Abstract

We present a technique for large-scale optimization of optical microcavities based on the frequency-averaged local density of states (LDOS), which circumvents computational difficulties posed by previous eigenproblem-based formulations and allows us to perform full topology optimization of three-dimensional (3d) leaky cavity modes. We present theoretical results for both 2d and fully 3d computations in which every pixel of the design pattern is a degree of freedom (“topology optimization”), e.g. for lithographic patterning of dielectric slabs in 3d. More importantly, we argue that such optimization techniques can be applied to design cavities for which (unlike silicon-slab single-mode cavities) hand designs are difficult or unavailable, and in particular we design minimal-volume multi-mode cavities (e.g. for nonlinear frequency-conversion applications).

© 2013 Optical Society of America

1. Introduction

In this paper, we present a new technique for large-scale optimization of optical microcavities based on the frequency-averaged local density of states (LDOS), which circumvents computational difficulties posed by previous eigenproblem-based formulations and allows us to perform full topology optimization of three-dimensional (3d) leaky cavity modes. Essentially, this technique allows us to minimize modal volume V for a given cavity quality factor Q, or equivalently a given bandwidth, by solving a single complex-frequency scattering problem at each optimization step, which is both computationally easier than solving an eigenproblem and avoids the difficulty of selecting which eigenvalue to optimize. We present proof-of-concept results in both 2d and 3d computations in which every pixel of the design pattern is a degree of freedom (“topology optimization”), e.g. for lithographic patterning of dielectric slabs in 3d. For a design Q of ≈ 104 in 3d for silicon slabs (index n = 3.52), we obtain a modal volume V = 0.06(λ/n)3 (relative to the vacuum wavelength λ), which is 4× smaller than the best comparable-Q volume found in the literature [1]. Here, the focus is on illustrating the technique rather than on designing practical cavities (for which many good designs are already available in the single-mode silicon case), so we do not incorporate regularizations [28] to force the optimization to find easily fabricated structures. However, our results are still useful in establishing theoretical bounds, showing that significant room for improvement remains even for silicon cavities. More importantly, we show that such optimization techniques can be applied to design cavities for which (unlike silicon-slab single-mode cavities) hand designs are difficult or unavailable, and in particular we design proof-of-concept minimal-volume multi-mode cavities (e.g. for nonlinear frequency-conversion applications [9, 10]) in Secs. 8.2.3 and 8.3. We find that the optimum doubly degenerate cavity appears to be three-fold symmetric, while two-frequency cavities have more complex shapes depending on the polarization, although further work is needed to obtain manufacturable structures. Theoretical optimization is also useful to investigate the tradeoff between the size of the design region and the maximum attainable Q in slab-like situations (Sec. 8.4), and find it to be roughly exponential. All of these results are enabled by a sequence of mathematical transformations of the original cavity-design problem, depicted in Fig. 1: from the Purcell factor Q/V to the more well-posed problem of minimizing V for a given Q (Sec. 2), from the eigenproblem to a scattering problem via the LDOS (Sec. 3), from a frequency-averaged LDOS to a single complex-frequency scattering problem [11] via contour integration (Secs. 4–5), and finally from maximizing LDOS to minimizing 1/LDOS in order to circumvent optimization problems that arise for sharply peaked objectives (Sec. 7). Even though the optimization problem is nonlinear and probably non-convex [12], we obtain similar optima for many initial structures (including vacuum or random pixels), suggesting that the result may be close to a global optimum.

 figure: Fig. 1

Fig. 1 Starting with the naive objective of maximizing a microcavity’s Purcell factor Q/V, we perform a sequence of transformations of the problem in order to make it well posed and tractable. Here, we give a schematic diagram of each transformation, along with the corresponding section of the paper in which they are discussed.

Download Full Size | PPT Slide | PDF

Microcavity design, which seeks to confine a cavity “mode” for a long time (dimensionless lifetime Q) in a small “modal volume” V, has a long history [13, 14], and until recently has been dominated by hand designs, from ring resonators [15, 16] to photonic-crystal slab cavities [17, 18], in which the parameters are manually tweaked to obtain the desired results (or in some cases computer optimization is performed over a handful of parameters [1921]). These manual designs have been tremendously successful, attaining experimentally verified Q of 106 or more in modal volumes only a few wavelengths in diameter [1921]. However, fundamental questions remain: how close are the existing designs to the theoretical optima (e.g. the minimal V for any given Q), and do the optimal designs resemble the hand designs or are they entirely different? (As discussed in Sec. 2, the question is not what is the maximum Q or Q/V, because those questions have a trivial theoretical answer: ∞.) Furthermore, while design of single-mode cavities in silicon slabs has been heavily studied and many design heuristics are known, very different designs and grueling effort may be required in radically different circumstances, from new materials to new design goals such as multi-mode cavities for nonlinear optics [10]. Large-scale “topology” optimization, in which the design pattern is completely determined by computational search (often with thousands of free parameters) with little or no a priori information, offers a different route to addressing these questions. Although several authors have developed topology-optimization techniques for microcavity design [2225], most of that previous work was limited to 2d calculations [22, 23] and none of the previous work fully addressed the design tradeoff between Q and V. Some topology optimization dealt with lossless systems and avoided Q entirely [22], or maximized a 2d Q without controlling V [23] (which we argue in Sec. 2 leads to an ill-posed optimization problem). Other work used a “2.5d” heuristic for the cavity radiation loss [25], which permitted 2d calculations and led to intriguing designs, but limits the attainable Q (to < 104) because there appears to be no systematic way to improve this heuristic loss estimate. One group did perform fully 3d calculations with absorbing boundaries to capture radiation loss [24], but limited their degrees of freedom to a small region inside a photonic crystal and included an unphysical absorbing material within the cavity itself, leading to a heuristic objective whose calculation does not appear to have a rigorous quantitative relationship to key cavity properties. As we review in Sec. 3, maximizing LDOS corresponds mathematically to maximizing the power radiated by a dipole current source inside the cavity. Naively, this may seem backwards: isn’t the purpose of a cavity to minimize radiated power? However, that intuition stems from the situation in which the energy density inside the cavity is held constant: there is an equation Q = ωU/P relating the cavity Q and frequency ω with the radiated power P and the confined energy U [14], so that P ∼ 1/Q for fixed U. In our case, however, we are holding the current amplitude in the cavity fixed, in which case the radiated power PQ (as reviewed in Sec. 3) while one can show from a coupled-mode framework [14] that UQ2. Conversely, minimizing radiated power for a fixed current would correspond to minimizing LDOS, which would result in the absence of resonances. (Interestingly, Frei et al. [24] actually minimized radiated power from a fixed-current dipole, but their introduction of a heuristic absorbing region inside the cavity apparently compensated for this inverted objective and resulted in a resonant mode, albeit a mode optimizing an unclear objective.) On the other hand, our work adapts two crucial ideas from [24]: solving a scattering problem rather than an eigenproblem, and optimizing over a finite bandwidth. Nor did any previous work, to our knowledge, address topology optimization of multi-mode cavities.

