Abstract

In single particle spectroscopy, the degree of observed fluorescence anti-bunching in a second-order cross correlation experiment is indicative of its bi-exciton quantum yield and whether or not a particle is well isolated. Advances in quantum dot synthesis have produced single particles with bi-exciton quantum yields approaching unity. Consequently, this creates uncertainty as to whether a particle has a high bi-exciton quantum yield or if it exists as a cluster. We report on a time-gated anti-bunching technique capable of determining the relative contributions of both multi-exciton emission and clustering effects. In this way, we can now unambiguously determine if a particle is single. Additionally, this time-gated anti-bunching approach provides an accurate way for the determination of bi-exciton lifetime with minimal contribution from higher order multi-exciton states.

© 2013 OSA

1. Introduction

The second-order photon cross correlation function, g(2)(τ), plays a critical role in characterizing the photon emission statistics of nanoscale light emitters including single molecules [13], quantum dots [4,5], carbon nanotubes [6], and diamond nanocrystals [79]. It is widely used to test the correlation of intensities on two different photon detectors in a Hanburry Brown and Twiss configuration [10]. In a pulsed laser experiment, it is well known that measuring a single quantum emitter will result in photon anti-bunching, which is signified by the disappearance of a peak at zero time delay. This arises from the fact that a single quantum emitter can only emit a single photon per excitation pulse, a property that is utilized in single molecule spectroscopy to prove the isolation of a single quantum emitter [113]. In fact, the area ratio between center peak and lateral or side peaks, R, has been used to determine the number of m identical emitters under illumination: R = (m-1)/m [1012].

In some emitters, such as quantum dots, optical generation of multi-excitons can lead to the emission of multiple photons in a single excitation cycle via a quantum cascade process [1416]. When the emission of these multi-excitons are not spectrally excluded in a g(2) measurement, they contribute to the zero time delay peak. Thus, it has been shown that for a single, well isolated, quantum dot in the low pump intensity limit, R is directly proportional to the ratio between the bi-exciton quantum yield, QBX, and single exciton quantum yield, QX i.e. R = QBX/QX [13,17].

Recently, much effort has been devoted to the study of nanocrystal quantum dots (NQDs) with large bi-exciton quantum yields [1719]. NQDs with high bi-exciton quantum yield are important for light amplification [20], multi-exciton generation [21,22], and photon pair source applications [23,24]. As QBX plays a critical role in understanding the relationship between NQD PL blinking [25,26] and the suppression of Auger recombination, determining QBX is an important part of this puzzle [17,18,2729].

Importantly, g(2) based QBX measurements hinge upon the complete isolation of individual NQDs. However, when the combined effects of both clustering and multi-exciton emission are considered together, the ratio R can be expressed as:

R=(m1)QX+QBXmQX.

Here we assume that all m NQDs are identical: having equal excitation probabilities and identical QX and QBX values. Therefore, when measuring large QBX values, or rather, R > 0.5, an independent measure of NQD isolation becomes necessary [30]. Independent verification of NQD isolation might include high-resolution techniques such as AFM, SEM, or TEM. However, such techniques have limited utility in that they require additional specialized instrumentation, they are time consuming, and it is difficult to perform these high resolution microscopies and single dot spectroscopy on the same set of NQDs. Most importantly, these techniques are not appropriate for many types of samples such as NQDs embedded in polymer films or biological tissues. In this regard, an all-optical approach capable of disentangling the contributions of clustering and multi-exciton emission is essential to interpret g(2) measurements without ambiguity.

We now demonstrate that the application of an appropriate time gate to a g(2) measurement allows for the separation of various factors contributing to R. Specifically, this technique allows for the determination of the extent of clustering (m), as well as the QBX/QX ratio. Furthermore, by conducting a detailed analysis on the decay functionality of R with respect to the gate delay time (GDT), we determine general conditions required for effective utilization of this approach. Analyzing this decay functionality also yields a method for determining lifetimes of bi-exciton states (τBX). Existing approaches for measuring τBX involve fitting PL decays measured as a function of pump power with multi-exponential functions [31,32]. In contrast, our approach requires fewer fitting parameters, and more importantly, allows for the determination of τBX at low pump powers, where contributions from higher order multi-excitons are minimal. In this regard, this approach could serve as a valuable tool in investigating technologically important multi-exciton processes in NQDs, such as optical amplification and multiple exciton generation.

2. Time-gating principle

Our approach exploits the fact that the bi-exciton emission always precedes single exciton emission. We selectively detect the photon emissions of the single excitons through the use of a time gate (only photons arriving within the gate time are analyzed) where the beginning of the gate (the gate delay time – GDT) is set to be much longer than the lifetime of bi-excitons. The g(2) function constructed out of these photons will be essentially void of all bi-exciton contributions, yielding the only the degree of clustering, with the familiar form of R:

limGDTRTG=(m1)m.

We use the subscript TG to denote that time-gating has been applied. With the ability to remove all bi-exciton contributions, we are able to determine if a NQD is in fact well isolated without ambiguity, even if it has a large bi-exciton quantum yield. Furthermore, we can apply the degree of clustering, m, found by Eq. (2) into Eq. (1) to obtain the average QBX of the NQDs in the cluster as: QBX=(RRTG)/(1RTG).

Time-gating is a feature available on many Single Photon Avalanche Photodiodes (SPADs) where a digital input signal enables photon detection for a given time window (Fig. 1 ). Thus, a hardware based time-gating approach is well-suited for a measurement where the goal is to identify single emitters. While this hardware implementation is simple, it requires a separate photon correlation experiment to acquire g(2) at different GDT values. Since such experiments are time consuming it becomes impossible to study RTG as a function GDT, a study required to validate this approach. For this reason, here we utilize a software-based time correlated single photon counting (TCSPC) approach. Specifically, we record the photon arrival times originating from multiple detectors with respect to both the start of the experiment (macro-time) and to a common excitation sync pulse (micro-time) as depicted in Fig. 1(c). This allows for the simultaneous collection of both the PL decay dynamics and g(2) function. Importantly, this approach allows for selective analysis of only photons that arrive after a certain time delay following the sync pulse, which enables the construction of a time gated g(2) function for any arbitrary GDT value.

 

Fig. 1 Schematic of TCSPC implementations. (a) TCSPC setup allowing for hardware-implemented time-gating. (b) TCSPC setup allowing for software-implemented time-gating. (c) Details of TCSPC calculations. Photon arrival times are indicated by red circles while laser pulses are denoted by blue stars. PL lifetimes are determined by histogramming t values. Time-gating is implemented by using only photons arriving within the time-gated region, depicted by the yellow boxes. The gate-delay time (GDT) is also indicated. Anti-bunching plots are built up by histogramming the time differences, ΔT, between photons arriving on opposing channels.

