Abstract

In this paper the Fano resonance in a free-standing LiNbO3 photonic crystal slab is demonstrated. We present a numerical analysis and experimental measurements with free space illumination where the dependence of slab thickness, radius of air holes and lattice types are investigated. The unique property of polarization dependence for LiNbO3 photonic crystal slabs is also analyzed, and we show that the transmission spectra exhibit significant sensitivity (~25nm) to polarization. A monolithic free-standing LiNbO3 photonic crystal slab was fabricated using ion beam enhanced etching (IBEE) technology. Measurement results of the reflection spectra agree with the numerical analysis.

©2013 Optical Society of America

1. Introduction

Two dimensional photonic crystal (PhC) structures have been widely studied for future photonic integrated circuit applications. Most studies on PhC slabs have concentrated on planar devices which support in-plane guided modes without coupling to external radiation [1], [2]. Recently, a class of optical modes called guided resonances in PhC slabs, has drawn much attention [35]. These are Fano-type resonances in PhC slabs when illuminated from above at normal incidence. Due to the phase matching mechanism provided by the periodic index contrast, these in-plane guided resonances above the light line within PhC slabs can be strongly coupled to out-of-the-plane radiation modes, resulting in asymmetrical line shapes in reflection and transmission spectra [6]. These Fano-shaped peaks show very high quality factors, making them suitable for high Q filters [7, 8] and high reflectivity mirrors [9]. The guided resonance also can be incorporated into MEMS to enable mechanical tenability of the optical response [10]. However, so far devices based on guided resonances have mainly been fabricated in Si and Si3N4 membranes, which show low or nonexistent electro-optic coefficients and/or slow response speeds. (Si shows no Pockels effect, so index can be modulated only through other mechanisms such as thermal or carrier-induced index changes.)

A widely used dielectric material, LiNbO3, is extremely important in integrated and nonlinear optical devices because of its large electro–optic coefficients (r33 = 30.8 pm/V at λ = 633 nm) [11], a large transparency range, and a wide intrinsic bandwidth. It has been used in electro-optical modulators [12, 13], surface acoustic wave (SAW) devices [14], tunable filters (switching time < 50ns) [15], nonlinear wavelength converters [16] and all-optical switches [17]. Due to its ultrafast electro–optic response and nonlinear effects, it would be an attractive prospect to realize a guided resonance in single crystal LiNbO3. This incorporation of nonlinear materials into photonic crystal slabs is important for enhancing nonlinear light-matter interaction in general, as this can be useful for future quantum information processing tasks and also in optical logic elements. In addition, the birefringence property of LiNbO3, which means its refractive index depends on the polarization direction of light, will also provide a new platform for polarization selective applications. Since the Fano resonance is a characteristic feature of quantum interference [18], this incorporation can potentially open new opportunities for exploiting physical phenomena in quantum optics as well. However, free-standing PhC slabs are very difficult to fabricate in LiNbO3 due to its well-known resistance towards standard machining techniques. So far several techniques have been developed to fabricate photonic crystals on LiNbO3 such as ICP-RIE [19], focused ion beam (FIB) [20] and pulsed laser ablation of LiNbO3 films on sapphire [21, 22]. Recently ion implantation techniques become a very promising method in fabricating LiNbO3 based photonic devices. There are various methods to treat LiNbO3 crystals with ion beam, such as the use of ion implantation to form channel waveguides, crystal ion slicing (CIS), and ion beam-enhanced etching (IBEE). IBEE is a combination of ion implantation and chemical wet etching. After ion implantation, defects in the crystal can be intentionally induced (due to energy transfer to the crystal lattice), forming sacrificial layers where chemical resistance to subsequent wet etching is reduced. As a result, the irradiated regions can be removed by wet chemical etching after surface features such as PhCs have been created. Our group has developed this monolithic technique which allows fabrication of suspended LiNbO3 slab structures [23]. This method provides a possibility to realize guided resonances on bulk LiNbO3 substrates.

In this letter we conduct a theoretical and experimental study of the guided resonance of free-standing LiNbO3 PhC slabs. We first perform a detailed numerical analysis on the transmission characteristics by using the 3D FDTD (Finite-Difference Time-Domain) method. The dependence of slab thickness, of radius of holes, and of lattice type is discussed. Next, the polarization dependence of PhC slabs is analyzed. Then a monolithic approach to fabricate free-standing LiNbO3 PC slabs is presented. The experimentally measured results agree with the numerical simulation.