2. Eigenproblem formulation

There are two key figures of merit for a resonant mode En(x) of a cavity: quality factor Q and modal volume V. The quality factor Q is a dimensionless lifetime, and 1/Q is a dimensionless decay rate [14]. Mathematically, Q is related to the frequency-domain Maxwell eigenvalue problem:

×1μ(x)×En(x)=ωn2ε(x)En(x)
with radiation boundary conditions. Because of the lossy boundary conditions, the eigenproblem is non-Hermitian and the eigenvalues are complex. The Q for the mode En(x) with eigen-frequency ωn [14] is
Q=Re[ωn]2Im[ωn].
Technically, if one considers an infinite open system (as opposed to a finite system with some absorbing boundary layer), a number of mathematical subtleties arise because the leaky “modes” are not true normalizable eigenfunctions, but are rather related to the residues of poles in the Green’s function [26]; however, we will circumvent all of these difficulties in this paper by transition to a Green’s-function LDOS approach in Sec. 3 that does not deal explicitly with eigenvalue problems. The modal volume V [27], defined as
V=ε(x)|En(x)|2dxmax{ε(x)|En(x)|2},
is a measure of the volume within which the mode is confined. (Although Eq. (3) is a standard expression, it should really be viewed as the modal volume in the limit of a lossless cavity. For a lossy cavity, ∫ε(x)|En(x)|2dx does not converge in an infinite open system; a more rigorous treatment is to define the LDOS in terms of the Green’s function as in Sec. 3 and obtain the Purcell factor from the ratio with the LDOS of the homogeneous medium.) The Purcell factor [28], which describes the enhancement of spontaneous emission rate, can be written as [29,30]
3Q4π2V(λn)3.
Here λ is the vacuum wavelength and n is the index of refraction.

For applications with light-matter interactions (such as lasers, sensors, and nonlinear frequency converters), maximal lifetime Q and minimal modal volume V are desirable [31]. It is therefore tempting to use the Purcell factor in Eq. (4) or Q/V as the figure of merit for cavity optimization. Unfortunately, maximizing Q/V leads to an ill-posed problem, because the maximum of Q/V is ∞; for example, Q/V grows exponentially with radius for a ring resonator [32]. In practice, any optimization in a finite computation cell will obtain a finite Q and V [23], but the values are then just an artifact of the finite computational domain; in this sense, maximizing Q/V is not well-posed because the solution does not converge as one increases the size of the computational domain.

In practice, however, there is an upper bound on the useful Q for two reasons. First, besides the intrinsic radiation loss (Qrad) in a cavity, there are also radiation losses due to surface roughness (Qroughness) and material absorption (Qabsorption). The total loss rate 1/Qtotal is the sum of these three effects [14]:

1Qtotal=1Qrad+1Qroughness+1Qabsorption.
In real applications, therefore, the Qtotal cannot be arbitrarily large. For example, in integrated optics it is difficult to get Qtotal more than a few million due to surface roughness [33], although microdisk and microsphere resonators can achieve higher Q by delocalizing the mode away from the surface [34, 35]. Second, there is another quality factor in the system. For any cavity-based device, the cavity is always intentionally coupled to some channels (e.g., waveguides) to get light in and out. That coupling process will be described by its own lifetime Qcoupling. It turns out that the losses in such a coupled device are proportional to Qcoupling/Qtotal [14]. Once these losses are decreased below the desired loss budget, it often does not matter in practice if one decreases them further.

A better optimization problem might be, instead, to maximize Q/V subject to Q = , or alternatively:

minVs.t.QQ˜,
where is determined by the bandwidth and loss tolerance of applications. By solving the non-Hermitian Maxwell eigenproblem Eq. (1), one could obtain Q and V from eigenvectors En(x) and eigenvalues ωn through Eq. (2) and Eq. (3). Then a natural question to ask is which eigenvalue one should optimize. In practice, one has some design frequency ω̃ given by the application, so one could optimize the eigenvalue closest to ω̃. (Equivalently, thanks to the scale-invariance of Maxwell’s equations [14], we choose units so that ω̃ = 2π, in which case the main computational choice is the resolution, i.e. the number of pixels per wavelength λ, and in some cases a slab thickness/λ.) However, asking for the mode closest to ω̃ leads to discontinuities: as the structure changes during optimization, the mode closest to ω̃ will tend to hop discontinuously. Although there are some ways to deal with this [22], the problem becomes worse when one simulates the radiation loss in a patterned dielectric slab, because in this case the finite cell is approximating a continuum of radiation modes above and below the slab. As a result, there are more and more closely spaced modes as the cell size increases. Hence, we want to circumvent this difficulty by adopting a new approach: turning the eigenproblem into a linear scattering problem. This also reduces the computational expense, because we will now require only a single linear solve per structure, whereas finding eigenvalues in the interior of a spectrum (e.g. by the shift-and-invert algorithm) requires many linear solves [36].

