Abstract

We theoretically investigate the selective enhancement of high-harmonic generation (HHG) in a small spectral range when an orthogonal-polarized two-color laser field interacts with aligned O2 molecules. It is shown clearly that the enhanced narrow-bandwidth emission near the cutoff of the HHG spectrum can be effectively controlled by the molecular alignment angle, laser intensity and the relative phase of two-color laser fields. Furthermore, the strong dependence of narrow-bandwidth HHG on molecular alignment angle indicates that it encodes information about O2 molecular orbitals, so it may be an alternative method for reconstruction of O2 molecular orbitals.

© 2013 OSA

In recent decades, the advanced ultrafast laser technology opens the way for investigating high-order harmonic generation (HHG) in a strong field regime, which has great potential for applications in high-contrast X-ray microscopy, molecular tomography and etc [17]. In a broad range of fields such as biological imaging, nanolithography, and XUV interferometry, it is of great importance and necessary to precise control of central wavelength and bandwidth of HHG. Although the rapid development of optical coating in the XUV region makes it possible to filter out a specific spectral range in the plateau of the HHG spectra [8, 9], it is not the best method due to extra optical losses added on XUV emission, high cost and poor capacity of wavelength tunability. To solve these problems, a few all-optical methods [1013] have been proposed. Recently, some groups theoretically [1012] and experimentally [13] reported the generation of the narrow-bandwidth, wavelength-tunable coherent light sources via HHG by using waveform tailoring and control techniques. The driving laser field with a specific waveform, which is constructed by either parallel- or orthogonal-polarized two-color or multi-color laser fields, can effectively manipulate electron trajectories, leading to narrow-bandwidth HHG.

However, previous work selected atoms as target gases. To the best of our knowledge, up to now there are only few reports about narrow-bandwidth HHG from aligned molecules [14]. It is well known that when femtosecond laser pulses interact with molecules, a series of novel phenomena will take place during the process of HHG [1520]. Theoretically, the extended Lewenstein model [1523] and molecular orbital Ammosov-Delone-Krainov (MO-ADK) theory [2426] have been proposed. For molecular HHG, both ionization and recombination process record the information about orbital structures and symmetries of target molecules [2527], which open the prospect of imaging molecular orbitals [15, 26]. The background above motivates our investigation on narrow-bandwidth HHG from aligned molecules. In this work, we showed the generation of narrow-bandwidth, wavelength-tunable HHG from aligned O2 molecules by controlling both ionization and recombination processes with an orthogonal-polarized laser field. As compared to atom, molecular alignment angle is an additional parameter to control HHG. Meantime, the high sensitivity of narrow-bandwidth HHG to molecular alignment angles provides us a promising method to imaging molecular dynamics.

In the present work, we performed numerical simulations of HHG in the aligned O2 molecules using the extended Lewenstein model [18, 27] and MO-ADK theory [25, 26]. The driving laser field consisting of 800-nm, 6-fs pulse and 1750-nm, 8-fs pulse can be expressed as the following form:

Es=E1exp[2ln(2)t2/τ12]cos(ω1t)x+E2exp[2ln(2)t2/τ22]cos(ω2t+ϕ)y.
Here ωi and τi (i = 1, 2) denote angular frequency and pulse duration of two-color laser fields, respectively. We used the laser intensities, I1 = 1.5 × 1014 W/cm2 and I2 = 6.5 × 1013 W/cm2. The parameter ϕ is the relative phase of two laser fields, which has crucial influence on the nonlinear optical phenomena induced by few-cycle laser pulses [28]. As shown in previous works [11, 12, 29], because HHG is determined by the quantum-mechanical expectation value of dipole acceleration, the intensity of the nth harmonic can be obtained by calculating ωn4|dn|2, where ωn is the frequency of the generated high energy photon, and dn is the dipole matrix element for bound-free transitions [3, 1618, 30].

As described in previous work [16], the HHG yield is the highest when O2 molecules are aligned at about 45° from the polarization axis of driving laser field. Therefore we first choose the alignment angle θ = 45° with respect to the polarization direction of the 800-nm laser pulses (e.g., x-axis). In this case, we compared the HHG spectra in the y direction at the different relative phases ϕ of two-color laser fields. As shown in Fig. 1(a) , at ϕ = 65°, HHG spectrum shows a conventional plateau region, which covers an ultra-broad spectral range. However, at ϕ = 85°, HHG is selectively enhanced about one order of magnitude near the cutoff region, leading to an unexpected narrow-bandwidth emission. To give a clear demonstration and comparison, Fig. 1(b) depicts HHG spectra at two relative phases in a linear scale. Clearly, a narrow-bandwidth, centered at ~65 eV coherent emission with a clean background is obtained by selecting a proper relative phase. The bandwidth [full width at half maximum (FWHM)] of the narrow-bandwidth emission, which is estimated to be ~5 eV, is broader than that in previous reports [11, 12].

 

Fig. 1 (a) HHG spectra driven by the orthogonal-polarized two-color laser field at different relative phases. (b) Same as in Fig. 1(a) but in the linear scale.

Download Full Size | PPT Slide | PDF

In order to obtain a clear insight for the generation of narrow-bandwidth XUV radiation, time frequency analyses for y-component dipole moments are performed in both cases of ϕ = 65° and ϕ = 85°. As shown in Fig. 2(a) , at the relative phase ϕ = 65°, there are some electron trajectories that contribute to HHG in the plateau, but the trajectory around ~0.5 optical cycle is much stronger than the other ones, resulting in a broad supercontinuum spectrum with a weak modulation (See Fig. 1(a)). In contrast, when the relative phase of laser fields increases to ϕ = 85°, as indicated in Fig. 2(b), the strongest electron trajectory appeared at ϕ = 65° is well suppressed. Instead, a new trajectory with a comparable intensity appears near cutoff of HHG spectrum and covers a small spectral range from ~60 eV to ~70 eV, resulting in narrow-bandwidth XUV emission. To gain further understanding, we performed analyses of classical electron trajectories based on three-step model of HHG [22]. In Figs. 3(a) and 3(b), we compared ionization rate (gray filled area), photon energy (red dashed line) and minimum distance of the electron from its parent ion when it is driven back (black solid line) at ϕ = 65° and ϕ = 85°. According to time frequency analyses, we can know that the electron born around t0 which is indicated by red dot in Fig. 3(b) mainly contributes to the narrow-bandwidth HHG. Clearly, around t0, he minimum distance of the electron from the molecular ion at ϕ = 85° is much smaller than that at ϕ = 65°, so that the electron still has a probability to recombine with its parent ion due to the spreading of the electron wave packet [31]. This can be further proved by classical trajectories as displayed in Fig. 3(c) and 3(d). Furthermore, it is noteworthy that the electrons born around t0, as indicated by blue dotted lines, obtain almost the same kinetic energy. The coherent superposition of multiple electron trajectories results in effective enhancement of HHG in the spectral range around cutoff. In contrast, at ϕ = 65°, the minimum distance between the electron and it parent ion increases with the increase of photon energy, leading to reduced HHG in high-energy region of HHG. In addition, electron trajectories do not overlap, so enhanced HHG cannot be observed. The analyses above indicate that the selectively enhanced narrow-bandwidth HHG is a result of coherent manipulation of electron trajectories by orthogonal-polarized two-color laser fields.