Download Full Size | PPT Slide | PDF

3. Results and discussion

We applied this software-based time-gating approach to CdSe/CdS core thick shell NQDs (a.k.a giant NQDs), which exhibit nonblinking PL with minimal residual intensity flickering [17,27,30,33]. In Fig. 2 , we display the PL decay dynamics, g(2) before the time gating, decay of RTG as the function of GDT, and g(2) after application of GDTs for two different giant-NQDs (g-NQDs). While the observation that R is > 0.5 in both g-NQDs suggests that these g-NQDs have very high QBX, this measurement alone cannot rule out the possibility of NQD clusters. However, the decay of RTG towards zero with the increase of GDT (Figs. 2(c) and 2(g)) and observation of near complete photon anti-bunching after time gating at 75 ns (Figs. 2(d) and 2(h)) provide clear evidence that these two NQDs are well isolated and R values in each case indeed provide a direct measure of the QBX.

 

Fig. 2 Single NQD data. Panels (a)-(d) and (e)-(h) correspond to different measurements/data sets. (a) PL lifetime from a single detector channel. Dash line: single exponential fit with time constant of 124 ns. (b) Standard g(2) plot before time-gating. R = 0.50 (c) Plot of RTG vs. GDT. Notice that the first 25 ns (before t = 0) are flat, this corresponds to the time before the sync pulse, due to the electronic delay in the system as is also seen in all lifetime plots. (d) g(2) plot after time gating has been applied (GDT = 75 ns, RTG(75) = 0.05). Note that most if this is due to cross-talk (sharp central spikes). (e) PL lifetime from a single detector channel. Dash line: double exponential fit with time constant of 23.7 and 110.5 ns. (f) Standard g(2) plot before time-gating. R = 0.73 (g) Plot of RTG as a function of GDT. (h) g(2) plot after time gating has been applied (GDT = 75 ns, RTG(7 5) = 0.13).

Download Full Size | PPT Slide | PDF

However, RTG values do not decay completely to zero as they should for single quantum emitters (cf. Figures 2(d) and 2(h)). Our analysis revealed that this residual value originates mainly from the sharp spike at zero time delay, which is composed of two peaks separated to one another by a time delay of ~30 ns. This doublet is the characteristic feature of cross-talk between the two SPADs of our HBT spectrometer. In general, several other factors such as the presence of dark-counts, background noise, and a pulse period that does not allow for complete NQD relaxation can also contribute to this residual value. The total contribution of these experimental artifacts together [1013] can add error in the range of 2%-10% in determination of center peak area in our measurement.

Figure 2 further shows that RTG for both g-NQDs decays exponentially with GDT (black dashed lines). While the RTG of the first g-NQD (Fig. 2(c)), decays with a time constant of 17.5 ns, that of the second g-NQD, which possesses a higher QBX value (0.73 compared to 0.5) requires a longer decay time of 32.4 ns. This slow decay of RTG demands longer GDT to reject all bi-exciton emission contributions in this measurement. The rate of decay of RTG as a function of GDT can be related to the lifetime or quantum yield of the bi-exciton state (i.e., τBX or QBX). We calculate that the decay should follow an exponential dependence:

RTG(GDT)=Re(GDTα)
1/α=1/τBX2/τX,
where τX is the lifetime of the single exciton. When it is assumed that the radiative decay rate of the bi-exciton scales up from that of the single exciton with an increase in the number of available recombination channels (i.e. ΓRad,BX = 4 ΓRad,X), we can express τBX in terms of the bi-exciton quantum yield and single-exciton lifetime asτBX=(τXQBX)/4. Now, RTG can be expressed in terms of the bi-exciton quantum yield and single-exciton lifetime as:
RTG(GDT)=Re(GDTβτX),
whereβ=QBX/(42QBX). From this expression, we can further derive that a gate delay time ofGDT=βτXln(100)is required to remove 99% of all bi-exciton contributions(RTG/R=0.01), meaning that g-NQDs with high QBX require exceedingly long GDT values to reject all bi-exciton contributions.

Additionally, our analysis of the decay of RTG provides another powerful way to extract the recombination time of bi-excitons. By substituting the value of τX and α attained from Figs. 2(a) and 2(c) in Eq. (5), we determine τBX = 13.4 ns. While this τBX value is extracted without requiring any assumptions, it is close to a 14.0 ns lifetime that can be calculated from τX = 112 ns and QBX = 0.5, assuming the statistical scaling of ΓRad,BX. The τBX value extracted for the second g-NQDs (Figs. 2(e)-(h) also exhibits a similar agreement: τBX = 22.9 ns as calculated using Eq. (5), vs. τBX = 28.5 ns as calculated from a statistical scaling model (τX = 156 ns and QBX = 0.73). Our time-gating experiment is performed at low pump power (i.e., the average exciton population per pulse (μ) is below 0.1). The nearly single exponential decay shown in Fig. 2(a) indicates that bi-exciton emission is minimal, yet we can extract τBX via RTG versus GDT data. In this way, our time-gated g(2) approach presents a better and more accurate measurement of τBX in single-particle studies, as this extracted τBX value is free of contributions from higher order multi-excitons [34].

Thus far, we have considered isolated NQDs and demonstrated the power of our approach in rejecting multi-excitonic contributions to g(2) measurements. However, the significance of our approach becomes even more evident when it is applied to a cluster of NQDs. In this case, our approach not only allows the extraction of the average QBX and τBX of NQDs in the cluster, it also provides some insight to the nature of clustering. Figure 3 provides a clear demonstration of this point.

 

Fig. 3 Single NQD data. (a) PL lifetime from a single detector channel. (b) Standard g(2) plot, no time gating (R = 0.73). (c) Plot of RTG vs. GDT. (d) g(2) plot after time gating has been applied (GDT = 75 ns, RTG(75) = 0.28).

Download Full Size | PPT Slide | PDF

The conventional g(2) measurement shown in Fig. 3(b) yields an R value of 0.73. While this value decays exponentially with GDT, the decay asymptotically approaches a value of 0.28. This provides clear evidence of clustering. A simple substitution of RTG and R to Eq. (1) and Eq. (2) gives a value of m = 1.39 NQDs with an average QBX value of 0.63. Furthermore, by including the effects of clustering in the analysis for the decay of the RTG, we extract the average τBX to be 6.2 ns.

Since a cluster of two identical dots will yield an RTG value approaching 0.5, the value found here of RTG = 0.28 (and thus m = 1.39) provides a clear indication that two (or more) non-identical dots are being examined. The cluster in this study could be composed of NQDs with unequal QX and/or unequal excitation probability. Specifically, for a cluster of 2 NQDs with equal excitation probability it can be shown that a difference in their QX value with a ratio of 1:0.2 can give rise to the RTG of 0.28. On the other hand, for 2 NQDs with identical QX, a difference in excitation probability with the same ratio is necessary. The excitation probability difference can arise from a scenario in which 2 identical NQDs are separated by some distance and are excited by laser spot with Gaussian intensity distribution.