3. LDOS formulation

The well-known Purcell factor (Q/V and variations thereof) is, in fact, only an approximation of a more fundamental quantity, the local density of states (LDOS), which is defined in terms of the Green’s function of the system (and can be related to a “density of modes” per unit frequency per unit volume) [37]. Paradoxically, the exact LDOS is easier to compute than Q/V, because the former involves only a scattering problem (a linear system of equations) whereas the latter involves a non-Hermitian eigenproblem (for a leaky mode in the interior of the spectrum). In this section, we briefly review the definition of the LDOS and how it relates to Q/V, and in the next section we describe how the LDOS can be used as the objective for a well-posed cavity optimization problem.

In particular, we begin with the per-polarization LDOS (partial LDOS), denoted by LDOSj(ω, x′) for a polarization in direction j, which is proportional to the power radiated by a dipole in direction (unit vector) êj at position x′ with a frequency ω, i.e. a current Jêjeiωtδ (xx′). (The total LDOS is simply ∑j LDOSj, proportional to power radiated by a randomly oriented dipole.) This is a key physical quantity because quantum fluctuations, e.g. spontaneous emission or thermal fluctuations, can be viewed semiclassically as dipole currents, and the LDOS yields the enhancement of these fluctuations by any given geometry. For example, the spontaneous emission rate is proportional to the LDOS [29, 38], and therefore the ratio of LDOS between two systems indicates enhancement or suppression of spontaneous emission. The Purcell factor Q/V is an approximation to this LDOS enhancement for a high-Q microcavity, assuming that the emitter (e.g. atom or quantum dot) is positioned and oriented at the location of peak LDOSj in the cavity [29, 30, 38, 39].

These quantities can be defined more precisely as follows [29, 37, 38, 40, 41]. Poynting’s theorem [42] implies that the power radiated by a dipole J(x) is

Pj(ω,x)=12Re[J*(x)E(x)]dx,
where E(x) is the total electric field solving the frequency-domain scattering problem
(ε,ω)E(x)=iωJ(x)(ε,ω)=×1μ(x)×ε(x)ω2J(x)=δ(xx)e^j.
This yields the following well known [29, 37, 38, 40, 41] definition of LDOSj:
LDOSj(ω,x)=12πPj(ω,x)=6πRe[J*(x)E(x)dx],
where the 12/π factor is a conventional normalization that arises from the dual interpretation of the LDOS as a local “density” of eigenstates [29, 38]. (The normalization is irrelevant for optimization or for evaluating LDOS ratios in different systems to obtain enhancement factors.)

In the limit of a low-loss cavity, in which the LDOS is dominated by the contribution of a single pole in Maxwell’s equations (a single “resonant mode”), one can derive the approximation [38]

LDOSj(ω,x)=6πωε(x)QV,
and by taking the ratio of this quantity with the LDOS of a homogeneous medium with index n=ε one [29] obtains the traditional Purcell factor Eq. (4). In particular, the LDOS in a microcavity resonating a frequency ω̃ (1 + i/2) is approximately in the form of a Lorentzian peak centered at ω̃ with a bandwidth ω̃/2 [38], and the Purcell factor is the enhancement at the peak. This relationship between Q and LDOS bandwidth is the key to obtaining a tractable well-posed optimization problem in the next section.

We propose that LDOSj or its variants can be used as figure of merit for the characterization and optimization of a microcavity. Note that the precise figure of merit should really depend on the application. For example, if we are interested in the spontaneous emission rate for the dipole at a specific position x′ with a specific polarization êj, then LDOSj(ω, x′) is the most relevant figure of merit. On the other hand, if we have a dipole at a specific point x′ with a randomly distributed polarization, then the figure of merit would be ∑j LDOSj(ω, x′) (for the average case) or minj LDOSj(ω, x′) (for the worst case). In nonlinear devices for frequency conversion (in particular, second harmonic generation), a more relevant figure of merit might be minn LDOSj(ωn, x′), where ωn are different frequencies of interest. Instead of at a single point x′, if the dipoles of interest are distributed [with probability density function s(x)] in a region V with polarization êj, the most relevant figure of merit in this case is∫V LDOSj(ω, x)s(x)dx. Depending on the applications for enhancement or inhibition, we should maximize or minimize the figure of merit correspondingly. Many other variations could be devised.

For all the above mentioned applications, LDOSj is the basic building block. We therefore focus on this case: we maximize the spontaneous emission rate for a dipole at a point x′ with given polarization êj. For simplicity, from now on, we shall omit the explicitj and x′ dependence from LDOSj(ω, x′), and simply write LDOS(ω) to denote the figure of merit given in Eq. (9). In Sec. 8.2, however, we will also consider a case where the dipole polarization is randomly distributed, and in Secs. 8.2.3 and 8.3 we consider multi-mode cavities.