2. Numerical analysis

We consider a square lattice of air holes in a LiNbO3 slab. As LiNbO3 is a bifringent crystal with an ordinary (y-polarization) and extraordinary (z-polarization) refractive index, we first consider a simple case in which only the ordinary index (no) plays a role (no = 2.227 at 1200nm wavelength) for a specific polarization in the investigations of slab thickness, lattice type and radius dependence. Then both ordinary and extraordinary indices are considered in the investigation of polarization dependence. The structure studied in this work is shown in Fig. 1 . The inset shows the fabricated PhC slabs on X-cut LiNbO3 substrate. Our calculation domain includes a single unit cell and the 3D FDTD method was used [24]. Perfectly Matched Layer (PML) boundary conditions were used at the X axis boundaries while periodic boundary conditions were used along the Z and Y axes. A Gaussian source is launched from the top of the PhC slab and two power monitors are used to obtain the time response of reflected and transmitted power. Then the fast Fourier transform (FFT) of the time monitor output is performed to obtain the frequency response. In order to improve accuracy of the simulation results, a convergence study was performed and a 0.01nm grid size was chosen.

 figure: Fig. 1

Fig. 1 Schematic of the free-standing X-cut LiNbO3 PhC slab with slab thickness (t), radius of air holes (r) and lattice constant (a). The ordinary refractive index (no) of the slab is 2.227. The inset shows the fabricated photonic crystal slab on an X-cut LiNbO3 substrate.

Download Full Size | PPT Slide | PDF

2.1 The dependence of slab thickness

Figure 2 shows the transmission spectra at normal incidence for LiNbO3 PhC slabs with thicknesses 300 nm, 700 nm and 1.5 µm. The lattice constant (a) and radius (r) of holes are kept at a = 900nm and a ratio of r/a = 0.28. In Fig. 2, when the slab thickness increases, the Fabry-Perot oscillation background becomes more obvious in the infrared region, indicating increased FP interference inside the slab. Figure 2(a) shows the transmission spectrum of a slab of 300nm thickness with two sharp Fano resonance peaks in the wavelength range of 1200nm to 1400nm. When the slab thickness increases, a stronger Fano resonance occurs, leading to a larger number of modes, as shown in Figs 2(b) and 2(c). As the slab thickness decreases, the resonance moves to a slightly shorter wavelength. It has been reported in [25] that decreasing a slab thickness leads to an increase of the delayed length of the resonance, lowering the effective index. Note that it is worthwhile to analyze the slab thickness dependence because the fabrication method presented in this work allows tunability of slab thickness by changing ion implantation energy. This method provides an effective way to design the functionality of the PhC slabs for different applications such as filters and sensors. For example, a tunable filter working in the mid-infrared region can be created by choosing a large slab thickness which leads to guided resonance modes with lower frequencies.

 figure: Fig. 2

Fig. 2 Simulated normal-incident transmission spectra of PhC slabs with various slab thicknesses (a) 300nm, (b) 700nm, (c) 1500nm. The lattice constant (a) and radius (r) of holes keep the same value: a = 900nm and the ratio of r / a = 0.28.

Download Full Size | PPT Slide | PDF

2.2 Lattice type dependence

Our reference model is based on square lattice; in this section we also consider the triangular lattice. Figure 3 plots the transmission spectra for triangular and square lattices. We choose two groups of structural parameters for square and triangular lattices: one has slab thickness t = 800nm, r = 80nm and periodicity a = 800nm (Fig. 3(a)), and the other has slab thickness t = 800nm, r = 250nm and periodicity a = 800nm (Fig. 3(b)). It is similar to the calculation domain of the square lattice except for the unit cell geometry. The ðlling factor of the triangular lattice is higher than that of the square lattice. It can be seen that with both groups of structural parameters, fewer resonance modes can be excited at near infrared wavelengths in the triangular lattice compared with the square lattice. In square lattices, as the operating wavelength increases, more spurious high order modes are generated. In addition the line shape of the triangular lattice shows sharp peaks, resulting in a higher Q factor than the square lattice. For example, we estimated the Q factor from the full-width at half-maximum (FWHM) in Fig. 3(b). The calculated Q factor at resonance peak in the wavelength of 1166nm is approximately 51 for the square lattice and 134 for the triangular lattice. By using the triangular lattice, the Q factor has been improved by 62%. Moreover, from Fig. 3(a) it can be seen that there is a sharp resonance peak at a wavelength of 1014 nm with a Q factor of ~218 for a triangular lattice but no peak for the square lattice. These features of the triangular lattice make it more suitable for optical switches and modulators due to the lower number of resonance peaks within a certain wavelength range.