 

Fig. 2 Time-frequency analyses for y-component dipole moments corresponding to HHG spectra of Fig. 1 at (a) ϕ = 65° and (b) ϕ = 85°.

Download Full Size | PPT Slide | PDF

 

Fig. 3 The minimum distance of electron from its parent ion (black solid curve), photon energy (red dashed curve) and ionization rate (gray filled area) as a function of birth time at (a) ϕ = 65° and (b) ϕ = 85°. 2D classical trajectories for the electrons ionized at t0 for (c) ϕ = 65° and (d) ϕ = 85°. Initial position of the electron is indicated by red dots in all figures.

Download Full Size | PPT Slide | PDF

Next, we investigate the influences of intensities of two-color laser fields on the enhanced narrow-bandwidth HHG spectra when the molecular alignment angle and the relative phase are fixed at 45° and 85°, respectively. As shown in Fig. 4(a) , the narrow-bandwidth HHG spectra almost remain unchanged with the increase or decrease of the intensity of 800 nm laser field (I1). That is to say, the intensity fluctuation of 800 nm pulses hardly affects the narrow-bandwidth XUV emission. In contrast, the narrow-bandwidth HHG is sensitive to the intensity of 1750 nm pulses (I2). As indicated in Fig. 4(b), when I2 is increased to 12.5 × 1013 W/cm2 from 4.5 × 1013 W/cm2, the central photon energy of the enhanced narrow-bandwidth radiation will gradually shift from ~50 eV to ~110 eV, while its intensity gradually decreases. Therefore, we can easily tune the central wavelength of narrow-bandwidth XUV emission by adjusting the intensity of the 1750 nm laser field.

 

Fig. 4 HHG spectra (a) at different intensities of 800 nm pulses and (b) at different intensities of 1750 nm pulses.

Download Full Size | PPT Slide | PDF

As mentioned above, narrow-bandwidth HHG is coherent superposition of multiple electron trajectories. Therefore, it is independent of target gases. When the atom (Xe) is used in our numerical simulation, the enhanced narrow-bandwidth emission can also be obtained. But in O2 molecular medium, we can investigate the alignment dependence of the narrow-bandwidth HHG. As we know, the molecular alignment angle θ plays an important role in HHG. It is also an additional parameter to affect the enhanced narrow-bandwidth emission as compared to atoms. Numerical simulation demonstrates that the enhanced narrow-bandwidth emission can only be effectively generated in the range of alignment angles from 25° to 65°. At different alignment angles, the central wavelength of the narrow-bandwidth HHG slightly shifts, so we average HHG spectra from 64.2 eV to 65.6 eV covering narrow-bandwidth emissions at each alignment angle. The calculated result is shown in Fig. 5 . Clearly, at θ≈45°, it is the most beneficial for obtaining the narrow-bandwidth HHG with a high intensity and a clean background. When the alignment angle deviates from 45°, the narrow-bandwidth emission is less enhanced. This is due to that ionization of O2 molecules critically depends on molecular alignment angles. As indicated in [16, 17], the ionization rate of O2 molecules is maximum at θ≈45°, which is in good agreement with the peak value of Fig. 5. Therefore, the alignment dependence of the narrow-bandwidth emission records the information of O2 molecular orbitals.

 

Fig. 5 The peak intensity of narrow-bandwidth HHG spectra as a function of molecular alignment angles.

Download Full Size | PPT Slide | PDF

To be concluded, we theoretically investigated narrow-bandwidth HHG from aligned O2 molecules by manipulating electron trajectories with an orthogonal-polarized two-color laser field. It is found that the central wavelength can be effectively tuned in a broad spectral range by changing the intensity of the ~1750 nm laser field. In addition, the enhanced narrow-bandwidth emission is highly sensitive to molecular alignment angles. An intense, background-free narrow-bandwidth HHG spectrum is obtained when the alignment angle is at ~45°, which corresponds to the highest ionization rate of highest occupied orbital of O2 molecules. Therefore, this technique not only has important applications in X-ray microscopy and molecular tomography, but also may provide us an alternative method for extracting the information of O2 molecular orbitals.

Acknowledgments

The work is supported by National Basic Research Program of China (Grant No. 2011CB808102), National Natural Science Foundation of China (Grants No. 11134010, No. 60825406, No. 61008061, No. 11204332, No. 11274220, and No. 11104236), and the Priority Academic Program Development of Jiangsu Higher Education Institutions. C. Zhang gratefully acknowledges the support of K.C.Wong Education Foundation, Qing Lan Project of Jiangsu Province, China and Shanghai Postdoctoral Science Foundation Funded Project (2012M511145 and 12R21416700).

References and links

1. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009). [CrossRef]  

2. J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011). [CrossRef]  

3. Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98(20), 203901 (2007). [CrossRef]   [PubMed]  

4. Y. Zheng, Z. Zeng, P. Zou, L. Zhang, X. Li, P. Liu, R. Li, and Z. Xu, “Dynamic chirp control and pulse compression for attosecond high-order harmonic emission,” Phys. Rev. Lett. 103(4), 043904 (2009). [CrossRef]   [PubMed]  

5. C. Zhang, J. Yao, and J. Ni, “Generation of isolated attosecond pulses of sub-atomic-time durations with multi-cycle chirped polarization gating pulses,” Opt. Express 20(22), 24642–24649 (2012). [CrossRef]   [PubMed]  

6. J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010). [CrossRef]  

7. W. Yang, X. Song, Z. Zeng, R. Li, and Z. Xu, “Quantum path interferences of electron trajectories in two-center molecules,” Opt. Express 18(3), 2558–2565 (2010). [CrossRef]   [PubMed]  

8. L. B. D. Silva, T. W. Barbee Jr, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

9. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16(19), 1463–1465 (1991). [CrossRef]   [PubMed]  

10. Z. Zeng, Y. Cheng, Y. Fu, X. Song, R. Li, and Z. Xu, “Tunable high-order harmonic generation and the role of the folded quantum path,” Phys. Rev. A 77(2), 023416 (2008). [CrossRef]  

11. C. Zhang, J. Yao, J. Ni, G. Li, Y. Cheng, and Z. Xu, “Control of bandwidth and central wavelength of an enhanced extreme ultraviolet spectrum generated in shaped laser field,” Opt. Express 20(15), 16544–16551 (2012). [CrossRef]  