4. Frequency-averaged LDOS

In previous section, we proposed that one way of attacking the problem of microcavity design is to maximize the LDOS. However, simply maximizing LDOS(ω) in Eq. (9) is still ill-posed as in Sec 2, being equivalent to Q/V. As explained in Sec. 2, a well-posed formulation could be obtained by specifying a desired cavity lifetime . In terms of LDOS, this is equivalent to specifying an upper bound ω̃/2 on the bandwidth Γ̃. For computational convenience, we instead maximize the average LDOS over this finite bandwidth Γ̃:

L=LDOS(ω)W(ω)dω.
Here, W(ω) is some weight function or window function we choose, which is peaked around the design frequency ω̃ and decays rapidly (with a finite integral) outside of a bandwidth Γ̃ around ω̃. As we will explain in Sec. 4.3, it will turn out that performing this average is mathematically equivalent to computing the LDOS at a single frequency with an absorption loss added into the system, which effectively limits Q to the desired bandwidth (more precisely, for Q the figure of merit is dominated by the modal volume). Equivalently, as Q increases the LDOS of a resonance approaches a delta function with amplitude ∼ 1/V [38], so that the integral Eq. (11) is determined mainly by the 1/V factor as soon as the resonance is narrower than Γ̃ (Q). The key point is that maximizing the bandwidth-averaged LDOS regularizes the optimization problem to eliminate the possibility of diverging-Q solutions as the computational cell size increases.

The main remaining question is how to efficiently compute the average LDOS of Eq. (11). The most straightforward approach would be to apply a standard numerical-integration procedure [43], which would involve evaluating the LDOS (i.e., solving a scattering problem) for many separate frequencies over the bandwidth Γ̃. (This is similar in spirit to the multi-frequency optimization approach of [24].) However, as described in the next two sections, we can exploit techniques from complex analysis to evaluate the exact LDOS integral by solving only a single scattering problem at a complex frequency ω̃ + iΓ̃. The key to this technique is that the LDOS derives from a causal Green’s function, as reviewed in Sec. 4.1. This allows us to perform a contour integration, with an appropriate choice of W(ω), in order to obtain the integral as described in Sec. 4.2. As explained in Sec. 4.3, we can reinterpret any complex-frequency scattering problem as a real-frequency scattering problem with complex materials (i.e., absorption). Finally, in Sec 5 we discuss convenient choices of the window function W(ω) that reduce the contour integral to a single complex-ω scattering problem. (We previously applied a very similar application of causality and complex analysis to analysis of electromagnetic cloaking bandwidth [11], and related ideas can be found in quantum field theory [44, 45].)

4.1. Causality and analyticity

Before we proceed, we first define a function f (ω), which is a complex version of LDOS(ω):

f(ω,x)=6πJ*(x)E(x,ω)dx.
Comparing with Eq. (9), it is clear that LDOS(ω) = Re[f(ω)]. [From now on, we will omit the x′ dependency of f (ω, x′).] Note that the operator (ε, ω) given in Eq. (8) is a linear operator relating the electric field E(x, ω) to the (time-harmonic) input electric current J(x) at a given frequency ω. Causality [the electric field E comes after (not before) the current J] implies that E(x, ω) is analytic in the upper-half complex-ω plane [46]. Therefore, f (ω) is also analytic in the upper-half complex-ω plane.

4.2. Contour integration

In this section, we are going to compute the mean LDOS by exploiting the analyticity of f (ω), via:

L=LDOS(ω)W(ω)dω=Re[f(ω)]W(ω)dω=Re[p.v.f(ω)W(ω)dω].
Here, p.v. denotes the Cauchy principal value, which we use because the imaginary part of f (ω) may have a singularity at ω = 0, as in the case of f (ω) in free space [40,42,47,48]. Now we want to complete our integration contour (Fig. 2) in the upper-half plane and evaluate L by residue theorem [49]
A1+A2+A3f(ω)W(ω)dω=2πikRes[f(ω)W(ω),ω¯k].
Here, ω̄k denotes a pole of W (ω) in the upper-half plane and Res is its residue [49]. In Sec. 5, we will choose W(ω) so that these poles and residues are easy to evaluate. Furthermore, we can choose the weight function W(ω) so that it decays faster than 1/|ω|3 for large ω, in which case the contribution from arc A3 will be zero since LDOS(ω) is proportional to ω2 in 3d (or ω in 2d) free space and f (ω)W(ω) will decay faster than 1/|ω| on arc A3. We can obtain the contribution from arc A2 by evaluating the residue due to the simple pole of f (ω) at ω = 0
A2f(ω)W(ω)dω=122πiW(0)limω0ωf(ω).
The factor −1/2 comes from the fact that the integration is along a clockwise semicircle. Since the weight function is peaked around design frequency ω̃ with some narrow bandwidth Γ̃, we can require that W(0) is small, and therefore the contribution from A2 is negligible comparing to the residues at ω̄k. From Eq. (13), L is just the path integral along the path A1 [46]. Therefore, we have
L=Re[2πikRes[f(ω)W(ω),ω¯k](A2+A3f(ω)W(ω)dω)]Re[2πikRes[f(ω)W(ω),ω¯k]].

 figure: Fig. 2

Fig. 2 Contour integration path. The frequency-averaged LDOS is the path integral along arc A1 in the limit of an infinite-radius arc. By choosing the proper window/weight function W (ω) for optimizing LDOS in a desired bandwidth, the contribution along arcs A2 and A3 can be made negligible compared to A1. Therefore, the residues at poles ω̄k enclosed by this contour can be used to approximate the averaged LDOS.