 figure: Fig. 3

Fig. 3 Comparison of simulated transmission spectra of PhC slabs for different lattice types. The transmission spectra of PhC slabs with a square lattice are shown with solid lines, while transmission spectra of PhC slabs with a triangular lattice are shown with dashed lines. (a) The structure consists of a slab thickness t = 800 nm, lattice constant a = 800nm and the ratio of r / a = 0.1, (b) The structure consists of a slab thickness t = 800 nm, lattice constant a = 800nm and the ratio of r / a = 0.31.

Download Full Size | PPT Slide | PDF

2.3 Radius dependence

The dimensions of the PhCs will influence the performance of the devices significantly. In addition, the designed radius may be altered during the fabrication process. Consequently it is worthwhile to study the radius dependence. To demonstrate this, we plot the transmission spectra with ratio r/a varying from 0.1 to 0.31, as shown in Figs. 4(a) -4(d). The other parameters are identical (a triangular lattice with slab thickness t = 800nm). From Fig. 4 we can see that as the radius increases, more Fano resonances are generated and the smooth FP oscillation feature splits into more sharp peaks. Compared with Fig. 4(a), four more Fano resonance peaks are generated in the wavelength range 900nm to 1200nm in Fig. 4(d). Note that the resonance modes have a blue shift as the radius increases. For example, in Fig. 4(a) it can be seen there is a resonance peak at the wavelength of ~1020nm (highlighted with an arrow). As the radius increases, the wavelength of this peak shifts to the region of ~850nm. Furthermore, it is evident that the decrease in the radius leads to the line shape becoming sharper, resulting in a higher Q factor. For the resonance with the arrow in Figs. 4(a)-4(d), the Q factor varies from approximately 218 at r/a = 0.1, to 78 at r/a = 0.31.This is because the lifetime of guided modes in the slab increases as the radius decreases. Consequently one can realize filters with a very high Q factor by simply decreasing the radius of air holes. On the other hand, a broadband reflector with high reflectivity could be realized by enlarging the radius of air holes, as reported in [9].

 figure: Fig. 4

Fig. 4 Comparison of simulated transmission spectra of triangular lattice PhC slabs with a radius of (a) r / a = 0.1, (b) r / a = 0.153, (c) r / a = 0.26, and (d) r / a = 0.31. The lattice constant (a) and slab thickness (t) are kept at: a = 800nm, t = 800nm.

Download Full Size | PPT Slide | PDF

2.4 Polarization dependence

In silicon and other common materials, due to rotational symmetry at normal incidence, the transmission spectra would be independent of polarization. However, the LiNbO3 crystal (X-cut), which has negative uniaxial anisotropy, does not show rotational symmetry at normal incidence. In addition, when the rotational symmetry of the structure is reduced in LiNbO3, many unique polarization dependent devices can be created. Consequently, it is worthwhile to study the polarization dependence of LiNbO3 PhC slabs. In LiNbO3, the birefringence creates an index difference between y-polarized and z-polarized light of 0.0762 at 1064nm wavelength [26]. In the coordinate system of the crystal slab, light polarized in the Y direction (y-polarized) will see the ordinary refractive index while light polarized in the Z direction (z-polarized) will see the extraordinary refractive index. In calculation we use the ordinary index (no = 2.227) for y-polarized light modeling and extraordinary index (ne = 2.149) for z-polarized light modeling.