12. J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011). [CrossRef]  

13. E. Mansten, J. M. Dahlström, P. Johnsson, M. Swoboda, A. L’Huillier, and J. Mauritsson, “Spectral shaping of attosecond pulses using two-color laser fields,” New J. Phys. 10(8), 083041 (2008). [CrossRef]  

14. M. Yu. Emelin, M. Yu. Ryabikin, and A. M. Sergeev, “Frequency tunable single attosecond pulse production from aligned diatomic molecules ionized by intense laser field,” Opt. Express 18(3), 2269–2278 (2010). [CrossRef]   [PubMed]  

15. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004). [CrossRef]   [PubMed]  

16. X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Role of molecular orbital symmetry on the alignment dependence of high-order harmonic generation with molecules,” Phys. Rev. A 71(6), 061801 (2005). [CrossRef]  

17. B. Shan, X. Tong, Z. Zhao, Z. Chang, and C. D. Lin, “High-order harmonic cutoff extension of the O2 molecule due to ionization suppression,” Phys. Rev. A 66(6), 061401 (2002). [CrossRef]  

18. Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009). [CrossRef]  

19. X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Alignment dependence of high-order harmonic generation from N2 and O2 molecules in intense laser fields,” Phys. Rev. A 72(3), 033412 (2005). [CrossRef]  

20. J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Controlling high harmonic generation with molecular wave packets,” Phys. Rev. Lett. 94(12), 123902 (2005). [CrossRef]   [PubMed]  

21. M. Lewenstein, Ph. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994). [CrossRef]   [PubMed]  

22. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993). [CrossRef]   [PubMed]  

23. D. Pavicić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, “Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields,” Phys. Rev. Lett. 98(24), 243001 (2007). [CrossRef]   [PubMed]  

24. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions by an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

25. X. Tong, Z. Zhao, and C. D. Lin, “Theory of molecular tunneling ionization,” Phys. Rev. A 66(3), 033402 (2002). [CrossRef]  

26. Z. Zhao, X. Tong, and C. D. Lin, “Alignment-dependent ionization probability of molecules in a double-pulse laser field,” Phys. Rev. A 67(4), 043404 (2003). [CrossRef]  

27. A. Le, X. Tong, and C. D. Lin, “Evidence of two-center interference in high-order harmonic generation from CO2,” Phys. Rev. A 73(4), 041402 (2006). [CrossRef]  

28. W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett. 99(13), 133602 (2007). [CrossRef]   [PubMed]  

29. M. Y. Ivanov, T. Brabec, and N. Burnett, “Coulomb corrections and polarization effects in high-intensity high-harmonic emission,” Phys. Rev. A 54(1), 742–745 (1996). [CrossRef]   [PubMed]  

30. X. Song, Z. Zeng, Y. Fu, B. Cai, R. Li, Y. Cheng, and Z. Xu, “Quantum path control in few-optical-cycle regime,” Phys. Rev. A 76(4), 043830 (2007). [CrossRef]  

31. Y. Yu, X. Song, Y. Fu, R. Li, Y. Cheng, and Z. Xu, “Theoretical investigation of single attosecond pulse generation in an orthogonally polarized two-color laser field,” Opt. Express 16(2), 686–694 (2008). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [Crossref]
  2. J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
    [Crossref]
  3. Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98(20), 203901 (2007).
    [Crossref] [PubMed]
  4. Y. Zheng, Z. Zeng, P. Zou, L. Zhang, X. Li, P. Liu, R. Li, and Z. Xu, “Dynamic chirp control and pulse compression for attosecond high-order harmonic emission,” Phys. Rev. Lett. 103(4), 043904 (2009).
    [Crossref] [PubMed]
  5. C. Zhang, J. Yao, and J. Ni, “Generation of isolated attosecond pulses of sub-atomic-time durations with multi-cycle chirped polarization gating pulses,” Opt. Express 20(22), 24642–24649 (2012).
    [Crossref] [PubMed]
  6. J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
    [Crossref]
  7. W. Yang, X. Song, Z. Zeng, R. Li, and Z. Xu, “Quantum path interferences of electron trajectories in two-center molecules,” Opt. Express 18(3), 2558–2565 (2010).
    [Crossref] [PubMed]
  8. L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).
  9. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16(19), 1463–1465 (1991).
    [Crossref] [PubMed]
  10. Z. Zeng, Y. Cheng, Y. Fu, X. Song, R. Li, and Z. Xu, “Tunable high-order harmonic generation and the role of the folded quantum path,” Phys. Rev. A 77(2), 023416 (2008).
    [Crossref]
  11. C. Zhang, J. Yao, J. Ni, G. Li, Y. Cheng, and Z. Xu, “Control of bandwidth and central wavelength of an enhanced extreme ultraviolet spectrum generated in shaped laser field,” Opt. Express 20(15), 16544–16551 (2012).
    [Crossref]
  12. J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011).
    [Crossref]
  13. E. Mansten, J. M. Dahlström, P. Johnsson, M. Swoboda, A. L’Huillier, and J. Mauritsson, “Spectral shaping of attosecond pulses using two-color laser fields,” New J. Phys. 10(8), 083041 (2008).
    [Crossref]
  14. M. Yu. Emelin, M. Yu. Ryabikin, and A. M. Sergeev, “Frequency tunable single attosecond pulse production from aligned diatomic molecules ionized by intense laser field,” Opt. Express 18(3), 2269–2278 (2010).
    [Crossref] [PubMed]
  15. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
    [Crossref] [PubMed]
  16. X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Role of molecular orbital symmetry on the alignment dependence of high-order harmonic generation with molecules,” Phys. Rev. A 71(6), 061801 (2005).
    [Crossref]
  17. B. Shan, X. Tong, Z. Zhao, Z. Chang, and C. D. Lin, “High-order harmonic cutoff extension of the O2 molecule due to ionization suppression,” Phys. Rev. A 66(6), 061401 (2002).
    [Crossref]
  18. Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009).
    [Crossref]
  19. X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Alignment dependence of high-order harmonic generation from N2 and O2 molecules in intense laser fields,” Phys. Rev. A 72(3), 033412 (2005).
    [Crossref]
  20. J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Controlling high harmonic generation with molecular wave packets,” Phys. Rev. Lett. 94(12), 123902 (2005).
    [Crossref] [PubMed]
  21. M. Lewenstein, Ph. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
    [Crossref] [PubMed]
  22. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
    [Crossref] [PubMed]
  23. D. Pavicić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, “Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields,” Phys. Rev. Lett. 98(24), 243001 (2007).
    [Crossref] [PubMed]
  24. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions by an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).
  25. X. Tong, Z. Zhao, and C. D. Lin, “Theory of molecular tunneling ionization,” Phys. Rev. A 66(3), 033402 (2002).
    [Crossref]
  26. Z. Zhao, X. Tong, and C. D. Lin, “Alignment-dependent ionization probability of molecules in a double-pulse laser field,” Phys. Rev. A 67(4), 043404 (2003).
    [Crossref]
  27. A. Le, X. Tong, and C. D. Lin, “Evidence of two-center interference in high-order harmonic generation from CO2,” Phys. Rev. A 73(4), 041402 (2006).
    [Crossref]
  28. W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett. 99(13), 133602 (2007).
    [Crossref] [PubMed]
  29. M. Y. Ivanov, T. Brabec, and N. Burnett, “Coulomb corrections and polarization effects in high-intensity high-harmonic emission,” Phys. Rev. A 54(1), 742–745 (1996).
    [Crossref] [PubMed]
  30. X. Song, Z. Zeng, Y. Fu, B. Cai, R. Li, Y. Cheng, and Z. Xu, “Quantum path control in few-optical-cycle regime,” Phys. Rev. A 76(4), 043830 (2007).
    [Crossref]
  31. Y. Yu, X. Song, Y. Fu, R. Li, Y. Cheng, and Z. Xu, “Theoretical investigation of single attosecond pulse generation in an orthogonally polarized two-color laser field,” Opt. Express 16(2), 686–694 (2008).
    [Crossref] [PubMed]