4. Summary

In summary, we have demonstrated a new method to successfully discriminate between clusters of similar particles and well isolated single emitters with a high bi-exciton quantum yield. Notably, this method has added utility by providing a means for estimating the size of a cluster, even if it contains particles having high QBX values, without the need for spectral rejection of multi-excitonic spectral lines. It can also be used as a powerful tool to determine the bi-exciton lifetime of a single particle with much less influence from higher order multi-excitons. Recently a post photon selection approach, in which first and second photon detection events in a g(2) experiment are separated to extract the decay of BX is reported by Canneson et al. [33]. Although this approach can be considered as a more direct approach to extract BX decay, it is incapable of disentangling the contribution of multi-exciton emission and clustering in a g(2) experiment. Furthermore, in the case of a NQD exhibiting PL intensity fluctuations, our approach can be extended to extract QBX, τBX and the degree of clustering for different emissive levels of g-NQDs that are often associated with different charge exciton states [27]. Additionally, while we have focused on colloidal quantum dot samples in this letter, this technique should be widely applicable to virtually any type of sample where single-particle analysis is relevant.

5. Methods

5.1 Data collection

Quantum dots with 5.5 nm CdSe cores having nominally 15 monolayers of CdS grown using a SILAR method [35] were drop cast onto glass coverslips. Pulsed laser excitation (405 nm, 70 ps pulse-width) was used to elicit PL (centered at 650 nm) from the NQDs, which was detected by a pair of SPADs (Perkin Elmer, SPCM-AQR14) in a custom setup with a HBT detection scheme as described above. Photon arrivals were recorded with a HydraHarp 400 TCSPC module (PicoQuant). A 532 nm long pass filter was used to reject laser scatter and a 775 nm short pass filter was placed in front of each detector to minimize cross-talk. The laser power was reduced to ~200 pW and focused to a near diffraction limited spot (NA 1.3, 100x). Values for μ are estimated to be μ ~0.1.

5.2 Data analysis

Time-gating was applied by removing all photons from the data stream having micro-time (t) values less than GDT as depicted in Fig. 1. Subsequently, g(2) plots were created in the same fashion as is done without time gating: a histogram of time differences is created for photons arriving on different channels as depicted in Fig. 1(c).

Acknowledgments

This work was conducted at the Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy (DOE), Office of Science (OS), Office of Basic Energy Sciences (OBES) user facility and nanoscale science research center. B.D.M and H.H. acknowledge a Single-Investigator Small-Group Research Award (2009LANL1096), OBES, OS, U.S. DOE. Y.G. is supported by Los Alamos National Laboratory Directed Research and Development Funds. J.A.H. acknowledges NIH-NIGMS Grant 1R01GM084702-01.

References and links

1. F. Treussart, A. Clouqueur, C. Grossman, and J.-F. Roch, “Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film,” Opt. Lett. 26(19), 1504–1506 (2001). [CrossRef]   [PubMed]  

2. T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69(10), 1516–1519 (1992). [CrossRef]   [PubMed]  

3. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407(6803), 491–493 (2000). [CrossRef]   [PubMed]  

4. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000). [CrossRef]   [PubMed]  

5. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000). [CrossRef]   [PubMed]  

6. A. Högele, C. Galland, M. Winger, and A. Imamoğlu, “Photon antibunching in the photoluminescence spectra of a single carbon nanotube,” Phys. Rev. Lett. 100(21), 217401 (2008). [CrossRef]   [PubMed]  

7. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000). [CrossRef]   [PubMed]  

8. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64(6), 061802 (2001). [CrossRef]  

9. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25(17), 1294–1296 (2000). [CrossRef]   [PubMed]  

10. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques Chemical Physics (Springer, 2005).

11. P. Tinnefeld, C. Müller, and M. Sauer, “Time-varying photon probability distribution of individual molecules at room temperature,” Chem. Phys. Lett. 345(3-4), 252–258 (2001). [CrossRef]  

12. K. D. Weston, M. Dyck, P. Tinnefeld, C. Müller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem. 74(20), 5342–5349 (2002). [CrossRef]   [PubMed]  

13. G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano Lett. 11(3), 1136–1140 (2011). [CrossRef]   [PubMed]  

14. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum cascade of photons in semiconductor quantum dots,” Phys. Rev. Lett. 87(18), 183601 (2001). [CrossRef]  

15. E. Dekel, D. V. Regelman, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy,” Phys. Rev. B 62(16), 11038–11045 (2000). [CrossRef]  

16. B. Fisher, J. M. Caruge, D. Zehnder, and M. Bawendi, “Room-temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals,” Phys. Rev. Lett. 94(8), 087403 (2005). [CrossRef]   [PubMed]  

17. Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy,” Phys. Rev. Lett. 106(18), 187401 (2011). [CrossRef]   [PubMed]  

18. Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernée, P. Tamarat, and B. Lounis, “Efficient biexciton emission in elongated CdSe/ZnS nanocrystals,” Nano Lett. 11(10), 4370–4375 (2011). [CrossRef]   [PubMed]  

19. R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett. 102(19), 197401 (2009). [CrossRef]   [PubMed]  

20. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000). [CrossRef]   [PubMed]  

21. A. Shabaev, A. L. Efros, and A. J. Nozik, “Multiexciton generation by a single photon in nanocrystals,” Nano Lett. 6(12), 2856–2863 (2006). [CrossRef]   [PubMed]  

22. R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett. 92(18), 186601 (2004). [CrossRef]   [PubMed]  

23. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett. 103(21), 217402 (2009). [CrossRef]   [PubMed]  

24. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439(7073), 179–182 (2006). [CrossRef]   [PubMed]  

25. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383(6603), 802–804 (1996). [CrossRef]  

26. M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys. 112(7), 3117–3120 (2000). [CrossRef]  

27. C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479(7372), 203–207 (2011). [CrossRef]   [PubMed]  

28. S. Jander, A. Kornowski, and H. Weller, “Energy transfer from CdSe/CdS nanorods to amorphous carbon,” Nano Lett. 11(12), 5179–5183 (2011). [CrossRef]   [PubMed]  

29. J. Zhao, G. Nair, B. R. Fisher, and M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett. 104(15), 157403 (2010). [CrossRef]   [PubMed]  

30. Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc. 130(15), 5026–5027 (2008). [CrossRef]   [PubMed]  

31. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000). [CrossRef]   [PubMed]  

32. F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance,” Nano Lett. 9(10), 3482–3488 (2009). [CrossRef]   [PubMed]  

33. D. Canneson, I. Mallek-Zouari, S. Buil, X. Quelin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Enhancing the fluorescence of individual thick shell CdSe/CdS Nanocrystals by coupling to gold structures,” New J. Phys. 14(6), 063035 (2012). [CrossRef]  

34. Due to very high QBX, then second g-NQD shows a bi-exponential decay even at very low pump power. The fast time constant of the PL decay 23.78 ns is in good agreement with 22.9ns τBX extracted from the decay of RTG.”