Download Full Size | PPT Slide | PDF

4.3. From complex frequency to material absorption

To compute the residue at the complex poles, we need to solve the scattering problem at complex frequencies. More precisely, the scattering problem Eq. (8) at complex frequency ω + iΓ can be written as

(×1μ(x)×ε(x)(ω+iΓ)2)E(x,ω+iΓ)=i(ω+iΓ)J(x)(×1μ(x)(1+iΓω)×ε(x)ω2(1+iΓω))E(x,ω+iΓ)=iωJ(x)(×1μ(x)(1+i2Q)×ε(x)(1+i2Q)ω2)E(x,ω+iΓ)=iωJ(x).
We denote this complex scattering operator by ℳ̃(ε, ω), namely
˜(ε,ω)=×1μ(x)(1+i2Q)×ε(x)(1+i2Q)ω2=×1μ˜(x)×ε˜(x)ω2.
Clearly, this is equivalent to solving a scattering problem at real frequency ω̃ with materials ε̃(x) = ε(x)(1 + i/2Q) and μ̃ (x) = μ(x)(1 + i/2Q). (In fact, any change to the frequency can be converted into a change of materials [50].) In particular, adding a positive imaginary part to ω (for ω̄k in the upper-half plane [11]) corresponds to a positive imaginary part in ε̃(x) and μ̃(x), which corresponds (with our eiωt convention) to an absorption loss.

5. Possible window functions

In this section, we discuss two convenient window functions: a simple Lorentzian and the square of a Lorentzian. (A third possibility, the difference of two Lorentzians is discussed in [51].)

5.1. A simple Lorentzian

The simplest window function, with only a simple pole in the upper-half plane, is a Lorentzian centered at ω̃ with half-width Γ̃. The frequency-average LDOS against this weight is

L1=LDOS(ω)Γ˜/π(ωω˜)2+Γ˜2=Re[f(ω˜+iΓ˜)],
which only requires solving the scattering problem Eq. (17) at a single complex-frequency ω̃ + iΓ̃. L1 is a perfectly finite, well-defined quantity in a discretized simulation with a finite spatial resolution (finite grid).

In combination with Sec. 4.3, the objective Eq. (19) has a simple interpretation that coincides with the discussion in Sec. 2. Our frequency-averaged LDOS objective is equivalent to maximizing the LDOS at a single frequency, i.e. the Purcell factor Q/V of a cavity, but a cavity in which an absorption loss has been added to otherwise lossless materials. In particular, the absorption loss that arises from multiplying ε(x) and μ(x) by 1 + i/2 can be seen from perturbation theory [14] (for ≫ 1) to yield an absorption lifetime of exactly Qabsorption = . From Eq. (5), this means that Qtotal, and that increasing Qrad will have little effect on the Purcell factor Qtot/V. Hence, optimizing the frequency-averaged objective will tend to increase Qrad until it is > , and after that will mainly try to decrease V, similar in spirit to Eq. (6).

However, a careful examination reveals that this simple average does not converge as the resolution increases. There are two equivalent ways to understand this. First, in a continuous medium, the integral does not converge because the window function decays like 1/|ω|2 while LDOS(ω) behaves like |ω| (in 2d free space) or |ω|2 (in 3d free space) for large |ω|. (For finite spatial resolution, there is an upper frequency cutoff that eliminates this divergence.) Second, from the relationship between the complex-frequency scattering and lossy material discussed in the previous section, we know that the residue Re[f (ω̃ + iΓ̃)] is actually the power emitted by a dipole in lossy material, which is the sum of the power radiating to the outside of the cavity and the power absorbed by the lossy material in the cavity [41]. It is known that this absorbed power is infinite because E(x) diverges as 1/r3 in the neighborhood of the dipole (in 3d free space) [40, 47, 52, 53]. (In a lossless medium, only Im[E(x)] diverges as 1/r3, so LDOS ∼ Re[E(x)] is finite.) In discretized space, the Green’s function is finite and diverges as (resolution)3 in 3d. To avoid this singularity, we need to choose window functions which decay faster than |ω|3 at large |ω|. Two natural candidates are the difference of two Lorentzians [51] and the square of a Lorentzian.

5.2. Square of a Lorentzian

To ensure that the W(ω) decays faster than 1/|ω|3, we propose the window function,

W(ω)=2Γ˜3/π((ωω˜)2+Γ˜2)2,
which is a normalized square of a Lorentzian function. This window function has a double pole at ω = ω̃ + iΓ̃ in the upper-half plane. Applying the residue theorem, we have from Eq. (16) and Eq. (20)
L=LDOS(ω)W(ω)dωRe[f(ω˜+iΓ˜)iΓ˜f(ω˜+iΓ˜)],
where f′ (·) denotes differentiation with respect to ω. In appendix 10, we show that
f(ω,x)=f(ω,x)ω+i12πε(x)ET(x,ω)E(x,ω)dx.
From Eq. (12) and Eq. (22), it is clear that both f (ω̃ +iΓ̃) and f′(ω̃ +iΓ̃) can be obtained from a single scattering solution E(x, ω̃ + iΓ̃) (see appendix 10) and
f(ω˜+iΓ˜)iΓ˜f(ω˜+iΓ˜)=ω˜ω˜+iΓ˜(6π)e^j*E(x,ω˜+iΓ˜)+12πΓ˜ε(x)ET(x,ω˜+iΓ˜)E(x,ω˜+iΓ˜)dx.
In summary, we can still obtain the entire frequency-averaged LDOS by solving a single scattering problem Eq. (17) at a complex frequency ω̃ + iΓ̃.

We know that Eq. (20) gives a finite average LDOS because it decays fast enough with ω, but it is interesting to also consider how it fixes the divergence from the second viewpoint in Sec. 5.1 (that of the infinite power absorption from a dipole in a lossy medium). The explanation is essentially that the second term in Eq. (23) is roughly a subtraction of the divergent absorbed power from the first term: Γ̃ε is ω Im(ε̃) from Sec. 5.1, and ω Im(ε̃)|E|2 is absorbed power [41]. (A subtlety arises from having +ETE, rather than −|E|2, but the 1/r3 divergence at r → 0 should be dominant in Im(E) for small Γ̃ so one should have ETE ≈ −Im(ET)Im(E) ≈ −|E|2 as r → 0.)

