic of the cup-like absorber, the yellow region is gold and blue regions are the dielectric. (b) Cross-section of a unit cell. a and H, respectively, represent the width and the depth of the grooves, d denote the thickness of the deposited dielectric, and w is the period.

Download Full Size | PPT Slide | PDF

 

Fig. 8 Dependence of absorption spectra on the geometric parameters under p-polarized light. Here a = 20 nm, and w = 600 nm.

Download Full Size | PPT Slide | PDF

As the depth of the grooves or the thickness of the dielectric layer increases, the absorption peaks are red-shifted. The structure still acts as a good reflector for s-polarized impinging light. Figure 9 shows the excited electric intensity enhancements under different polarized light radiation (plotted on log scale). In comparison with the significant field enhancement in the groove under p-polarized light, the structure can hardly concentrate s-polarized light. In the above simulations, the geometric parameters and the incident wavelength are the same as those corresponding to the first peak in Fig. 8(a). This type of absorber is also robust and highly polarization selective for non-normal radiation as well, which is verified by the Fig. 10 , here H = 100 nm and d = 90 nm. For either E⊥Syz or H⊥Sxz, the absorption remains over 85% when the incident angle is up to 50° at the main resonant wavelength around 1350 nm.

 

Fig. 9 Comparison between electric intensity enhancements under (a) p-polarized light radiation and under (b) s-polarized light radiation (plotted on log scale). Wavelength and geometric parameters correspond to the first peak in Fig. 8(a).

Download Full Size | PPT Slide | PDF

 

Fig. 10 Absorbance as functions of wavelengths and incident angles. (a) E⊥Syz (b) H⊥Syz (c) E⊥Sxz (d) H⊥Sxz. Here H = 100 nm, d = 90 nm.

Download Full Size | PPT Slide | PDF

Though the refractive index of the dielectric above is chosen to be 1.5, further numerical simulations show that for both the bottle-like and cup-like absorbers, absorption spectrum will redshift when the value of refractive index is increased, but the high absorption is kept unchanged.

It’s worth noting that the bottle-like absorber exhibits the tunable resonant peak ranging from 1300 nm to 2300 nm, while the cup-like absorber exhibits the tunable resonant peak ranging from 700 nm to 1400 nm, which theoretically implies that any polarized electromagnetic wave with wavelength ranging from 700 nm to 2300 nm can be perfectly absorbed using the designed absorbers.

4. Broadband absorber

In addition to the narrowband absorber, broadband absorber with high performance is also of importance. Here a broadband absorber is demonstrated, and an average absorption efficiency of 88% is achieved over a wide range of wavelengths (700-2300 nm) for p-polarized light.

In the inset of Fig. 11, (a) shows the 3D schematic, and (b) is the cross-section of the half of a unit cell. Blue regions are the dielectric. For better performance, the refractive index is chosen to be 1.75. Yellow region is gold. a = 100 nm, w = 80 nm, and H = 50 nm. In the simulations, half a unit cell consists of 40 grooves, i. e, the width of half a unit is 40 × a = 4000 nm and the depth of the deepest groove is 40 × H = 2000 nm. Note that, for visual convenience, we present only the simplified structure in the insert in Fig. 11, in which half of a unit cell consists of three grooves instead of 40 grooves. Figure 11 shows the absorption as a function of wavelengths under p-polarized light. An average absorption efficiency of 88% is achieved. It is highly polarization sensitive, reflecting more than 98% of incident s-polarized light.

 

Fig. 11 Absorption under p-polarized light. Average absorption efficiency is over 88%. Every half of a unit cell contains 40 grooves. In the Inset is the simplified structure. (a) is schematic of the broadband absorber, the yellow region is gold and blue regions are the dielectric. (b) is cross-section of half a unit cell. a = 100 nm, w = 80 nm, H = 50 nm.

Download Full Size | PPT Slide | PDF

Figure 12 shows the calculated impendence and refractive index using the effective medium theory. In the simulated wavelength range, Im(n) is always large and Zaverage=0.52+0.01i. Using the formula R(ω)=(Z(ω)1Z(ω)+1)2 [34], we obtain that the average reflectivity R(ω) is 9.8%. Since the transmission here is very low, so the absorption is approximately A(ω)=1R(ω). The obtained average absorption is thus 91%, which agrees well with the numerical result (88%).