35. Y. Ghosh, B. D. Mangum, J. L. Casson, D. J. Williams, H. Htoon, and J. A. Hollingsworth, “New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots,” J. Am. Chem. Soc. 134(23), 9634–9643 (2012). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. F. Treussart, A. Clouqueur, C. Grossman, and J.-F. Roch, “Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film,” Opt. Lett.26(19), 1504–1506 (2001).
    [CrossRef] [PubMed]
  2. T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett.69(10), 1516–1519 (1992).
    [CrossRef] [PubMed]
  3. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature407(6803), 491–493 (2000).
    [CrossRef] [PubMed]
  4. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290(5500), 2282–2285 (2000).
    [CrossRef] [PubMed]
  5. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature406(6799), 968–970 (2000).
    [CrossRef] [PubMed]
  6. A. Högele, C. Galland, M. Winger, and A. Imamoğlu, “Photon antibunching in the photoluminescence spectra of a single carbon nanotube,” Phys. Rev. Lett.100(21), 217401 (2008).
    [CrossRef] [PubMed]
  7. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85(2), 290–293 (2000).
    [CrossRef] [PubMed]
  8. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
    [CrossRef]
  9. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett.25(17), 1294–1296 (2000).
    [CrossRef] [PubMed]
  10. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques Chemical Physics (Springer, 2005).
  11. P. Tinnefeld, C. Müller, and M. Sauer, “Time-varying photon probability distribution of individual molecules at room temperature,” Chem. Phys. Lett.345(3-4), 252–258 (2001).
    [CrossRef]
  12. K. D. Weston, M. Dyck, P. Tinnefeld, C. Müller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem.74(20), 5342–5349 (2002).
    [CrossRef] [PubMed]
  13. G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano Lett.11(3), 1136–1140 (2011).
    [CrossRef] [PubMed]
  14. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum cascade of photons in semiconductor quantum dots,” Phys. Rev. Lett.87(18), 183601 (2001).
    [CrossRef]
  15. E. Dekel, D. V. Regelman, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy,” Phys. Rev. B62(16), 11038–11045 (2000).
    [CrossRef]
  16. B. Fisher, J. M. Caruge, D. Zehnder, and M. Bawendi, “Room-temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals,” Phys. Rev. Lett.94(8), 087403 (2005).
    [CrossRef] [PubMed]
  17. Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy,” Phys. Rev. Lett.106(18), 187401 (2011).
    [CrossRef] [PubMed]
  18. Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernée, P. Tamarat, and B. Lounis, “Efficient biexciton emission in elongated CdSe/ZnS nanocrystals,” Nano Lett.11(10), 4370–4375 (2011).
    [CrossRef] [PubMed]
  19. R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett.102(19), 197401 (2009).
    [CrossRef] [PubMed]
  20. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
    [CrossRef] [PubMed]
  21. A. Shabaev, A. L. Efros, and A. J. Nozik, “Multiexciton generation by a single photon in nanocrystals,” Nano Lett.6(12), 2856–2863 (2006).
    [CrossRef] [PubMed]
  22. R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett.92(18), 186601 (2004).
    [CrossRef] [PubMed]
  23. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103(21), 217402 (2009).
    [CrossRef] [PubMed]
  24. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature439(7073), 179–182 (2006).
    [CrossRef] [PubMed]
  25. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
    [CrossRef]
  26. M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys.112(7), 3117–3120 (2000).
    [CrossRef]
  27. C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature479(7372), 203–207 (2011).
    [CrossRef] [PubMed]
  28. S. Jander, A. Kornowski, and H. Weller, “Energy transfer from CdSe/CdS nanorods to amorphous carbon,” Nano Lett.11(12), 5179–5183 (2011).
    [CrossRef] [PubMed]
  29. J. Zhao, G. Nair, B. R. Fisher, and M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett.104(15), 157403 (2010).
    [CrossRef] [PubMed]
  30. Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc.130(15), 5026–5027 (2008).
    [CrossRef] [PubMed]
  31. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
    [CrossRef] [PubMed]
  32. F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance,” Nano Lett.9(10), 3482–3488 (2009).
    [CrossRef] [PubMed]
  33. D. Canneson, I. Mallek-Zouari, S. Buil, X. Quelin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Enhancing the fluorescence of individual thick shell CdSe/CdS Nanocrystals by coupling to gold structures,” New J. Phys.14(6), 063035 (2012).
    [CrossRef]
  34. Due to very high QBX, then second g-NQD shows a bi-exponential decay even at very low pump power. The fast time constant of the PL decay 23.78 ns is in good agreement with 22.9ns τBX extracted from the decay of RTG.”
  35. Y. Ghosh, B. D. Mangum, J. L. Casson, D. J. Williams, H. Htoon, and J. A. Hollingsworth, “New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots,” J. Am. Chem. Soc.134(23), 9634–9643 (2012).
    [CrossRef] [PubMed]

2012 (2)

D. Canneson, I. Mallek-Zouari, S. Buil, X. Quelin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Enhancing the fluorescence of individual thick shell CdSe/CdS Nanocrystals by coupling to gold structures,” New J. Phys.14(6), 063035 (2012).
[CrossRef]

Y. Ghosh, B. D. Mangum, J. L. Casson, D. J. Williams, H. Htoon, and J. A. Hollingsworth, “New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots,” J. Am. Chem. Soc.134(23), 9634–9643 (2012).
[CrossRef] [PubMed]

2011 (5)

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano Lett.11(3), 1136–1140 (2011).
[CrossRef] [PubMed]

Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy,” Phys. Rev. Lett.106(18), 187401 (2011).
[CrossRef] [PubMed]

Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernée, P. Tamarat, and B. Lounis, “Efficient biexciton emission in elongated CdSe/ZnS nanocrystals,” Nano Lett.11(10), 4370–4375 (2011).
[CrossRef] [PubMed]

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature479(7372), 203–207 (2011).
[CrossRef] [PubMed]

S. Jander, A. Kornowski, and H. Weller, “Energy transfer from CdSe/CdS nanorods to amorphous carbon,” Nano Lett.11(12), 5179–5183 (2011).
[CrossRef] [PubMed]

2010 (1)

J. Zhao, G. Nair, B. R. Fisher, and M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett.104(15), 157403 (2010).
[CrossRef] [PubMed]

2009 (3)

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103(21), 217402 (2009).
[CrossRef] [PubMed]

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett.102(19), 197401 (2009).
[CrossRef] [PubMed]

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance,” Nano Lett.9(10), 3482–3488 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Högele, C. Galland, M. Winger, and A. Imamoğlu, “Photon antibunching in the photoluminescence spectra of a single carbon nanotube,” Phys. Rev. Lett.100(21), 217401 (2008).
[CrossRef] [PubMed]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc.130(15), 5026–5027 (2008).
[CrossRef] [PubMed]

2006 (2)

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature439(7073), 179–182 (2006).
[CrossRef] [PubMed]