Figure 5(a) shows a comparison of the transmission spectra of polarized light normally incident on a LiNbO3 PhC slab. The structure we simulated consists of a square lattice with a slab thickness t of 800nm, a lattice constant a of 800nm, and a radius r of 150nm. The coordinate system of the slab is shown in Fig. 5(b). A significant shift (~25nm) for difference polarizations can be observed in Fig. 5(a). Two modes at around 870nm wavelength range are observed for y-polarized light while nearly 100% transmission is observed for z-polarized light. It is concluded that y-polarized light will lead to more resonance modes than z-polarized light. This is also in agreement with [27] that lowering the slab refractive index will reduce the number of modes in a PhC slab. This is predicted by the empty lattice approximation. In order to confirm the phenomenon of polarization dependence in LiNbO3 PhC slabs, we simulated another structure with difference parameters (a triangular lattice with slab thickness of 800nm, lattice constant of 800nm and radius of 250nm), as shown in Fig. 5(c). The result also shows good correspondence with the previous one. This unique property of LiNbO3 PhC slabs has many potential applications such as polarization selective filters.

 figure: Fig. 5

Fig. 5 (a) Comparison of simulated transmission spectra of polarized light normally incident on a LiNbO3 PhC slab. The transmission spectra of y-polarized light are shown with solid lines, while the transmission spectra of z-polarized light are shown with dashed lines. The structure consists of a square lattice with a slab thickness t of 800nm, a lattice constant a of 800nm, and a radius r of 150nm. The inset (b) shows the coordinate system of the slab. The inset (c) also shows the comparison of simulated transmission spectra of polarized light on a different structure, which consists of a triangular lattice with a slab thickness t of 800nm, a lattice constant a of 800nm, and a radius r of 250nm.

Download Full Size | PPT Slide | PDF

3. Experimental verification

The LiNbO3 samples used in our experiments were X-cut with two sides polished. Ion implantation is firstly applied to form a buried lattice-damage layer (the damage is quite low near the surface and increases sharply at a certain range, so it’s called the “damaged layer”) at a specified depth in bulk LiNbO3. Subsequently a focused ion beam (FIB) was used to pattern 2D PhCs. The PhC pattern consists of a square array of air holes with a lattice constant of around 1µm and a radius of average 150nm, as shown in Fig. 6(a) . The beam current used in our experiment was 100pA and the acceleration voltage was 30 kV. Before milling, a 20nm Au layer was evaporated on top of the LiNbO3 substrate to avoid charging effects. This coating layer was removed after FIB milling by aqua regia. Wet etching of the damaged layer was performed by immersing the sample into a mixed acid consisting of 48% HF and 69% HNO3 (HF:HNO3 = 1:2). The damaged layer becomes chemically reactive due to the lattice defects. The top layer with minimal damage shows a very low etching rate. We carefully control the wet etching time in order to avoid over-etching, which could crack the suspended membrane. Consequently, a suspended PhC membrane was successfully formed after wet etching, as shown in Fig. 6(b). The LiNbO3 membrane had 800nm thickness and was suspended 250nm above the substrate. It can be seen that this suspended LiNbO3 PhC slab as illustrated in Fig. 6 was fabricated without serious structural defects. One advantage of this fabrication technique is that a vertical PhC profile can be achieved because the bottoms of the milled cones are truncated by the air gap. Ion-induced lattice damage can later be annealed away if necessary.

 figure: Fig. 6

Fig. 6 SEM images of the fabricated free-standing X-cut LiNbO3 PhC slab. (a)Top view: square lattice with lattice constant a = 1000nm and radius of r / a = 0.15. (b)Side view: the free-standing PhC slab with a slab thickness of 800nm and suspended 250nm above the substrate.

Download Full Size | PPT Slide | PDF

Optical characterization of the suspended PhC slab was performed using a microspectrophotometer (CRAIC Tech Ltd.) The measured reflectivity for normal incidence is plotted in Fig. 7 (the solid line). The reflectivity spectrum shows a smooth slope instead of a sharp peak because of the small air gap between the membrane and substrate. FDTD simulation is performed to compare with the measured data (the dashed line in Fig. 7). The structural parameters for simulation were estimated from the SEM image after fabrication, which consist of a square lattice of air holes with a lattice constant a = 1000nm and r/a = 0.15, a slab thickness t = 800nm and an air gap g = 250nm above the substrate, which can increase accuracy for modeling the structure proposed in this work. In experiment an X-cut sample and an un-polarized light source were used. Consequently we calculated the reflection spectrum by using the ordinary and extraordinary indices for the same structure respectively and averaging the spectra. From Fig. 7 it can be seen that the calculated spectrum agrees with the measured one. Because the spectra shift for different indices, it seems the guided resonance peaks are “smoothed” and broadened in the average spectrum. In addition two Fano resonance peaks can be observed in the wavelength range 1400nm to 1500nm. It shows excellent agreement with the two wide dips in measured spectra.