 

Fig. 12 Retrieved impendence and refractive index in the simulated region.

Download Full Size | PPT Slide | PDF

Figure 13 presents the absorbance as functions of wavelengths and incident angles. In sharp contrast to the good reflection to the incident light for the H⊥Syz and E⊥Sxz cases, when electric field is parallel to the xz plane i.e. perpendicular to the grooves, the structure strongly absorbs the incident light over a wide angle range. When the incident angle is up to 60°, for the E⊥Syz case, the absorbance remains over 75%. For the H⊥Sxz case, a much higher absorption efficiency of 95% can be achieved.

 

Fig. 13 Absorbance as functions of wavelength and incident angle. (a) E⊥Syz (b) H⊥Syz (c) E⊥Sxz (d) H⊥Sxz.

Download Full Size | PPT Slide | PDF

5. Summary

In conclusion, we utilize the gap plasmon resonance to design the bottle-like absorber, where the resonant wavelength can be tuned over nearly one thousand nanometers via varying the embedded dielectric strip’s width, thickness or the depth of the gaps. Based on the destructive interference, we also propose the cup-like absorber, which is simple to fabricate. It’s found that just by depositing dielectrics with different thickness, the absorption peaks can be altered for a range of hundreds of nanometers. Finally, by combining grooves with different depths and carefully arranging its geometric and material parameters, a broadband absorber with an average absorption efficiency of 88% (700-2300 nm) is presented. All three structures are highly polarization selective, so they might have the potential to be used as polarization detectors or reflective polarizers at near-infrared wavelengths.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61275030, 61235007 and 61205030), the Opened Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks, the Opened Fund of State Key Laboratory on Integrated Optoelectronics, the Fundamental Research Funds for the Central Universities (2012QNA5003) and the Swedish Foundation for Strategic Research (SSF) and the Swedish Research Council (VR). We thank Xingxing Chen, Hanmo Gong, Weichun Zhang, and Hang Zhao for useful discussions.

References and links

1. T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008). [CrossRef]  

2. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef]   [PubMed]  

3. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011). [CrossRef]   [PubMed]  

4. V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010). [CrossRef]  

5. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010). [CrossRef]  

6. J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011). [CrossRef]  

7. J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, and M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011). [CrossRef]   [PubMed]  

8. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012). [CrossRef]   [PubMed]  

9. A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011). [CrossRef]  

10. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008). [CrossRef]  

11. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007). [CrossRef]   [PubMed]  

12. H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010). [CrossRef]  

13. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011). [CrossRef]   [PubMed]  

14. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011). [CrossRef]   [PubMed]  

15. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012). [CrossRef]   [PubMed]  

16. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010). [CrossRef]   [PubMed]  

17. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef]   [PubMed]  

18. D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010). [CrossRef]  

19. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011). [CrossRef]   [PubMed]  

20. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011). [CrossRef]   [PubMed]  

21. Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011). [CrossRef]   [PubMed]  

22. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011). [CrossRef]   [PubMed]  

23. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011). [CrossRef]  

24. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011). [CrossRef]   [PubMed]  

25. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009). [CrossRef]   [PubMed]  

26. E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008). [CrossRef]   [PubMed]  

27. C. Wu, Y. Avitzour, and G. Shvets, “Ultra-thin, wide-angle perfect absorber for infrared frequencies, “Proc. SPIE, Proceedings of Metamaterials: Fundamentals and Applications, San Diego, CA, August 10-14 (2008).

28. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008). [CrossRef]   [PubMed]  

29. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005). [CrossRef]  

30. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004). [CrossRef]  

31. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003). [CrossRef]  

32. S. W. Zhang, H. T. Liu, and G. G. Mu, “Electromagnetic enhancement by a single nano-groove in metallic substrate,” J. Opt. Soc. Am. A 27(7), 1555–1560 (2010). [CrossRef]   [PubMed]  

33. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002). [CrossRef]  