A. Shabaev, A. L. Efros, and A. J. Nozik, “Multiexciton generation by a single photon in nanocrystals,” Nano Lett.6(12), 2856–2863 (2006).
[CrossRef] [PubMed]

2005 (1)

B. Fisher, J. M. Caruge, D. Zehnder, and M. Bawendi, “Room-temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals,” Phys. Rev. Lett.94(8), 087403 (2005).
[CrossRef] [PubMed]

2004 (1)

R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett.92(18), 186601 (2004).
[CrossRef] [PubMed]

2002 (1)

K. D. Weston, M. Dyck, P. Tinnefeld, C. Müller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem.74(20), 5342–5349 (2002).
[CrossRef] [PubMed]

2001 (4)

P. Tinnefeld, C. Müller, and M. Sauer, “Time-varying photon probability distribution of individual molecules at room temperature,” Chem. Phys. Lett.345(3-4), 252–258 (2001).
[CrossRef]

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum cascade of photons in semiconductor quantum dots,” Phys. Rev. Lett.87(18), 183601 (2001).
[CrossRef]

F. Treussart, A. Clouqueur, C. Grossman, and J.-F. Roch, “Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film,” Opt. Lett.26(19), 1504–1506 (2001).
[CrossRef] [PubMed]

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
[CrossRef]

2000 (9)

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett.25(17), 1294–1296 (2000).
[CrossRef] [PubMed]

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys.112(7), 3117–3120 (2000).
[CrossRef]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85(2), 290–293 (2000).
[CrossRef] [PubMed]

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature407(6803), 491–493 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature406(6799), 968–970 (2000).
[CrossRef] [PubMed]

E. Dekel, D. V. Regelman, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy,” Phys. Rev. B62(16), 11038–11045 (2000).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

1996 (1)

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

1992 (1)

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett.69(10), 1516–1519 (1992).
[CrossRef] [PubMed]

Abram, I.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum cascade of photons in semiconductor quantum dots,” Phys. Rev. Lett.87(18), 183601 (2001).
[CrossRef]

Atkinson, P.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature439(7073), 179–182 (2006).
[CrossRef] [PubMed]

Basché, T.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett.69(10), 1516–1519 (1992).
[CrossRef] [PubMed]

Bawendi, M.

B. Fisher, J. M. Caruge, D. Zehnder, and M. Bawendi, “Room-temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals,” Phys. Rev. Lett.94(8), 087403 (2005).
[CrossRef] [PubMed]

Bawendi, M. G.

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano Lett.11(3), 1136–1140 (2011).
[CrossRef] [PubMed]

J. Zhao, G. Nair, B. R. Fisher, and M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett.104(15), 157403 (2010).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Beveratos, A.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
[CrossRef]

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett.25(17), 1294–1296 (2000).
[CrossRef] [PubMed]

Biadala, L.

Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernée, P. Tamarat, and B. Lounis, “Efficient biexciton emission in elongated CdSe/ZnS nanocrystals,” Nano Lett.11(10), 4370–4375 (2011).
[CrossRef] [PubMed]

Brouri, R.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
[CrossRef]

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett.25(17), 1294–1296 (2000).
[CrossRef] [PubMed]

Brus, L. E.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Buil, S.

D. Canneson, I. Mallek-Zouari, S. Buil, X. Quelin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Enhancing the fluorescence of individual thick shell CdSe/CdS Nanocrystals by coupling to gold structures,” New J. Phys.14(6), 063035 (2012).
[CrossRef]

Buratto, S. K.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Bussian, D. A.

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc.130(15), 5026–5027 (2008).
[CrossRef] [PubMed]

Canneson, D.

D. Canneson, I. Mallek-Zouari, S. Buil, X. Quelin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Enhancing the fluorescence of individual thick shell CdSe/CdS Nanocrystals by coupling to gold structures,” New J. Phys.14(6), 063035 (2012).
[CrossRef]

Carson, P. J.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Caruge, J. M.

B. Fisher, J. M. Caruge, D. Zehnder, and M. Bawendi, “Room-temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals,” Phys. Rev. Lett.94(8), 087403 (2005).
[CrossRef] [PubMed]

Casson, J. L.

Y. Ghosh, B. D. Mangum, J. L. Casson, D. J. Williams, H. Htoon, and J. A. Hollingsworth, “New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots,” J. Am. Chem. Soc.134(23), 9634–9643 (2012).
[CrossRef] [PubMed]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc.130(15), 5026–5027 (2008).
[CrossRef] [PubMed]

Chen, Y.

Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy,” Phys. Rev. Lett.106(18), 187401 (2011).
[CrossRef] [PubMed]

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance,” Nano Lett.9(10), 3482–3488 (2009).
[CrossRef] [PubMed]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc.130(15), 5026–5027 (2008).
[CrossRef] [PubMed]

Cheskis, D.

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett.102(19), 197401 (2009).
[CrossRef] [PubMed]

Clouqueur, A.

Cooper, K.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature439(7073), 179–182 (2006).
[CrossRef] [PubMed]

Dabbousi, B. O.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Dekel, E.

E. Dekel, D. V. Regelman, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy,” Phys. Rev. B62(16), 11038–11045 (2000).
[CrossRef]

Dubertret, B.

D. Canneson, I. Mallek-Zouari, S. Buil, X. Quelin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Enhancing the fluorescence of individual thick shell CdSe/CdS Nanocrystals by coupling to gold structures,” New J. Phys.14(6), 063035 (2012).
[CrossRef]

Dyck, M.

K. D. Weston, M. Dyck, P. Tinnefeld, C. Müller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem.74(20), 5342–5349 (2002).
[CrossRef] [PubMed]

Efros, A. L.

A. Shabaev, A. L. Efros, and A. J. Nozik, “Multiexciton generation by a single photon in nanocrystals,” Nano Lett.6(12), 2856–2863 (2006).
[CrossRef] [PubMed]

Ehrenfreund, E.

E. Dekel, D. V. Regelman, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy,” Phys. Rev. B62(16), 11038–11045 (2000).
[CrossRef]

Eisler, H.-J.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Fang, W.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103(21), 217402 (2009).
[CrossRef] [PubMed]

Fernée, M. J.

Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernée, P. Tamarat, and B. Lounis, “Efficient biexciton emission in elongated CdSe/ZnS nanocrystals,” Nano Lett.11(10), 4370–4375 (2011).
[CrossRef] [PubMed]

Fisher, B.

B. Fisher, J. M. Caruge, D. Zehnder, and M. Bawendi, “Room-temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals,” Phys. Rev. Lett.94(8), 087403 (2005).
[CrossRef] [PubMed]

Fisher, B. R.

J. Zhao, G. Nair, B. R. Fisher, and M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett.104(15), 157403 (2010).
[CrossRef] [PubMed]

Fromm, D. P.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys.112(7), 3117–3120 (2000).
[CrossRef]

Gacoin, T.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
[CrossRef]

Gallagher, A.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys.112(7), 3117–3120 (2000).
[CrossRef]

Galland, C.