 figure: Fig. 7

Fig. 7 Reflection spectra of un-polarized light normally incident on the fabricated PhC slab. Red solid line—measured reflection spectra. Blue dashed line—simulated reflection spectra.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, the transmission characteristics of a monolithic free-standing LiNbO3 photonic crystals slabs based on Fano resonances have been systematically numerical analyzed and experimentally demonstrated for the first time. The simulation results show that the optical properties of photonic crystal slabs are very sensitive to geometrical variations like slab thickness, radius of air holes and lattice type. We demonstrate that by decreasing the slab thickness or using a triangular lattice, a lower number of modes will be generated, leading to better performance for filter and modulator applications in LiNbO3. In addition, the quality factor of these resonances can be improved by decreasing radius of holes. Furthermore, polarization-dependent transmission properties were also investigated and the results show that in X-cut LiNbO3 similar spectra can be obtained for different polarizations but there is around a 25nm blue shift for z-polarized light. In summary, we have demonstrated that a monolithic fabrication method in LiNbO3 can reliably be used to create PhC suspended slabs with predictable optical properties, and is evident that the LiNbO3 PhC slab has great potential for polarization selective devices using these geometries. These investigations will give guidance in the design of PhC slabs in LiNbO3.

The 2D PhC slabs was fabricated on a X-cut LiNbO3 substrate by ion beam enhance etching (IBEE) technology. Our ability to form such structures as reported here is important not only for traditional photonics applications, but for potential quantum optical information processing applications. Excellent agreement was obtained between measurement results of the reflection spectra and simulation analysis results from 3D FDTD. Our results shows that free-standing LiNbO3 photonic crystals slabs based on Fano resonance have potential applications for various photonic devices like tunable optical filters, sensors, and quantum optics applications where high quality, single crystal LiNbO3 is needed.

Acknowledgment

The authors acknowledge funding from Ministry of Education Tier 1 grant R263000690112.

References and links

1. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010). [CrossRef]  

2. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004). [CrossRef]   [PubMed]  

3. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002). [CrossRef]  

4. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004). [CrossRef]   [PubMed]  

5. C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100(2), 021110 (2012). [CrossRef]  

6. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003). [CrossRef]   [PubMed]  

7. W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28(19), 1763–1765 (2003). [CrossRef]   [PubMed]  

8. W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009). [CrossRef]  

9. S. Kim, S. Hadzialic, A. S. Sudbo, and O. Solgaard, “Reflectivity and polarization dependence of polysilicon single-film broadband photonic crystal micro-mirrors,” Opt. Express 20(6), 6306–6315 (2012). [CrossRef]   [PubMed]  

10. S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron. 13(2), 244–252 (2007). [CrossRef]  

11. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007). [CrossRef]  

12. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000). [CrossRef]  

13. I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974). [CrossRef]  

14. E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett. 87(21), 213503 (2005). [CrossRef]  

15. E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14(11), 2530–2536 (1996). [CrossRef]  

16. G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide,” Opt. Express 18(6), 6064–6070 (2010). [CrossRef]   [PubMed]  

17. R. Schiek, Y. Baek, G. Krijnen, G. I. Stegeman, I. Baumann, and W. Sohler, “All-optical switching in lithium niobate directional couplers with cascaded nonlinearity,” Opt. Lett. 21(13), 940–942 (1996). [CrossRef]   [PubMed]  

18. Lj. Babić and M. J. de Dood, “Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs,” Opt. Express 18(25), 26569–26582 (2010). [CrossRef]   [PubMed]  

19. O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys. 112(7), 074303 (2012). [CrossRef]  

20. F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005). [CrossRef]  

21. F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater. 32(11), 1427–1434 (2010). [CrossRef]  

22. X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001). [CrossRef]  

23. G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010). [CrossRef]  

24. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).