2012 (2)

2011 (2)

J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011).
[Crossref]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[Crossref]

2010 (3)

J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
[Crossref]

W. Yang, X. Song, Z. Zeng, R. Li, and Z. Xu, “Quantum path interferences of electron trajectories in two-center molecules,” Opt. Express 18(3), 2558–2565 (2010).
[Crossref] [PubMed]

M. Yu. Emelin, M. Yu. Ryabikin, and A. M. Sergeev, “Frequency tunable single attosecond pulse production from aligned diatomic molecules ionized by intense laser field,” Opt. Express 18(3), 2269–2278 (2010).
[Crossref] [PubMed]

2009 (3)

Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009).
[Crossref]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Y. Zheng, Z. Zeng, P. Zou, L. Zhang, X. Li, P. Liu, R. Li, and Z. Xu, “Dynamic chirp control and pulse compression for attosecond high-order harmonic emission,” Phys. Rev. Lett. 103(4), 043904 (2009).
[Crossref] [PubMed]

2008 (3)

E. Mansten, J. M. Dahlström, P. Johnsson, M. Swoboda, A. L’Huillier, and J. Mauritsson, “Spectral shaping of attosecond pulses using two-color laser fields,” New J. Phys. 10(8), 083041 (2008).
[Crossref]

Z. Zeng, Y. Cheng, Y. Fu, X. Song, R. Li, and Z. Xu, “Tunable high-order harmonic generation and the role of the folded quantum path,” Phys. Rev. A 77(2), 023416 (2008).
[Crossref]

Y. Yu, X. Song, Y. Fu, R. Li, Y. Cheng, and Z. Xu, “Theoretical investigation of single attosecond pulse generation in an orthogonally polarized two-color laser field,” Opt. Express 16(2), 686–694 (2008).
[Crossref] [PubMed]

2007 (4)

X. Song, Z. Zeng, Y. Fu, B. Cai, R. Li, Y. Cheng, and Z. Xu, “Quantum path control in few-optical-cycle regime,” Phys. Rev. A 76(4), 043830 (2007).
[Crossref]

W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett. 99(13), 133602 (2007).
[Crossref] [PubMed]

D. Pavicić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, “Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields,” Phys. Rev. Lett. 98(24), 243001 (2007).
[Crossref] [PubMed]

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98(20), 203901 (2007).
[Crossref] [PubMed]

2006 (1)

A. Le, X. Tong, and C. D. Lin, “Evidence of two-center interference in high-order harmonic generation from CO2,” Phys. Rev. A 73(4), 041402 (2006).
[Crossref]

2005 (3)

X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Role of molecular orbital symmetry on the alignment dependence of high-order harmonic generation with molecules,” Phys. Rev. A 71(6), 061801 (2005).
[Crossref]

X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Alignment dependence of high-order harmonic generation from N2 and O2 molecules in intense laser fields,” Phys. Rev. A 72(3), 033412 (2005).
[Crossref]

J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Controlling high harmonic generation with molecular wave packets,” Phys. Rev. Lett. 94(12), 123902 (2005).
[Crossref] [PubMed]

2004 (1)

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[Crossref] [PubMed]

2003 (1)

Z. Zhao, X. Tong, and C. D. Lin, “Alignment-dependent ionization probability of molecules in a double-pulse laser field,” Phys. Rev. A 67(4), 043404 (2003).
[Crossref]

2002 (2)

X. Tong, Z. Zhao, and C. D. Lin, “Theory of molecular tunneling ionization,” Phys. Rev. A 66(3), 033402 (2002).
[Crossref]

B. Shan, X. Tong, Z. Zhao, Z. Chang, and C. D. Lin, “High-order harmonic cutoff extension of the O2 molecule due to ionization suppression,” Phys. Rev. A 66(6), 061401 (2002).
[Crossref]

1996 (1)

M. Y. Ivanov, T. Brabec, and N. Burnett, “Coulomb corrections and polarization effects in high-intensity high-harmonic emission,” Phys. Rev. A 54(1), 742–745 (1996).
[Crossref] [PubMed]

1995 (1)

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

1994 (1)

M. Lewenstein, Ph. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

1993 (1)

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref] [PubMed]

1991 (1)

1986 (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions by an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions by an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Balcou, Ph.

M. Lewenstein, Ph. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

Barbee, T. W.

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Brabec, T.

M. Y. Ivanov, T. Brabec, and N. Burnett, “Coulomb corrections and polarization effects in high-intensity high-harmonic emission,” Phys. Rev. A 54(1), 742–745 (1996).
[Crossref] [PubMed]

Burnett, N.

M. Y. Ivanov, T. Brabec, and N. Burnett, “Coulomb corrections and polarization effects in high-intensity high-harmonic emission,” Phys. Rev. A 54(1), 742–745 (1996).
[Crossref] [PubMed]

Cai, B.

X. Song, Z. Zeng, Y. Fu, B. Cai, R. Li, Y. Cheng, and Z. Xu, “Quantum path control in few-optical-cycle regime,” Phys. Rev. A 76(4), 043830 (2007).
[Crossref]

Cauble, R.

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Celliers, P.

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Chang, Z.

B. Shan, X. Tong, Z. Zhao, Z. Chang, and C. D. Lin, “High-order harmonic cutoff extension of the O2 molecule due to ionization suppression,” Phys. Rev. A 66(6), 061401 (2002).
[Crossref]

Chen, J.