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature479(7372), 203–207 (2011).
[CrossRef] [PubMed]

A. Högele, C. Galland, M. Winger, and A. Imamoğlu, “Photon antibunching in the photoluminescence spectra of a single carbon nanotube,” Phys. Rev. Lett.100(21), 217401 (2008).
[CrossRef] [PubMed]

García-Santamaría, F.

Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy,” Phys. Rev. Lett.106(18), 187401 (2011).
[CrossRef] [PubMed]

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance,” Nano Lett.9(10), 3482–3488 (2009).
[CrossRef] [PubMed]

Gérard, J. M.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum cascade of photons in semiconductor quantum dots,” Phys. Rev. Lett.87(18), 183601 (2001).
[CrossRef]

Gershoni, D.

E. Dekel, D. V. Regelman, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy,” Phys. Rev. B62(16), 11038–11045 (2000).
[CrossRef]

Ghosh, Y.

Y. Ghosh, B. D. Mangum, J. L. Casson, D. J. Williams, H. Htoon, and J. A. Hollingsworth, “New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots,” J. Am. Chem. Soc.134(23), 9634–9643 (2012).
[CrossRef] [PubMed]

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature479(7372), 203–207 (2011).
[CrossRef] [PubMed]

Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy,” Phys. Rev. Lett.106(18), 187401 (2011).
[CrossRef] [PubMed]

Grangier, P.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
[CrossRef]

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett.25(17), 1294–1296 (2000).
[CrossRef] [PubMed]

Grossman, C.

Hamann, H. F.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys.112(7), 3117–3120 (2000).
[CrossRef]

Harris, T. D.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Hermier, J.-P.

D. Canneson, I. Mallek-Zouari, S. Buil, X. Quelin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Enhancing the fluorescence of individual thick shell CdSe/CdS Nanocrystals by coupling to gold structures,” New J. Phys.14(6), 063035 (2012).
[CrossRef]

Herten, D. P.

K. D. Weston, M. Dyck, P. Tinnefeld, C. Müller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem.74(20), 5342–5349 (2002).
[CrossRef] [PubMed]

Högele, A.

A. Högele, C. Galland, M. Winger, and A. Imamoğlu, “Photon antibunching in the photoluminescence spectra of a single carbon nanotube,” Phys. Rev. Lett.100(21), 217401 (2008).
[CrossRef] [PubMed]

Hollingsworth, J. A.

Y. Ghosh, B. D. Mangum, J. L. Casson, D. J. Williams, H. Htoon, and J. A. Hollingsworth, “New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots,” J. Am. Chem. Soc.134(23), 9634–9643 (2012).
[CrossRef] [PubMed]

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature479(7372), 203–207 (2011).
[CrossRef] [PubMed]

Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy,” Phys. Rev. Lett.106(18), 187401 (2011).
[CrossRef] [PubMed]

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance,” Nano Lett.9(10), 3482–3488 (2009).
[CrossRef] [PubMed]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc.130(15), 5026–5027 (2008).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Htoon, H.

Y. Ghosh, B. D. Mangum, J. L. Casson, D. J. Williams, H. Htoon, and J. A. Hollingsworth, “New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots,” J. Am. Chem. Soc.134(23), 9634–9643 (2012).
[CrossRef] [PubMed]

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature479(7372), 203–207 (2011).
[CrossRef] [PubMed]

Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy,” Phys. Rev. Lett.106(18), 187401 (2011).
[CrossRef] [PubMed]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc.130(15), 5026–5027 (2008).
[CrossRef] [PubMed]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Imamoglu, A.

A. Högele, C. Galland, M. Winger, and A. Imamoğlu, “Photon antibunching in the photoluminescence spectra of a single carbon nanotube,” Phys. Rev. Lett.100(21), 217401 (2008).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Jander, S.

S. Jander, A. Kornowski, and H. Weller, “Energy transfer from CdSe/CdS nanorods to amorphous carbon,” Nano Lett.11(12), 5179–5183 (2011).
[CrossRef] [PubMed]

Javaux, C.

D. Canneson, I. Mallek-Zouari, S. Buil, X. Quelin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Enhancing the fluorescence of individual thick shell CdSe/CdS Nanocrystals by coupling to gold structures,” New J. Phys.14(6), 063035 (2012).
[CrossRef]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Klimov, V. I.

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature479(7372), 203–207 (2011).
[CrossRef] [PubMed]

Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy,” Phys. Rev. Lett.106(18), 187401 (2011).
[CrossRef] [PubMed]

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance,” Nano Lett.9(10), 3482–3488 (2009).
[CrossRef] [PubMed]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc.130(15), 5026–5027 (2008).
[CrossRef] [PubMed]

R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett.92(18), 186601 (2004).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

Kloper, V.

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett.102(19), 197401 (2009).
[CrossRef] [PubMed]

Kornowski, A.

S. Jander, A. Kornowski, and H. Weller, “Energy transfer from CdSe/CdS nanorods to amorphous carbon,” Nano Lett.11(12), 5179–5183 (2011).
[CrossRef] [PubMed]

Kroner, M.

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett.102(19), 197401 (2009).
[CrossRef] [PubMed]

Kuno, M.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys.112(7), 3117–3120 (2000).
[CrossRef]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85(2), 290–293 (2000).
[CrossRef] [PubMed]

Lawall, J.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103(21), 217402 (2009).
[CrossRef] [PubMed]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

Lifshitz, E.

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett.102(19), 197401 (2009).
[CrossRef] [PubMed]

Lounis, B.

Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernée, P. Tamarat, and B. Lounis, “Efficient biexciton emission in elongated CdSe/ZnS nanocrystals,” Nano Lett.11(10), 4370–4375 (2011).
[CrossRef] [PubMed]

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature407(6803), 491–493 (2000).
[CrossRef] [PubMed]

Louyer, Y.

Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernée, P. Tamarat, and B. Lounis, “Efficient biexciton emission in elongated CdSe/ZnS nanocrystals,” Nano Lett.11(10), 4370–4375 (2011).
[CrossRef] [PubMed]

Macklin, J. J.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Malko, A. V.

Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy,” Phys. Rev. Lett.106(18), 187401 (2011).
[CrossRef] [PubMed]

Mallek-Zouari, I.

D. Canneson, I. Mallek-Zouari, S. Buil, X. Quelin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Enhancing the fluorescence of individual thick shell CdSe/CdS Nanocrystals by coupling to gold structures,” New J. Phys.14(6), 063035 (2012).
[CrossRef]

Mangum, B. D.

Y. Ghosh, B. D. Mangum, J. L. Casson, D. J. Williams, H. Htoon, and J. A. Hollingsworth, “New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots,” J. Am. Chem. Soc.134(23), 9634–9643 (2012).
[CrossRef] [PubMed]

Manin, L.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum cascade of photons in semiconductor quantum dots,” Phys. Rev. Lett.87(18), 183601 (2001).
[CrossRef]

Mason, M. D.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85(2), 290–293 (2000).
[CrossRef] [PubMed]

McBranch, D. W.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Moerner, W. E.