25. W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005). [CrossRef]  

26. S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17(3), 332–335 (1976). [CrossRef]  

27. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
    [Crossref]
  2. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004).
    [Crossref] [PubMed]
  3. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [Crossref]
  4. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
    [Crossref] [PubMed]
  5. C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100(2), 021110 (2012).
    [Crossref]
  6. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [Crossref] [PubMed]
  7. W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28(19), 1763–1765 (2003).
    [Crossref] [PubMed]
  8. W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
    [Crossref]
  9. S. Kim, S. Hadzialic, A. S. Sudbo, and O. Solgaard, “Reflectivity and polarization dependence of polysilicon single-film broadband photonic crystal micro-mirrors,” Opt. Express 20(6), 6306–6315 (2012).
    [Crossref] [PubMed]
  10. S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron. 13(2), 244–252 (2007).
    [Crossref]
  11. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [Crossref]
  12. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
    [Crossref]
  13. I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974).
    [Crossref]
  14. E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett. 87(21), 213503 (2005).
    [Crossref]
  15. E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14(11), 2530–2536 (1996).
    [Crossref]
  16. G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide,” Opt. Express 18(6), 6064–6070 (2010).
    [Crossref] [PubMed]
  17. R. Schiek, Y. Baek, G. Krijnen, G. I. Stegeman, I. Baumann, and W. Sohler, “All-optical switching in lithium niobate directional couplers with cascaded nonlinearity,” Opt. Lett. 21(13), 940–942 (1996).
    [Crossref] [PubMed]
  18. Lj. Babić and M. J. de Dood, “Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs,” Opt. Express 18(25), 26569–26582 (2010).
    [Crossref] [PubMed]
  19. O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys. 112(7), 074303 (2012).
    [Crossref]
  20. F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
    [Crossref]
  21. F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater. 32(11), 1427–1434 (2010).
    [Crossref]
  22. X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
    [Crossref]
  23. G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
    [Crossref]
  24. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).
  25. W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005).
    [Crossref]
  26. S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17(3), 332–335 (1976).
    [Crossref]
  27. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
    [Crossref]

2012 (3)

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100(2), 021110 (2012).
[Crossref]

S. Kim, S. Hadzialic, A. S. Sudbo, and O. Solgaard, “Reflectivity and polarization dependence of polysilicon single-film broadband photonic crystal micro-mirrors,” Opt. Express 20(6), 6306–6315 (2012).
[Crossref] [PubMed]

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys. 112(7), 074303 (2012).
[Crossref]

2010 (5)

G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide,” Opt. Express 18(6), 6064–6070 (2010).
[Crossref] [PubMed]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater. 32(11), 1427–1434 (2010).
[Crossref]

G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
[Crossref]

Lj. Babić and M. J. de Dood, “Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs,” Opt. Express 18(25), 26569–26582 (2010).
[Crossref] [PubMed]

2009 (1)

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[Crossref]

2007 (2)

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron. 13(2), 244–252 (2007).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

2006 (1)

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[Crossref]

2005 (3)

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005).
[Crossref]

E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett. 87(21), 213503 (2005).
[Crossref]

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

2004 (2)

2003 (2)

2002 (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

2001 (1)

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

1996 (2)

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14(11), 2530–2536 (1996).
[Crossref]

R. Schiek, Y. Baek, G. Krijnen, G. I. Stegeman, I. Baumann, and W. Sohler, “All-optical switching in lithium niobate directional couplers with cascaded nonlinearity,” Opt. Lett. 21(13), 940–942 (1996).
[Crossref] [PubMed]

1976 (1)

S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17(3), 332–335 (1976).
[Crossref]

1974 (1)

I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974).
[Crossref]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Babic, Lj.

Baek, Y.

Bainier, C.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

Bakir, B. B.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron. 13(2), 244–252 (2007).
[Crossref]

Baumann, I.

Beghoul, M. R.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater. 32(11), 1427–1434 (2010).
[Crossref]

Benchabane, S.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

Bernal, M. P.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

Bettiol, A. A.

G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Boudrioua, A.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater. 32(11), 1427–1434 (2010).
[Crossref]

Boutami, S.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron. 13(2), 244–252 (2007).
[Crossref]

Boutaoui, N.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater. 32(11), 1427–1434 (2010).
[Crossref]

Bradley, E. M.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14(11), 2530–2536 (1996).
[Crossref]

Bui, C. H.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100(2), 021110 (2012).
[Crossref]

Chen, L.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[Crossref]

Chuwongin, S.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[Crossref]

Courjal, N.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

Crozier, K. B.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[Crossref]

Dahdah, J.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

Dally, R. L.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys. 112(7), 074303 (2012).
[Crossref]

Danner, A. J.