Since the role of the second term in Eq. (23) is essentially to subtract off the divergent absorbed power in lossy ε̃ medium, and this divergence comes from the 1/r3 field divergence that is independent of geometry (the scattered field from the surrounding geometry is finite at r = 0), one might expect that the second term in Eq. (23) plays little role in geometry optimization at a fixed resolution. Indeed, we find in numerical experiments that the optimizations with and without the second terms in Eq. (23) for the 2d TE case (discussed in Sec. 8.2) discover similar structures. Therefore, in Sec. 8 we optimize the simpler single-Lorentzian objective of section 5.1, although Eq. (23) is computationally feasible if it becomes necessary.

6. A preliminary formulation

Now we have a preliminary formulation for our cavity optimization in terms of the frequency-averaged local density of states:

max{designs}L=LDOS(ω)W(ω)dω.
We can evaluate the objective L by contour integration, which only requires us to solve the complex scattering problem Eq. (17) once. If we choose the window function W(ω) from Eq. (20), then the problem can be reformulated as
max{designs}L=Re[=f(ω˜+iΓ˜)iΓ˜f(ω˜+iΓ˜)].
Mathematically, to compute the objective in Eq. (25), we need
  1. For given ε(x), ω̃, and Γ̃, solve the complex scattering problem Eq. (17) to obtain E(x, ω̃ + iΓ̃).
  2. Obtain from the solution E(x, ω̃ + iΓ̃) through the formula Eq. (23).
  3. Take the real part of to get L.

To speed up the optimization, we must also have the gradient of the objective with respect to the design parameter εk (the dielectric constant at each “pixel” k). Applying the standard adjoint technique [54], only one more linear system with the same operator ℳ̃(ε, ω̃) but a different source term need be solved to obtain the gradient. We provide the detailed calculation in appendix 10 and summarize the procedure here:

  1. Solve the complex scattering problem
    ˜(ε,ω˜)A(x,ω˜+iΓ˜)=ε(x)E(x,ω˜+iΓ˜)
    to obtain A(x, ω̃ + iΓ̃).
  2. The gradient ∂ℒ/∂εk is a combination of E(x, ω̃ + iΓ̃) and A(x, ω̃ + iΓ̃) (see appendix 10):
    εk=(i+1Q˜)2πω˜ET(xk,ω˜+iΓ˜)E(xk,ω˜+iΓ˜)+12πω˜3Q˜(1+i2Q˜)AT(xk,ω˜+iΓ˜)E(xk,ω˜+iΓ˜).
  3. Take the real part of ∂ℒ/∂εk to obtain ∂L/∂εk.

Note that the scattering operator Eq. (26) in the sensitivity analysis is the same as the operator in the objective evaluation. We can take advantage of this by reusing the information (e.g., the preconditioner or LU factorization) from the solution of Eq. (17). We will discuss this in detail in Sec. 7.1.

7. Numerical scheme for cavity optimization

In this section, we discuss the numerical implementation for our frequency-averaged LDOS formulation given in Sec. 6. In order to solve this PDE-constrained optimization problem computationally, we need fast and efficient implementations for objective evaluation, gradient evaluation, and optimization.

7.1. Objective and gradient evaluation

As we discussed in Sec. 6, evaluating the objective LDOS involves solving the scattering problem Eq. (17). We can apply any standard frequency-domain solver technique to this problem (e.g., finite-difference, finite-element, or boundary-element methods). Here, we simply adopt the finite-difference approach [5557]. If we impose mirror symmetry planes in the system, we can obtain an 8-fold reduction in the number of unknowns (see Sec 8.5.1).

For the finite-difference frequency-domain (FDFD) method, the most robust solution technique is a sparse-direct solver, which is excellent in 2d, but expensive (in both memory and time) in 3d [58]. In contrast to direct solvers, iterative solvers (e.g., GMRES or BiCGStab) work quite well if one has a good preconditioner [36]. Here, we combine both of these techniques. During the optimization, we re-solve many times for slightly different structures. Therefore, we can use sparse-direct factorization from one step as a preconditioner for iterative solvers in many subsequent steps [51]. We implemented the FDFD solver with the parallel sparse-matrix library PETSc [5961] and the parallel sparse-direct solver PaStiX [62].

7.2. Optimization scheme

We use a free-software implementation [63] of standard gradient-based optimization algorithms, and we find that low-storage BFGS [64] and conservative convex separable approximations (CCSA) [65] work equally well. However, we find that one additional mathematical transformation is required in order to optimize high-Q cavities: instead of maximizing L, we minimize 1/L.

If we attempt to maximize L directly as in Eq. (24), we typically find that the convergence of any standard optimization algorithm slows to a halt for Q ≳ 1000. The reason for this is that, for high-Q cavities, the objective function becomes a “narrow ridge” (a sharply-peaked function along some low-dimensional manifold in the parameter space), with a large second derivative (∼ Q3, as shown in [51]) in the direction perpendicular to the ridge, and it is well known that optimization along narrow ridges is problematic [66]. Most algorithms tend to “zigzag” slowly along the ridge, and even quasi-Newton methods like BFGS break down when the second derivative is so large that the Hessian matrix becomes ill-conditioned. However, because the LDOS is strictly positive, there is a simple solution: maximizing L is equivalent to minimizing 1/L, and the reciprocal of a sharp peak is a shallow valley, so we find that the 1/L objective avoids most of the problems of slow convergence. (For example, in the 2d TM optimization to be discussed in Sec. 8.1, maximization of L makes no progress if the initial structure is a high-Q photonic-crystal cavity, whereas minimization of 1/L converges to a significantly improved structure as described below.)