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature407(6803), 491–493 (2000).
[CrossRef] [PubMed]

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett.69(10), 1516–1519 (1992).
[CrossRef] [PubMed]

Moreau, E.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum cascade of photons in semiconductor quantum dots,” Phys. Rev. Lett.87(18), 183601 (2001).
[CrossRef]

Muller, A.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103(21), 217402 (2009).
[CrossRef] [PubMed]

Müller, C.

K. D. Weston, M. Dyck, P. Tinnefeld, C. Müller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem.74(20), 5342–5349 (2002).
[CrossRef] [PubMed]

P. Tinnefeld, C. Müller, and M. Sauer, “Time-varying photon probability distribution of individual molecules at room temperature,” Chem. Phys. Lett.345(3-4), 252–258 (2001).
[CrossRef]

Nair, G.

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano Lett.11(3), 1136–1140 (2011).
[CrossRef] [PubMed]

J. Zhao, G. Nair, B. R. Fisher, and M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett.104(15), 157403 (2010).
[CrossRef] [PubMed]

Nesbitt, D. J.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys.112(7), 3117–3120 (2000).
[CrossRef]

Nirmal, M.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Nozik, A. J.

A. Shabaev, A. L. Efros, and A. J. Nozik, “Multiexciton generation by a single photon in nanocrystals,” Nano Lett.6(12), 2856–2863 (2006).
[CrossRef] [PubMed]

Orrit, M.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett.69(10), 1516–1519 (1992).
[CrossRef] [PubMed]

Osovsky, R.

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett.102(19), 197401 (2009).
[CrossRef] [PubMed]

Park, Y. S.

Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy,” Phys. Rev. Lett.106(18), 187401 (2011).
[CrossRef] [PubMed]

Petroff, P. M.

E. Dekel, D. V. Regelman, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy,” Phys. Rev. B62(16), 11038–11045 (2000).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Poizat, J.-P.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
[CrossRef]

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett.25(17), 1294–1296 (2000).
[CrossRef] [PubMed]

Quelin, X.

D. Canneson, I. Mallek-Zouari, S. Buil, X. Quelin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Enhancing the fluorescence of individual thick shell CdSe/CdS Nanocrystals by coupling to gold structures,” New J. Phys.14(6), 063035 (2012).
[CrossRef]

Regelman, D. V.

E. Dekel, D. V. Regelman, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy,” Phys. Rev. B62(16), 11038–11045 (2000).
[CrossRef]

Ritchie, D. A.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature439(7073), 179–182 (2006).
[CrossRef] [PubMed]

Robert, I.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum cascade of photons in semiconductor quantum dots,” Phys. Rev. Lett.87(18), 183601 (2001).
[CrossRef]

Roch, J.-F.

Sashchiuk, A.

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett.102(19), 197401 (2009).
[CrossRef] [PubMed]

Sauer, M.

K. D. Weston, M. Dyck, P. Tinnefeld, C. Müller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem.74(20), 5342–5349 (2002).
[CrossRef] [PubMed]

P. Tinnefeld, C. Müller, and M. Sauer, “Time-varying photon probability distribution of individual molecules at room temperature,” Chem. Phys. Lett.345(3-4), 252–258 (2001).
[CrossRef]

Schaller, R. D.

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance,” Nano Lett.9(10), 3482–3488 (2009).
[CrossRef] [PubMed]

R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett.92(18), 186601 (2004).
[CrossRef] [PubMed]

Schoenfeld, W. V.

E. Dekel, D. V. Regelman, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy,” Phys. Rev. B62(16), 11038–11045 (2000).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Shabaev, A.

A. Shabaev, A. L. Efros, and A. J. Nozik, “Multiexciton generation by a single photon in nanocrystals,” Nano Lett.6(12), 2856–2863 (2006).
[CrossRef] [PubMed]

Shields, A. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature439(7073), 179–182 (2006).
[CrossRef] [PubMed]

Solomon, G. S.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103(21), 217402 (2009).
[CrossRef] [PubMed]

Steinbrück, A.

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature479(7372), 203–207 (2011).
[CrossRef] [PubMed]

Stevenson, R. M.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature439(7073), 179–182 (2006).
[CrossRef] [PubMed]

Strouse, G. F.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Sykora, M.

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature479(7372), 203–207 (2011).
[CrossRef] [PubMed]

Talon, H.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett.69(10), 1516–1519 (1992).
[CrossRef] [PubMed]

Tamarat, P.

Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernée, P. Tamarat, and B. Lounis, “Efficient biexciton emission in elongated CdSe/ZnS nanocrystals,” Nano Lett.11(10), 4370–4375 (2011).
[CrossRef] [PubMed]

Thierry-Mieg, V.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum cascade of photons in semiconductor quantum dots,” Phys. Rev. Lett.87(18), 183601 (2001).
[CrossRef]

Tinnefeld, P.

K. D. Weston, M. Dyck, P. Tinnefeld, C. Müller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem.74(20), 5342–5349 (2002).
[CrossRef] [PubMed]

P. Tinnefeld, C. Müller, and M. Sauer, “Time-varying photon probability distribution of individual molecules at room temperature,” Chem. Phys. Lett.345(3-4), 252–258 (2001).
[CrossRef]

Trautman, J. K.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Trebbia, J. B.

Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernée, P. Tamarat, and B. Lounis, “Efficient biexciton emission in elongated CdSe/ZnS nanocrystals,” Nano Lett.11(10), 4370–4375 (2011).
[CrossRef] [PubMed]

Treussart, F.

Vela, J.

Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy,” Phys. Rev. Lett.106(18), 187401 (2011).
[CrossRef] [PubMed]

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance,” Nano Lett.9(10), 3482–3488 (2009).
[CrossRef] [PubMed]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc.130(15), 5026–5027 (2008).
[CrossRef] [PubMed]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85(2), 290–293 (2000).
[CrossRef] [PubMed]

Weller, H.

S. Jander, A. Kornowski, and H. Weller, “Energy transfer from CdSe/CdS nanorods to amorphous carbon,” Nano Lett.11(12), 5179–5183 (2011).
[CrossRef] [PubMed]

Werder, D. J.

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc.130(15), 5026–5027 (2008).
[CrossRef] [PubMed]

Weston, K. D.

K. D. Weston, M. Dyck, P. Tinnefeld, C. Müller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem.74(20), 5342–5349 (2002).
[CrossRef] [PubMed]

Williams, D. J.

Y. Ghosh, B. D. Mangum, J. L. Casson, D. J. Williams, H. Htoon, and J. A. Hollingsworth, “New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots,” J. Am. Chem. Soc.134(23), 9634–9643 (2012).
[CrossRef] [PubMed]

Winger, M.