J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011).
[Crossref]

J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
[Crossref]

Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009).
[Crossref]

Cheng, Y.

C. Zhang, J. Yao, J. Ni, G. Li, Y. Cheng, and Z. Xu, “Control of bandwidth and central wavelength of an enhanced extreme ultraviolet spectrum generated in shaped laser field,” Opt. Express 20(15), 16544–16551 (2012).
[Crossref]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[Crossref]

J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011).
[Crossref]

J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
[Crossref]

Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009).
[Crossref]

Z. Zeng, Y. Cheng, Y. Fu, X. Song, R. Li, and Z. Xu, “Tunable high-order harmonic generation and the role of the folded quantum path,” Phys. Rev. A 77(2), 023416 (2008).
[Crossref]

Y. Yu, X. Song, Y. Fu, R. Li, Y. Cheng, and Z. Xu, “Theoretical investigation of single attosecond pulse generation in an orthogonally polarized two-color laser field,” Opt. Express 16(2), 686–694 (2008).
[Crossref] [PubMed]

X. Song, Z. Zeng, Y. Fu, B. Cai, R. Li, Y. Cheng, and Z. Xu, “Quantum path control in few-optical-cycle regime,” Phys. Rev. A 76(4), 043830 (2007).
[Crossref]

W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett. 99(13), 133602 (2007).
[Crossref] [PubMed]

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98(20), 203901 (2007).
[Crossref] [PubMed]

Chin, S. L.

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[Crossref]

Chu, W.

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[Crossref]

J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011).
[Crossref]

J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
[Crossref]

Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009).
[Crossref]

Ciarlo, D.

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Corkum, P. B.

D. Pavicić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, “Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields,” Phys. Rev. Lett. 98(24), 243001 (2007).
[Crossref] [PubMed]

J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Controlling high harmonic generation with molecular wave packets,” Phys. Rev. Lett. 94(12), 123902 (2005).
[Crossref] [PubMed]

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[Crossref] [PubMed]

M. Lewenstein, Ph. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref] [PubMed]

Dahlström, J. M.

E. Mansten, J. M. Dahlström, P. Johnsson, M. Swoboda, A. L’Huillier, and J. Mauritsson, “Spectral shaping of attosecond pulses using two-color laser fields,” New J. Phys. 10(8), 083041 (2008).
[Crossref]

Delone, N. B.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions by an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Emelin, M. Yu.

Fu, Y.

J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
[Crossref]

Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009).
[Crossref]

Z. Zeng, Y. Cheng, Y. Fu, X. Song, R. Li, and Z. Xu, “Tunable high-order harmonic generation and the role of the folded quantum path,” Phys. Rev. A 77(2), 023416 (2008).
[Crossref]

Y. Yu, X. Song, Y. Fu, R. Li, Y. Cheng, and Z. Xu, “Theoretical investigation of single attosecond pulse generation in an orthogonally polarized two-color laser field,” Opt. Express 16(2), 686–694 (2008).
[Crossref] [PubMed]

X. Song, Z. Zeng, Y. Fu, B. Cai, R. Li, Y. Cheng, and Z. Xu, “Quantum path control in few-optical-cycle regime,” Phys. Rev. A 76(4), 043830 (2007).
[Crossref]

Gong, S.

W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett. 99(13), 133602 (2007).
[Crossref] [PubMed]

Itatani, J.

J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Controlling high harmonic generation with molecular wave packets,” Phys. Rev. Lett. 94(12), 123902 (2005).
[Crossref] [PubMed]

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[Crossref] [PubMed]

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Ivanov, M. Y.

M. Y. Ivanov, T. Brabec, and N. Burnett, “Coulomb corrections and polarization effects in high-intensity high-harmonic emission,” Phys. Rev. A 54(1), 742–745 (1996).
[Crossref] [PubMed]

M. Lewenstein, Ph. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

Johnsson, P.

E. Mansten, J. M. Dahlström, P. Johnsson, M. Swoboda, A. L’Huillier, and J. Mauritsson, “Spectral shaping of attosecond pulses using two-color laser fields,” New J. Phys. 10(8), 083041 (2008).
[Crossref]

Kieffer, J. C.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[Crossref] [PubMed]

Kitamura, N.

Koshioka, M.

Krainov, V. P.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions by an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

L’Huillier, A.

E. Mansten, J. M. Dahlström, P. Johnsson, M. Swoboda, A. L’Huillier, and J. Mauritsson, “Spectral shaping of attosecond pulses using two-color laser fields,” New J. Phys. 10(8), 083041 (2008).
[Crossref]

M. Lewenstein, Ph. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

Le, A.

A. Le, X. Tong, and C. D. Lin, “Evidence of two-center interference in high-order harmonic generation from CO2,” Phys. Rev. A 73(4), 041402 (2006).
[Crossref]

Lee, K. F.

D. Pavicić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, “Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields,” Phys. Rev. Lett. 98(24), 243001 (2007).
[Crossref] [PubMed]

Levesque, J.

J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Controlling high harmonic generation with molecular wave packets,” Phys. Rev. Lett. 94(12), 123902 (2005).
[Crossref] [PubMed]

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[Crossref] [PubMed]

Lewenstein, M.

M. Lewenstein, Ph. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

Li, G.

C. Zhang, J. Yao, J. Ni, G. Li, Y. Cheng, and Z. Xu, “Control of bandwidth and central wavelength of an enhanced extreme ultraviolet spectrum generated in shaped laser field,” Opt. Express 20(15), 16544–16551 (2012).
[Crossref]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[Crossref]

Li, R.

W. Yang, X. Song, Z. Zeng, R. Li, and Z. Xu, “Quantum path interferences of electron trajectories in two-center molecules,” Opt. Express 18(3), 2558–2565 (2010).
[Crossref] [PubMed]

Y. Zheng, Z. Zeng, P. Zou, L. Zhang, X. Li, P. Liu, R. Li, and Z. Xu, “Dynamic chirp control and pulse compression for attosecond high-order harmonic emission,” Phys. Rev. Lett. 103(4), 043904 (2009).
[Crossref] [PubMed]

Z. Zeng, Y. Cheng, Y. Fu, X. Song, R. Li, and Z. Xu, “Tunable high-order harmonic generation and the role of the folded quantum path,” Phys. Rev. A 77(2), 023416 (2008).
[Crossref]

Y. Yu, X. Song, Y. Fu, R. Li, Y. Cheng, and Z. Xu, “Theoretical investigation of single attosecond pulse generation in an orthogonally polarized two-color laser field,” Opt. Express 16(2), 686–694 (2008).
[Crossref] [PubMed]

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98(20), 203901 (2007).
[Crossref] [PubMed]

X. Song, Z. Zeng, Y. Fu, B. Cai, R. Li, Y. Cheng, and Z. Xu, “Quantum path control in few-optical-cycle regime,” Phys. Rev. A 76(4), 043830 (2007).
[Crossref]

Li, X.