34. N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [CrossRef]
  2. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  3. K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
    [CrossRef] [PubMed]
  4. V. G. Kravets, S. Neubeck, A. N. Grigorenko, A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
    [CrossRef]
  5. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [CrossRef]
  6. J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
    [CrossRef]
  7. J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
    [CrossRef] [PubMed]
  8. X. Chen, Y. Chen, M. Yan, M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
    [CrossRef] [PubMed]
  9. A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
    [CrossRef]
  10. V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
    [CrossRef]
  11. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [CrossRef] [PubMed]
  12. H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
    [CrossRef]
  13. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [CrossRef] [PubMed]
  14. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
    [CrossRef] [PubMed]
  15. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
    [CrossRef] [PubMed]
  16. X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [CrossRef] [PubMed]
  17. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [CrossRef] [PubMed]
  18. D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
    [CrossRef]
  19. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [CrossRef] [PubMed]
  20. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [CrossRef] [PubMed]
  21. Y. Gong, X. Liu, H. Lu, L. Wang, G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
    [CrossRef] [PubMed]
  22. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
    [CrossRef] [PubMed]
  23. J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
    [CrossRef]
  24. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
    [CrossRef] [PubMed]
  25. C. Hu, Z. Zhao, X. Chen, X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009).
    [CrossRef] [PubMed]
  26. E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008).
    [CrossRef] [PubMed]
  27. C. Wu, Y. Avitzour, and G. Shvets, “Ultra-thin, wide-angle perfect absorber for infrared frequencies, “Proc. SPIE, Proceedings of Metamaterials: Fundamentals and Applications, San Diego, CA, August 10-14 (2008).
  28. J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
    [CrossRef] [PubMed]
  29. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
    [CrossRef]
  30. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
    [CrossRef]
  31. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
    [CrossRef]
  32. S. W. Zhang, H. T. Liu, G. G. Mu, “Electromagnetic enhancement by a single nano-groove in metallic substrate,” J. Opt. Soc. Am. A 27(7), 1555–1560 (2010).
    [CrossRef] [PubMed]
  33. D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [CrossRef]
  34. N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [CrossRef]

2012

2011

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[CrossRef] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[CrossRef] [PubMed]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
[CrossRef] [PubMed]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[CrossRef] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[CrossRef]

2010

V. G. Kravets, S. Neubeck, A. N. Grigorenko, A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

S. W. Zhang, H. T. Liu, G. G. Mu, “Electromagnetic enhancement by a single nano-groove in metallic substrate,” J. Opt. Soc. Am. A 27(7), 1555–1560 (2010).
[CrossRef] [PubMed]

2009

C. Hu, Z. Zhao, X. Chen, X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009).
[CrossRef] [PubMed]

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

2008

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

2007

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

2005

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

2004

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

2003

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

2002

D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Abdelsalam, M.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Averitt, R. D.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Azad, A. K.

D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Bartlett, P. N.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Bingham, C. M.

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Borisov, A. G.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Cabrini, S.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Chen, Q.

Chen, S.

Chen, X.

Chen, Y.

X. Chen, Y. Chen, M. Yan, M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

Crozier, K. B.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

Cui, T. J.

Cumming, D. R. S.

Derrick, G. H.

Dhuey, S.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Fan, K.

Fan, K. B.

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Feng, Q.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Fromm, D. P.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Garcia de Abajo, F. J.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Gong, Y.

Grant, J.

Grigorenko, A. N.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Hao, J.

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[CrossRef]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Hao, Q.

Harteneck, B.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Hu, C.

Huang, C.

Huang, T. J.

Hutley, M. C.

Iwaszczuk, K.

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Jepsen, P. U.

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Jiang, W. X.

Jokerst, N.

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Khalid, A.

Khoo, I. C.

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

Kiraly, B.

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Kravets, A. F.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

Kravets, V. G.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Landy, N. L.

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Le Perchec, J.

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Li, H.

Liu, H. T.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

López-Ríos, T.

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Lu, H.

Luo, X.

Ma, H. F.

Ma, Y.

Markos, P.

D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Maystre, D.

McPhedran, R. C.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Moerner, W. E.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Mu, G. G.

Neubeck, S.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

Nevière, M.

O'Hara, J. F.

D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Padmore, H. A.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

Pilon, D.

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Polyakov, A.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

Popov, E.

Pu, M.

Qiu, M.

X. Chen, Y. Chen, M. Yan, M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[CrossRef] [PubMed]

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[CrossRef]

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Saha, S. C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Schuck, P. J.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Schultz, S.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Shchegolkov, D. Y.

D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

Shen, X.

Shrekenhamer, D.

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Simakov, E. I.