A. Högele, C. Galland, M. Winger, and A. Imamoğlu, “Photon antibunching in the photoluminescence spectra of a single carbon nanotube,” Phys. Rev. Lett.100(21), 217401 (2008).
[CrossRef] [PubMed]

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Young, R. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature439(7073), 179–182 (2006).
[CrossRef] [PubMed]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85(2), 290–293 (2000).
[CrossRef] [PubMed]

Zehnder, D.

B. Fisher, J. M. Caruge, D. Zehnder, and M. Bawendi, “Room-temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals,” Phys. Rev. Lett.94(8), 087403 (2005).
[CrossRef] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Zhao, J.

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano Lett.11(3), 1136–1140 (2011).
[CrossRef] [PubMed]

J. Zhao, G. Nair, B. R. Fisher, and M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett.104(15), 157403 (2010).
[CrossRef] [PubMed]

Anal. Chem. (1)

K. D. Weston, M. Dyck, P. Tinnefeld, C. Müller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem.74(20), 5342–5349 (2002).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

P. Tinnefeld, C. Müller, and M. Sauer, “Time-varying photon probability distribution of individual molecules at room temperature,” Chem. Phys. Lett.345(3-4), 252–258 (2001).
[CrossRef]

J. Am. Chem. Soc. (2)

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc.130(15), 5026–5027 (2008).
[CrossRef] [PubMed]

Y. Ghosh, B. D. Mangum, J. L. Casson, D. J. Williams, H. Htoon, and J. A. Hollingsworth, “New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots,” J. Am. Chem. Soc.134(23), 9634–9643 (2012).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys.112(7), 3117–3120 (2000).
[CrossRef]

Nano Lett. (5)

S. Jander, A. Kornowski, and H. Weller, “Energy transfer from CdSe/CdS nanorods to amorphous carbon,” Nano Lett.11(12), 5179–5183 (2011).
[CrossRef] [PubMed]

A. Shabaev, A. L. Efros, and A. J. Nozik, “Multiexciton generation by a single photon in nanocrystals,” Nano Lett.6(12), 2856–2863 (2006).
[CrossRef] [PubMed]

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano Lett.11(3), 1136–1140 (2011).
[CrossRef] [PubMed]

Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernée, P. Tamarat, and B. Lounis, “Efficient biexciton emission in elongated CdSe/ZnS nanocrystals,” Nano Lett.11(10), 4370–4375 (2011).
[CrossRef] [PubMed]

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance,” Nano Lett.9(10), 3482–3488 (2009).
[CrossRef] [PubMed]

Nature (5)

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature407(6803), 491–493 (2000).
[CrossRef] [PubMed]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature406(6799), 968–970 (2000).
[CrossRef] [PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature439(7073), 179–182 (2006).
[CrossRef] [PubMed]

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature479(7372), 203–207 (2011).
[CrossRef] [PubMed]

New J. Phys. (1)

D. Canneson, I. Mallek-Zouari, S. Buil, X. Quelin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Enhancing the fluorescence of individual thick shell CdSe/CdS Nanocrystals by coupling to gold structures,” New J. Phys.14(6), 063035 (2012).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
[CrossRef]

Phys. Rev. B (1)

E. Dekel, D. V. Regelman, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy,” Phys. Rev. B62(16), 11038–11045 (2000).
[CrossRef]

Phys. Rev. Lett. (10)

B. Fisher, J. M. Caruge, D. Zehnder, and M. Bawendi, “Room-temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals,” Phys. Rev. Lett.94(8), 087403 (2005).
[CrossRef] [PubMed]

Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy,” Phys. Rev. Lett.106(18), 187401 (2011).
[CrossRef] [PubMed]

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett.102(19), 197401 (2009).
[CrossRef] [PubMed]

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum cascade of photons in semiconductor quantum dots,” Phys. Rev. Lett.87(18), 183601 (2001).
[CrossRef]

J. Zhao, G. Nair, B. R. Fisher, and M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett.104(15), 157403 (2010).
[CrossRef] [PubMed]

R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett.92(18), 186601 (2004).
[CrossRef] [PubMed]

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103(21), 217402 (2009).
[CrossRef] [PubMed]

A. Högele, C. Galland, M. Winger, and A. Imamoğlu, “Photon antibunching in the photoluminescence spectra of a single carbon nanotube,” Phys. Rev. Lett.100(21), 217401 (2008).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85(2), 290–293 (2000).
[CrossRef] [PubMed]

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett.69(10), 1516–1519 (1992).
[CrossRef] [PubMed]

Science (3)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Other (2)

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques Chemical Physics (Springer, 2005).

Due to very high QBX, then second g-NQD shows a bi-exponential decay even at very low pump power. The fast time constant of the PL decay 23.78 ns is in good agreement with 22.9ns τBX extracted from the decay of RTG.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of TCSPC implementations. (a) TCSPC setup allowing for hardware-implemented time-gating. (b) TCSPC setup allowing for software-implemented time-gating. (c) Details of TCSPC calculations. Photon arrival times are indicated by red circles while laser pulses are denoted by blue stars. PL lifetimes are determined by histogramming t values. Time-gating is implemented by using only photons arriving within the time-gated region, depicted by the yellow boxes. The gate-delay time (GDT) is also indicated. Anti-bunching plots are built up by histogramming the time differences, ΔT, between photons arriving on opposing channels.

Fig. 2
Fig. 2

Single NQD data. Panels (a)-(d) and (e)-(h) correspond to different measurements/data sets. (a) PL lifetime from a single detector channel. Dash line: single exponential fit with time constant of 124 ns. (b) Standard g(2) plot before time-gating. R = 0.50 (c) Plot of RTG vs. GDT. Notice that the first 25 ns (before t = 0) are flat, this corresponds to the time before the sync pulse, due to the electronic delay in the system as is also seen in all lifetime plots. (d) g(2) plot after time gating has been applied (GDT = 75 ns, RTG(75) = 0.05). Note that most if this is due to cross-talk (sharp central spikes). (e) PL lifetime from a single detector channel. Dash line: double exponential fit with time constant of 23.7 and 110.5 ns. (f) Standard g(2) plot before time-gating. R = 0.73 (g) Plot of RTG as a function of GDT. (h) g(2) plot after time gating has been applied (GDT = 75 ns, RTG(7 5) = 0.13).

Fig. 3
Fig. 3

Single NQD data. (a) PL lifetime from a single detector channel. (b) Standard g(2) plot, no time gating (R = 0.73). (c) Plot of RTG vs. GDT. (d) g(2) plot after time gating has been applied (GDT = 75 ns, RTG(75) = 0.28).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R= ( m1 ) Q X + Q BX m Q X .
lim GDT R TG = ( m1 ) m .
R TG ( GDT )=R e ( GDT α )
1/α =1/ τ BX 2/ τ X ,
R TG ( GDT )=R e ( GDT β τ X ) ,

Metrics