G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
[Crossref]

de Dood, M. J.

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Dogheche, E.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater. 32(11), 1427–1434 (2010).
[Crossref]

E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett. 87(21), 213503 (2005).
[Crossref]

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

Edwin, R. P.

S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17(3), 332–335 (1976).
[Crossref]

Fan, S.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[Crossref]

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005).
[Crossref]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
[Crossref] [PubMed]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28(19), 1763–1765 (2003).
[Crossref] [PubMed]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Fischer, A.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater. 32(11), 1427–1434 (2010).
[Crossref]

Fogarassy, E.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater. 32(11), 1427–1434 (2010).
[Crossref]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Furukawa, H.

Garrigues, M.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron. 13(2), 244–252 (2007).
[Crossref]

Gruson, Y.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Guilloux-viry, M.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

Günter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Hachigo, A.

E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett. 87(21), 213503 (2005).
[Crossref]

Hadzialic, S.

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Harris, J. G. E.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100(2), 021110 (2012).
[Crossref]

Hoch, S. W.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100(2), 021110 (2012).
[Crossref]

Ito, H.

Joannopoulos, J. D.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Kaminow, I. P.

I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974).
[Crossref]

Kilic, O.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[Crossref]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
[Crossref] [PubMed]

Kim, S.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Kremer, R.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater. 32(11), 1427–1434 (2010).
[Crossref]

Krijnen, G.

Kuramochi, E.

Lacour, F.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Lansiaux, X.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

Laude, V.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

Leclercq, J. L.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron. 13(2), 244–252 (2007).
[Crossref]

Lee, L. Y. T.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100(2), 021110 (2012).
[Crossref]

Letartre, X.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron. 13(2), 244–252 (2007).
[Crossref]

Lousse, V.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[Crossref]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
[Crossref] [PubMed]

Lu, G.-W.

Ma, Z.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[Crossref]

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Malley, S. T.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys. 112(7), 074303 (2012).
[Crossref]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Meriche, F.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater. 32(11), 1427–1434 (2010).
[Crossref]

Miles, E. W.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14(11), 2530–2536 (1996).
[Crossref]

Mitsugi, S.

Miyazaki, T.

Mouras, R.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater. 32(11), 1427–1434 (2010).
[Crossref]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Nakahata, H.

E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett. 87(21), 213503 (2005).
[Crossref]

Neiss-Clauss, E.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater. 32(11), 1427–1434 (2010).
[Crossref]

Notomi, M.

Novikov, H. P.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys. 112(7), 074303 (2012).
[Crossref]

Ozturk, B.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys. 112(7), 074303 (2012).
[Crossref]

Pang, H.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[Crossref]

Perrin, A.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

Perry, N. R.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys. 112(7), 074303 (2012).
[Crossref]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Qiang, Z.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[Crossref]

Qin, G.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[Crossref]

Ramaswamy, V.

I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974).
[Crossref]

Regreny, P.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron. 13(2), 244–252 (2007).
[Crossref]

Remiens, D.

E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett. 87(21), 213503 (2005).
[Crossref]

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Riccius, H. D.

S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17(3), 332–335 (1976).
[Crossref]

Rojo-Romeo, P.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron. 13(2), 244–252 (2007).
[Crossref]

Ruterana, P.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

Ryu, H.

Sabac, A.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

Schiek, R.

Schmidt, R. V.

I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974).
[Crossref]

Seassal, C.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron. 13(2), 244–252 (2007).
[Crossref]

Shikata, S.

E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett. 87(21), 213503 (2005).
[Crossref]

Shinada, S.

Shinya, A.

Si, G. Y.

G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
[Crossref]

Smith, S. D.

S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17(3), 332–335 (1976).
[Crossref]

Sohler, W.

Solgaard, O.

S. Kim, S. Hadzialic, A. S. Sudbo, and O. Solgaard, “Reflectivity and polarization dependence of polysilicon single-film broadband photonic crystal micro-mirrors,” Opt. Express 20(6), 6306–6315 (2012).
[Crossref] [PubMed]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[Crossref]

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005).
[Crossref]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
[Crossref] [PubMed]

Spajer, M.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

Sridhar, S.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys. 112(7), 074303 (2012).
[Crossref]

Stegeman, G. I.