In practice, there is another useful technique: a successive-refinement strategy (somewhat analogous to [67,68]). We found that gradually increasing the specified (decreasing the bandwidth 1/) tends to reduce the likelihood that the optimization becomes trapped in a poor local optimum close to the starting structure, and usually produces a much better result at the highest . That is, we optimize for = 10, then use that result as a starting point for optimization at = 100, and so on.

8. Results for cavity optimization

In this section, we present some 2d and 3d cavity-optimization results, summarized as follows. We start with high-resolution 2d cases, and run simulations with different initial guesses (vacuum, photonic crystal with a defect, and random structures) and different dipole polarizations (TM, TE, and random). In the region to be optimized, we allow the dielectric constant ε ∈ [1, 12.4] at each pixel to be one degree of freedom [Fig. 3(a)]. For the 2d TE case, the optimization discovers similar structures for maximizing the spontaneous emission rate of a specific dipole polarization and a randomly polarized dipole. However, optimizing the worst case of a randomly polarized dipole finds a three-fold symmetric structure (Sec. 8.2.3), while two-frequency cavity optimizations yield more complex patterns depending on the polarization (Sec. 8.3). In another 2d scenario, to obtain the Q versus V tradeoff analogous to 3d slabs, we limit the degrees of freedom in one direction and choose a thin strip, instead of a square, as the region for optimization [Fig. 3(b)]. As the degrees of freedom increase, the radiation Q first increases and then becomes saturated, limited by the numerical precision in the computation. Finally, we ran a full 3d optimization on a supercomputer and obtained a structure with extremely small mode volume V = 0.06(λ/n)3, ( n=12.4). In the following, we are minimizing 1/L (the inverse of the frequency-averaged LDOS) and variations thereof, as described in the previous sections, but for simplicity we describe this below as “maximizing LDOS.”

Here, the focus is on illustrating the formulation and on establishing theoretical bounds. Further regularization techniques are generally required to obtain easily manufacturable structures, as discussed in Sec. 9.

 figure: Fig. 3

Fig. 3 For 2d cavity optimization, we start in Secs. 8.1–8.3 by optimizing over every pixel in the interior of the computational domain as indicated in (a). This leads to cavities that utilize bandgap structures to confine light with arbitrary Q, regardless of V, limited only by the size of the domain. In order to investigate Q vs. V tradeoffs analogous to those in 3d slabs, in Sec. 8.4 we limit the degrees of freedom to a thin strip (b), which imposes intrinsic radiation losses (perpendicular to the strip) and forces the optimization to sacrifice V in order to increase Q. A full 3d optimization is considered in Sec. 8.5.

Download Full Size | PPT Slide | PDF

8.1. 2D TM case

In this section, we maximize the LDOS for a dipole with TM polarization (E out of plane) in a 2d setting [Fig. 3(a)]. One possible starting point is a photonic crystal with a defect [14], like the one shown in Fig. 4(a). This is a periodic arrangement (periodicity a) of dielectric silicon rods (radius 0.2a and permittivity ε = 12.4) with one defect rod at the center (radius 0.1a). The defect TM mode is at frequency 0.32(2π/a), with quality factor Q = 1.41×108 and mode volume V = 0.097(λ/n)2. With this structure as an initial guess, we run the optimization and obtain an entirely different nested-ring structure [Fig. 4(b)] with quality factor Q = 1.01 × 1010 and mode volume V = 0.075(λ/n)2. Clearly, the optimization itself discovers a “radially periodic” structure, reminiscent of a Bragg onion [69]. We also run the optimization with vacuum as initial guess and obtain similar structure (Fig. 5) with Q = 1.30 × 109 and V = 0.075(λ/n)2.

 figure: Fig. 4

Fig. 4 2d TM optimization from PhC cavity initial guess (Sec. 8.1).

Download Full Size | PPT Slide | PDF

 figure: Fig. 5

Fig. 5 2d TM optimization from vacuum initial guess (Sec. 8.1). Q=1.30×109 and V = 0.075(λ/n)2.

Download Full Size | PPT Slide | PDF

In these two optimizations, we gradually increase the specified (we decrease the bandwidth 1/) from 10 to 105. The optimization at = 10 actually gives a high Q cavity (almost the same radiation Q) with the resonance at about 1.003ω̃. The optimizations at higher simply tune this structure so that the resonant frequency becomes much closer to ω̃. In a two-dimensional situation such as this, there is no intrinsic Q versus V tradeoff, unlike in 3d slabs [14], because Q → ∞ for a finite modal volume V as the number of layers in a Bragg onion increases [69]. So, the optimization in such a 2d case is mainly minimizing V, while the Q is bounded only by the computational-cell size.

Note that we allow the dielectric permittivity of each pixel to vary continuously from εmin = 1.0 to εmax = 12.4, but almost all the pixels (except a few at the interfaces) are at either εmin or εmax in the optimized structure. This phenomenon (reminiscent of “bang-bang” solutions in control theory [70]) had also been observed empirically in other cavity-related optimization work [3,71,72]. There has been some recent progress in proving theoretically that this is the expected solution: Osting and Weinstein [73] recently analyzed optimization problems for scalar waves, and showed that maximizing an energy confinement time over the permittivity at every point in space generally leads to a solution in which the permittivity is either the maximum or the minimum allowed value at every point, excepting a set of measure zero (e.g., at the interfaces between regions) in the limit as the resolution goes to infinity. However, we also obtain counterexamples for other types of cavity optimization, e.g. in the doubly-degenerate cavity design of Sec. 8.2.3, where substantial regions converge to intermediate values. Fortunately, in cases where this occurs, there are a variety of techniques to obtain binary solutions as discussed in Sec. 9.