D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

Smith, D. R.

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Strikwerda, A. C.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Su, K.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Sugawara, Y.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Sundaramurthy, A.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Tao, H.

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Teperik, T. V.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Wang, C.

Wang, G.

Wang, J.

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Wang, L.

Wang, M.

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Yan, M.

X. Chen, Y. Chen, M. Yan, M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Zhang, B.

Zhang, S. W.

Zhang, X.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Zhao, J.

Zhao, Y.

Zhao, Z.

Zhou, L.

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

ACS Nano

X. Chen, Y. Chen, M. Yan, M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Adv. Mater.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

J. Appl. Phys.

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D Appl. Phys.

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Nano Lett.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Nat Commun

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Nat. Photonics

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Opt. Express

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008).
[CrossRef] [PubMed]

C. Hu, Z. Zhao, X. Chen, X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009).
[CrossRef] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[CrossRef] [PubMed]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
[CrossRef] [PubMed]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[CrossRef] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[CrossRef] [PubMed]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[CrossRef]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Phys. Rev. Lett.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Other

C. Wu, Y. Avitzour, and G. Shvets, “Ultra-thin, wide-angle perfect absorber for infrared frequencies, “Proc. SPIE, Proceedings of Metamaterials: Fundamentals and Applications, San Diego, CA, August 10-14 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Schematic of the bottle-like absorber, the yellow region is gold and blue regions are the dielectric. (b) Cross-section of a unit cell. The width and the depth of the air gap are represented by a and b, respectively. c and d represent the thickness and the width of the dielectric strip, respectively, and w is the period.

Fig. 2
Fig. 2

Dependence of absorption spectra on geometric parameters, if not particularly specified, a = 5 nm, b = 10 nm, c = 60 nm, d = 60 nm, w = 600 nm. (a)-(c) are for p-polarized light. (d) is for s- polarized light.

Fig. 3
Fig. 3

Comparison between the electric intensity enhancements under (a) p-polarized light radiation and under (b) s-polarized light radiation at 1600 nm (plotted on log scale). Geometric parameters: a = 5 nm, b = 10 nm, c = 60 nm, d = 60 nm, and w = 600 nm.

Fig. 4
Fig. 4

Absorption and electric intensity enhancement (plotted on log scale) at the center of the air gap as functions of incident wavelengths under p-polarized light radiation. The geometric parameters are the same as those in Fig. 3.

Fig. 5
Fig. 5

Retrieved impedance Z and refractive index n. The geometric parameters are the same as those in Fig. 3.

Fig. 6
Fig. 6

Absorbance as functions of wavelengths and incident angles. (a) E⊥Syz (b) H⊥Syz (c) E⊥Sxz (d) H⊥Sxz.

Fig. 7
Fig. 7

(a) Schematic of the cup-like absorber, the yellow region is gold and blue regions are the dielectric. (b) Cross-section of a unit cell. a and H, respectively, represent the width and the depth of the grooves, d denote the thickness of the deposited dielectric, and w is the period.

Fig. 8
Fig. 8

Dependence of absorption spectra on the geometric parameters under p-polarized light. Here a = 20 nm, and w = 600 nm.

Fig. 9
Fig. 9

Comparison between electric intensity enhancements under (a) p-polarized light radiation and under (b) s-polarized light radiation (plotted on log scale). Wavelength and geometric parameters correspond to the first peak in Fig. 8(a).

Fig. 10
Fig. 10

Absorbance as functions of wavelengths and incident angles. (a) E⊥Syz (b) H⊥Syz (c) E⊥Sxz (d) H⊥Sxz. Here H = 100 nm, d = 90 nm.

Fig. 11
Fig. 11

Absorption under p-polarized light. Average absorption efficiency is over 88%. Every half of a unit cell contains 40 grooves. In the Inset is the simplified structure. (a) is schematic of the broadband absorber, the yellow region is gold and blue regions are the dielectric. (b) is cross-section of half a unit cell. a = 100 nm, w = 80 nm, H = 50 nm.

Fig. 12
Fig. 12

Retrieved impendence and refractive index in the simulated region.

Fig. 13
Fig. 13

Absorbance as functions of wavelength and incident angle. (a) E⊥Syz (b) H⊥Syz (c) E⊥Sxz (d) H⊥Sxz.

Metrics