Stone, R. L.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14(11), 2530–2536 (1996).
[Crossref]

Sudbo, A. S.

Suh, W.

Teng, J. H.

G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
[Crossref]

Teo, E. J.

G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
[Crossref]

Turner, E. H.

I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974).
[Crossref]

Ulliac, G.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

Viktorovitch, P.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron. 13(2), 244–252 (2007).
[Crossref]

Wada, N.

Wei Wong, C.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100(2), 021110 (2012).
[Crossref]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14(11), 2530–2536 (1996).
[Crossref]

Yang, H.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[Crossref]

Yang, W.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[Crossref]

Yavuzcetin, O.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys. 112(7), 074303 (2012).
[Crossref]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Zhao, D.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[Crossref]

Zheng, J.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100(2), 021110 (2012).
[Crossref]

Zhou, W.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[Crossref]

Appl. Phys. Lett. (4)

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100(2), 021110 (2012).
[Crossref]

I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974).
[Crossref]

E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett. 87(21), 213503 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron. 13(2), 244–252 (2007).
[Crossref]

J. Appl. Phys. (3)

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys. 112(7), 074303 (2012).
[Crossref]

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005).
[Crossref]

J. Lightwave Technol. (1)

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14(11), 2530–2536 (1996).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[Crossref]

J. Vac. Sci. Technol. B (1)

G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
[Crossref]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Opt. Commun. (1)

S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17(3), 332–335 (1976).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. (2)

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater. 32(11), 1427–1434 (2010).
[Crossref]

Phys. Rev. B (2)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[Crossref]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the free-standing X-cut LiNbO3 PhC slab with slab thickness (t), radius of air holes (r) and lattice constant (a). The ordinary refractive index (no) of the slab is 2.227. The inset shows the fabricated photonic crystal slab on an X-cut LiNbO3 substrate.
Fig. 2
Fig. 2 Simulated normal-incident transmission spectra of PhC slabs with various slab thicknesses (a) 300nm, (b) 700nm, (c) 1500nm. The lattice constant (a) and radius (r) of holes keep the same value: a = 900nm and the ratio of r / a = 0.28.
Fig. 3
Fig. 3 Comparison of simulated transmission spectra of PhC slabs for different lattice types. The transmission spectra of PhC slabs with a square lattice are shown with solid lines, while transmission spectra of PhC slabs with a triangular lattice are shown with dashed lines. (a) The structure consists of a slab thickness t = 800 nm, lattice constant a = 800nm and the ratio of r / a = 0.1, (b) The structure consists of a slab thickness t = 800 nm, lattice constant a = 800nm and the ratio of r / a = 0.31.
Fig. 4
Fig. 4 Comparison of simulated transmission spectra of triangular lattice PhC slabs with a radius of (a) r / a = 0.1, (b) r / a = 0.153, (c) r / a = 0.26, and (d) r / a = 0.31. The lattice constant (a) and slab thickness (t) are kept at: a = 800nm, t = 800nm.
Fig. 5
Fig. 5 (a) Comparison of simulated transmission spectra of polarized light normally incident on a LiNbO3 PhC slab. The transmission spectra of y-polarized light are shown with solid lines, while the transmission spectra of z-polarized light are shown with dashed lines. The structure consists of a square lattice with a slab thickness t of 800nm, a lattice constant a of 800nm, and a radius r of 150nm. The inset (b) shows the coordinate system of the slab. The inset (c) also shows the comparison of simulated transmission spectra of polarized light on a different structure, which consists of a triangular lattice with a slab thickness t of 800nm, a lattice constant a of 800nm, and a radius r of 250nm.
Fig. 6
Fig. 6 SEM images of the fabricated free-standing X-cut LiNbO3 PhC slab. (a)Top view: square lattice with lattice constant a = 1000nm and radius of r / a = 0.15. (b)Side view: the free-standing PhC slab with a slab thickness of 800nm and suspended 250nm above the substrate.
Fig. 7
Fig. 7 Reflection spectra of un-polarized light normally incident on the fabricated PhC slab. Red solid line—measured reflection spectra. Blue dashed line—simulated reflection spectra.

Metrics