Y. Zheng, Z. Zeng, P. Zou, L. Zhang, X. Li, P. Liu, R. Li, and Z. Xu, “Dynamic chirp control and pulse compression for attosecond high-order harmonic emission,” Phys. Rev. Lett. 103(4), 043904 (2009).
[Crossref] [PubMed]

Li, Y.

J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
[Crossref]

Libby, S.

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Lin, C. D.

A. Le, X. Tong, and C. D. Lin, “Evidence of two-center interference in high-order harmonic generation from CO2,” Phys. Rev. A 73(4), 041402 (2006).
[Crossref]

X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Alignment dependence of high-order harmonic generation from N2 and O2 molecules in intense laser fields,” Phys. Rev. A 72(3), 033412 (2005).
[Crossref]

X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Role of molecular orbital symmetry on the alignment dependence of high-order harmonic generation with molecules,” Phys. Rev. A 71(6), 061801 (2005).
[Crossref]

Z. Zhao, X. Tong, and C. D. Lin, “Alignment-dependent ionization probability of molecules in a double-pulse laser field,” Phys. Rev. A 67(4), 043404 (2003).
[Crossref]

X. Tong, Z. Zhao, and C. D. Lin, “Theory of molecular tunneling ionization,” Phys. Rev. A 66(3), 033402 (2002).
[Crossref]

B. Shan, X. Tong, Z. Zhao, Z. Chang, and C. D. Lin, “High-order harmonic cutoff extension of the O2 molecule due to ionization suppression,” Phys. Rev. A 66(6), 061401 (2002).
[Crossref]

Liu, P.

Y. Zheng, Z. Zeng, P. Zou, L. Zhang, X. Li, P. Liu, R. Li, and Z. Xu, “Dynamic chirp control and pulse compression for attosecond high-order harmonic emission,” Phys. Rev. Lett. 103(4), 043904 (2009).
[Crossref] [PubMed]

Liu, X.

J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011).
[Crossref]

J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
[Crossref]

London, R. A.

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Mansten, E.

E. Mansten, J. M. Dahlström, P. Johnsson, M. Swoboda, A. L’Huillier, and J. Mauritsson, “Spectral shaping of attosecond pulses using two-color laser fields,” New J. Phys. 10(8), 083041 (2008).
[Crossref]

Masuhara, H.

Matthews, D.

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Mauritsson, J.

E. Mansten, J. M. Dahlström, P. Johnsson, M. Swoboda, A. L’Huillier, and J. Mauritsson, “Spectral shaping of attosecond pulses using two-color laser fields,” New J. Phys. 10(8), 083041 (2008).
[Crossref]

Misawa, H.

Moreno, J. C.

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Mrowka, S.

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Ni, J.

C. Zhang, J. Yao, J. Ni, G. Li, Y. Cheng, and Z. Xu, “Control of bandwidth and central wavelength of an enhanced extreme ultraviolet spectrum generated in shaped laser field,” Opt. Express 20(15), 16544–16551 (2012).
[Crossref]

C. Zhang, J. Yao, and J. Ni, “Generation of isolated attosecond pulses of sub-atomic-time durations with multi-cycle chirped polarization gating pulses,” Opt. Express 20(22), 24642–24649 (2012).
[Crossref] [PubMed]

J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011).
[Crossref]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[Crossref]

J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
[Crossref]

Niikura, H.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[Crossref] [PubMed]

Pavicic, D.

D. Pavicić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, “Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields,” Phys. Rev. Lett. 98(24), 243001 (2007).
[Crossref] [PubMed]

Pépin, H.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[Crossref] [PubMed]

Rayner, D. M.

D. Pavicić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, “Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields,” Phys. Rev. Lett. 98(24), 243001 (2007).
[Crossref] [PubMed]

Ress, D.

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Ryabikin, M. Yu.

Sasaki, K.

Sergeev, A. M.

Shan, B.

B. Shan, X. Tong, Z. Zhao, Z. Chang, and C. D. Lin, “High-order harmonic cutoff extension of the O2 molecule due to ionization suppression,” Phys. Rev. A 66(6), 061401 (2002).
[Crossref]

Silva, L. B. D.

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Song, X.

W. Yang, X. Song, Z. Zeng, R. Li, and Z. Xu, “Quantum path interferences of electron trajectories in two-center molecules,” Opt. Express 18(3), 2558–2565 (2010).
[Crossref] [PubMed]

Y. Yu, X. Song, Y. Fu, R. Li, Y. Cheng, and Z. Xu, “Theoretical investigation of single attosecond pulse generation in an orthogonally polarized two-color laser field,” Opt. Express 16(2), 686–694 (2008).
[Crossref] [PubMed]

Z. Zeng, Y. Cheng, Y. Fu, X. Song, R. Li, and Z. Xu, “Tunable high-order harmonic generation and the role of the folded quantum path,” Phys. Rev. A 77(2), 023416 (2008).
[Crossref]

W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett. 99(13), 133602 (2007).
[Crossref] [PubMed]

X. Song, Z. Zeng, Y. Fu, B. Cai, R. Li, Y. Cheng, and Z. Xu, “Quantum path control in few-optical-cycle regime,” Phys. Rev. A 76(4), 043830 (2007).
[Crossref]

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98(20), 203901 (2007).
[Crossref] [PubMed]

Spanner, M.

J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Controlling high harmonic generation with molecular wave packets,” Phys. Rev. Lett. 94(12), 123902 (2005).
[Crossref] [PubMed]

Swoboda, M.

E. Mansten, J. M. Dahlström, P. Johnsson, M. Swoboda, A. L’Huillier, and J. Mauritsson, “Spectral shaping of attosecond pulses using two-color laser fields,” New J. Phys. 10(8), 083041 (2008).
[Crossref]

Tong, X.

A. Le, X. Tong, and C. D. Lin, “Evidence of two-center interference in high-order harmonic generation from CO2,” Phys. Rev. A 73(4), 041402 (2006).
[Crossref]

X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Alignment dependence of high-order harmonic generation from N2 and O2 molecules in intense laser fields,” Phys. Rev. A 72(3), 033412 (2005).
[Crossref]

X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Role of molecular orbital symmetry on the alignment dependence of high-order harmonic generation with molecules,” Phys. Rev. A 71(6), 061801 (2005).
[Crossref]

Z. Zhao, X. Tong, and C. D. Lin, “Alignment-dependent ionization probability of molecules in a double-pulse laser field,” Phys. Rev. A 67(4), 043404 (2003).
[Crossref]

X. Tong, Z. Zhao, and C. D. Lin, “Theory of molecular tunneling ionization,” Phys. Rev. A 66(3), 033402 (2002).
[Crossref]

B. Shan, X. Tong, Z. Zhao, Z. Chang, and C. D. Lin, “High-order harmonic cutoff extension of the O2 molecule due to ionization suppression,” Phys. Rev. A 66(6), 061401 (2002).
[Crossref]

Trebes, J. E.

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Villeneuve, D. M.

D. Pavicić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, “Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields,” Phys. Rev. Lett. 98(24), 243001 (2007).
[Crossref] [PubMed]

J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Controlling high harmonic generation with molecular wave packets,” Phys. Rev. Lett. 94(12), 123902 (2005).
[Crossref] [PubMed]

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[Crossref] [PubMed]

Wan, A. S.

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Weber, F.

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Xiong, H.

J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011).
[Crossref]

J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
[Crossref]

Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009).
[Crossref]

Xu, H.

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[Crossref]

J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011).
[Crossref]

J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
[Crossref]

Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009).
[Crossref]

Xu, J.

Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009).
[Crossref]

Xu, Z.

C. Zhang, J. Yao, J. Ni, G. Li, Y. Cheng, and Z. Xu, “Control of bandwidth and central wavelength of an enhanced extreme ultraviolet spectrum generated in shaped laser field,” Opt. Express 20(15), 16544–16551 (2012).
[Crossref]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[Crossref]

J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011).
[Crossref]

J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
[Crossref]

W. Yang, X. Song, Z. Zeng, R. Li, and Z. Xu, “Quantum path interferences of electron trajectories in two-center molecules,” Opt. Express 18(3), 2558–2565 (2010).
[Crossref] [PubMed]

Y. Zheng, Z. Zeng, P. Zou, L. Zhang, X. Li, P. Liu, R. Li, and Z. Xu, “Dynamic chirp control and pulse compression for attosecond high-order harmonic emission,” Phys. Rev. Lett. 103(4), 043904 (2009).
[Crossref] [PubMed]

Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009).
[Crossref]

Y. Yu, X. Song, Y. Fu, R. Li, Y. Cheng, and Z. Xu, “Theoretical investigation of single attosecond pulse generation in an orthogonally polarized two-color laser field,” Opt. Express 16(2), 686–694 (2008).
[Crossref] [PubMed]

Z. Zeng, Y. Cheng, Y. Fu, X. Song, R. Li, and Z. Xu, “Tunable high-order harmonic generation and the role of the folded quantum path,” Phys. Rev. A 77(2), 023416 (2008).
[Crossref]

W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett. 99(13), 133602 (2007).
[Crossref] [PubMed]

X. Song, Z. Zeng, Y. Fu, B. Cai, R. Li, Y. Cheng, and Z. Xu, “Quantum path control in few-optical-cycle regime,” Phys. Rev. A 76(4), 043830 (2007).
[Crossref]

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98(20), 203901 (2007).
[Crossref] [PubMed]

Yang, W.

W. Yang, X. Song, Z. Zeng, R. Li, and Z. Xu, “Quantum path interferences of electron trajectories in two-center molecules,” Opt. Express 18(3), 2558–2565 (2010).
[Crossref] [PubMed]

W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett. 99(13), 133602 (2007).
[Crossref] [PubMed]

Yao, J.

C. Zhang, J. Yao, J. Ni, G. Li, Y. Cheng, and Z. Xu, “Control of bandwidth and central wavelength of an enhanced extreme ultraviolet spectrum generated in shaped laser field,” Opt. Express 20(15), 16544–16551 (2012).
[Crossref]

C. Zhang, J. Yao, and J. Ni, “Generation of isolated attosecond pulses of sub-atomic-time durations with multi-cycle chirped polarization gating pulses,” Opt. Express 20(22), 24642–24649 (2012).
[Crossref] [PubMed]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[Crossref]

J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011).
[Crossref]

J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
[Crossref]

Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009).
[Crossref]

Yu, Y.

Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009).
[Crossref]

Y. Yu, X. Song, Y. Fu, R. Li, Y. Cheng, and Z. Xu, “Theoretical investigation of single attosecond pulse generation in an orthogonally polarized two-color laser field,” Opt. Express 16(2), 686–694 (2008).
[Crossref] [PubMed]

Zeidler, D.

J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Controlling high harmonic generation with molecular wave packets,” Phys. Rev. Lett. 94(12), 123902 (2005).
[Crossref] [PubMed]

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[Crossref] [PubMed]

Zeng, B.

J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011).
[Crossref]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[Crossref]

J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
[Crossref]

Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009).
[Crossref]

Zeng, Z.

W. Yang, X. Song, Z. Zeng, R. Li, and Z. Xu, “Quantum path interferences of electron trajectories in two-center molecules,” Opt. Express 18(3), 2558–2565 (2010).
[Crossref] [PubMed]

Y. Zheng, Z. Zeng, P. Zou, L. Zhang, X. Li, P. Liu, R. Li, and Z. Xu, “Dynamic chirp control and pulse compression for attosecond high-order harmonic emission,” Phys. Rev. Lett. 103(4), 043904 (2009).
[Crossref] [PubMed]

Z. Zeng, Y. Cheng, Y. Fu, X. Song, R. Li, and Z. Xu, “Tunable high-order harmonic generation and the role of the folded quantum path,” Phys. Rev. A 77(2), 023416 (2008).
[Crossref]

X. Song, Z. Zeng, Y. Fu, B. Cai, R. Li, Y. Cheng, and Z. Xu, “Quantum path control in few-optical-cycle regime,” Phys. Rev. A 76(4), 043830 (2007).
[Crossref]

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98(20), 203901 (2007).
[Crossref] [PubMed]

Zhang, C.

Zhang, H.

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[Crossref]

J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011).
[Crossref]

Zhang, L.

Y. Zheng, Z. Zeng, P. Zou, L. Zhang, X. Li, P. Liu, R. Li, and Z. Xu, “Dynamic chirp control and pulse compression for attosecond high-order harmonic emission,” Phys. Rev. Lett. 103(4), 043904 (2009).
[Crossref] [PubMed]

Zhao, Z.

X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Role of molecular orbital symmetry on the alignment dependence of high-order harmonic generation with molecules,” Phys. Rev. A 71(6), 061801 (2005).
[Crossref]

X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Alignment dependence of high-order harmonic generation from N2 and O2 molecules in intense laser fields,” Phys. Rev. A 72(3), 033412 (2005).
[Crossref]

Z. Zhao, X. Tong, and C. D. Lin, “Alignment-dependent ionization probability of molecules in a double-pulse laser field,” Phys. Rev. A 67(4), 043404 (2003).
[Crossref]

X. Tong, Z. Zhao, and C. D. Lin, “Theory of molecular tunneling ionization,” Phys. Rev. A 66(3), 033402 (2002).
[Crossref]

B. Shan, X. Tong, Z. Zhao, Z. Chang, and C. D. Lin, “High-order harmonic cutoff extension of the O2 molecule due to ionization suppression,” Phys. Rev. A 66(6), 061401 (2002).
[Crossref]

Zheng, Y.

Y. Zheng, Z. Zeng, P. Zou, L. Zhang, X. Li, P. Liu, R. Li, and Z. Xu, “Dynamic chirp control and pulse compression for attosecond high-order harmonic emission,” Phys. Rev. Lett. 103(4), 043904 (2009).
[Crossref] [PubMed]

Zhou, X.

X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Role of molecular orbital symmetry on the alignment dependence of high-order harmonic generation with molecules,” Phys. Rev. A 71(6), 061801 (2005).
[Crossref]

X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Alignment dependence of high-order harmonic generation from N2 and O2 molecules in intense laser fields,” Phys. Rev. A 72(3), 033412 (2005).
[Crossref]

Zou, P.

Y. Zheng, Z. Zeng, P. Zou, L. Zhang, X. Li, P. Liu, R. Li, and Z. Xu, “Dynamic chirp control and pulse compression for attosecond high-order harmonic emission,” Phys. Rev. Lett. 103(4), 043904 (2009).
[Crossref] [PubMed]

Nature (1)

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[Crossref] [PubMed]

New J. Phys. (1)

E. Mansten, J. M. Dahlström, P. Johnsson, M. Swoboda, A. L’Huillier, and J. Mauritsson, “Spectral shaping of attosecond pulses using two-color laser fields,” New J. Phys. 10(8), 083041 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. A (14)

Z. Zeng, Y. Cheng, Y. Fu, X. Song, R. Li, and Z. Xu, “Tunable high-order harmonic generation and the role of the folded quantum path,” Phys. Rev. A 77(2), 023416 (2008).
[Crossref]

J. Yao, Y. Li, B. Zeng, H. Xiong, H. Xu, Y. Fu, W. Chu, J. Ni, X. Liu, J. Chen, Y. Cheng, and Z. Xu, “Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field,” Phys. Rev. A 82(2), 023826 (2010).
[Crossref]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[Crossref]

J. Yao, Y. Cheng, J. Chen, H. Zhang, H. Xu, H. Xiong, B. Zeng, W. Chu, J. Ni, X. Liu, and Z. Xu, “Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation,” Phys. Rev. A 83(3), 033835 (2011).
[Crossref]

X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Role of molecular orbital symmetry on the alignment dependence of high-order harmonic generation with molecules,” Phys. Rev. A 71(6), 061801 (2005).
[Crossref]

B. Shan, X. Tong, Z. Zhao, Z. Chang, and C. D. Lin, “High-order harmonic cutoff extension of the O2 molecule due to ionization suppression,” Phys. Rev. A 66(6), 061401 (2002).
[Crossref]

Y. Yu, J. Xu, Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, J. Chen, Y. Cheng, and Z. Xu, “Single attosecond pulse generation from aligned molecules using two-color polarization gating,” Phys. Rev. A 80(5), 053423 (2009).
[Crossref]

X. Zhou, X. Tong, Z. Zhao, and C. D. Lin, “Alignment dependence of high-order harmonic generation from N2 and O2 molecules in intense laser fields,” Phys. Rev. A 72(3), 033412 (2005).
[Crossref]

M. Y. Ivanov, T. Brabec, and N. Burnett, “Coulomb corrections and polarization effects in high-intensity high-harmonic emission,” Phys. Rev. A 54(1), 742–745 (1996).
[Crossref] [PubMed]

X. Song, Z. Zeng, Y. Fu, B. Cai, R. Li, Y. Cheng, and Z. Xu, “Quantum path control in few-optical-cycle regime,” Phys. Rev. A 76(4), 043830 (2007).
[Crossref]

M. Lewenstein, Ph. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

X. Tong, Z. Zhao, and C. D. Lin, “Theory of molecular tunneling ionization,” Phys. Rev. A 66(3), 033402 (2002).
[Crossref]

Z. Zhao, X. Tong, and C. D. Lin, “Alignment-dependent ionization probability of molecules in a double-pulse laser field,” Phys. Rev. A 67(4), 043404 (2003).
[Crossref]

A. Le, X. Tong, and C. D. Lin, “Evidence of two-center interference in high-order harmonic generation from CO2,” Phys. Rev. A 73(4), 041402 (2006).
[Crossref]

Phys. Rev. Lett. (7)

W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett. 99(13), 133602 (2007).
[Crossref] [PubMed]

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref] [PubMed]

D. Pavicić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, “Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields,” Phys. Rev. Lett. 98(24), 243001 (2007).
[Crossref] [PubMed]

J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Controlling high harmonic generation with molecular wave packets,” Phys. Rev. Lett. 94(12), 123902 (2005).
[Crossref] [PubMed]

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98(20), 203901 (2007).
[Crossref] [PubMed]

Y. Zheng, Z. Zeng, P. Zou, L. Zhang, X. Li, P. Liu, R. Li, and Z. Xu, “Dynamic chirp control and pulse compression for attosecond high-order harmonic emission,” Phys. Rev. Lett. 103(4), 043904 (2009).
[Crossref] [PubMed]

L. B. D. Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74(20), 3991–3994 (1995).

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Sov. Phys. JETP (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions by an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) HHG spectra driven by the orthogonal-polarized two-color laser field at different relative phases. (b) Same as in Fig. 1(a) but in the linear scale.

Fig. 2
Fig. 2

Time-frequency analyses for y-component dipole moments corresponding to HHG spectra of Fig. 1 at (a) ϕ = 65° and (b) ϕ = 85°.

Fig. 3
Fig. 3

The minimum distance of electron from its parent ion (black solid curve), photon energy (red dashed curve) and ionization rate (gray filled area) as a function of birth time at (a) ϕ = 65° and (b) ϕ = 85°. 2D classical trajectories for the electrons ionized at t0 for (c) ϕ = 65° and (d) ϕ = 85°. Initial position of the electron is indicated by red dots in all figures.

Fig. 4
Fig. 4

HHG spectra (a) at different intensities of 800 nm pulses and (b) at different intensities of 1750 nm pulses.

Fig. 5
Fig. 5

The peak intensity of narrow-bandwidth HHG spectra as a function of molecular alignment angles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E s = E 1 exp[ 2ln(2) t 2 / τ 1 2 ]cos( ω 1 t ) x + E 2 exp[ 2ln(2) t 2 / τ 2 2 ]cos( ω 2 t+ϕ ) y .

Metrics