8.2. 2D TE case

In this section, we consider the 2d TE polarization, for which (unlike the TM polarization of Sec. 8.1) the objective function breaks rotational symmetry and we do not expect similar Bragg-onion solutions. We will start with maximizing LDOS for a fixed êx polarization in 8.2.1. For a randomly polarized dipole, we consider two cases: maximizing the average over all polarizations in 8.2.2 and maximizing the minimum (worst case) over all polarizations in 8.2.3.

8.2.1. Fixed dipole polarization: max LDOS(ω̃; êx)

For the 2d TE polarization, let us first look at the case where the dipole is polarized in the êx direction. In other words, we want to maximize LDOS(ω̃; êx). From a vacuum initial guess, the optimization discovers the structure shown in Fig. 6. This structure has quality factor Q=5.16×108 and mode volume V = 0.092(λ/n)2. [Again, the = 10 gives an equally high-Q cavity with resonant frequency at 1.0007ω̃. The optimizations at higher = 102 to 105 simply tune the resonant frequency to ω̃.] For a random initial guess (uniform random pixels), we also obtain the same structure as the one from a vacuum initial guess, which suggests that the result may be close to a global optimum.

 figure: Fig. 6

Fig. 6 2d TE optimization for êx polarization from Sec. 8.2.1. The structure has Q=5.16×108 and V = 0.092(λ/n)2 obtained from vacuum initial guess.

Download Full Size | PPT Slide | PDF

8.2.2. Randomly polarized dipole: max meanj LDOS(ω̃; êj)

Now we want to study the case in which the dipole is randomly polarized in the plane and the objective is the mean LDOS. One might hope that the optimization will find a structure that resonates for both polarizations at the same frequency, and hence by linearity will resonate for all in-plane polarizations—this corresponds to the requirement that the microcavity be doubly degenerate, and many symmetry groups besides circular symmetry can support double degeneracies (such as three-fold, four-fold, or six-fold symmetrical structures [74]). However, we find that this is not the case: the optimization finds a singly resonant cavity that enhances LDOS for one polarization (chosen “randomly” depending on the initial structure) at the expense of the other polarization. As explained below, this suggests that the LDOS of the best single-mode TE cavity is more than twice the LDOS of the best doubly degenerate TE cavity. We performed the mean-LDOS optimization as follows. It is easy to show [29, problem 8.6] that maximizing the LDOS for a random polarization by averaging all polarizations is equivalent to maximizing the mean from the êx and êy polarizations, namely [LDOS(ω; êx) + LDOS(ω; êy)]/2. For this new objective, we ran many different simulations with different pseudo random initial guesses (each pixel is randomly chosen between εmin and εmax). About half gave the structure optimizing the êx polarization (Fig. 6), while the other half gave the 90°-rotated structure optimizing the êy polarization. From these results, it seems that the optimization, instead of favoring both êx and êy polarization simultaneously, simply randomly picks one direction and optimizes it. That is, there is a spontaneous symmetry breaking: it is better to optimize one polarization at the expense of the other than to try to obtain a doubly degenerate cavity that resonates for both polarizations. By selecting only one polarization to enhance, these structures sacrifice a factor of 2 in the mean LDOS, which is why we conclude that the best single-mode LDOS is at least twice as big as the best two-mode LDOS.

8.2.3. Optimization for a randomly polarized dipole: max minj LDOS(ω̃; êj)

In the previous section, we showed that maximizing the mean LDOS over all in-plane polarizations was equivalent to maximizing the LDOS for a single polarization at the expense of the orthogonal polarization. In order to obtain a structure that enhances all polarizations equally (via a doubly degenerate resonance), we consider a different objective: we maximize the minimum LDOS over all in-plane polarizations (rather than the mean). The result of this optimization is a three-fold symmetric microcavity shown in Fig. 7(a), which is the smallest symmetry group that supports a (non-accidental) doubly degenerate mode [74] shown in Fig. 7(b–c). (The rectangular FDFD grid breaks the three-fold symmetry, but the structure converges to true three-fold symmetry with an exact degeneracy as the resolution is increased.) Intuitively, larger symmetry groups have fewer degrees of freedom for optimization (the Cmv symmetry group [74] with m-fold rotational symmetry plus reflections leaves only a wedge of angle π/m in the degrees of freedom), so the optimization is picking the smallest possible symmetry group in order to maximize the number of degrees of freedom available for maximizing LDOS.

 figure: Fig. 7

Fig. 7 Optimized doubly-degenerate cavity from Sec. 8.2.3, generated by maximizing the minimum LDOS over all in-plane polarizations. Starting from a vacuum initial guess, the optimization discovers a structure with C3v (3-fold) rotational symmetry (top), which supports doubly-degenerate [74] TE modes whose Hz fields are plotted at bottom (blue/white/red = negative/zero/positive). (The rectangular FDFD grid slightly breaks the three-fold symmetry and the degeneracy, but the results converge to exact C3v symmetry and degeneracy as resolution increases.)

Download Full Size | PPT Slide | PDF

As predicted in Sec. 8.2.2, the effective modal volume V of this doubly degenerate cavity is 0.34(λ/n)2 > 2 times the volume of the single-mode cavity from Sec. 8.2.1.

Technically, maximizing the minimum LDOS over all polarizations is significantly harder than maximizing the mean LDOS. Unlike the mean LDOS, it is not sufficient to consider only the êx and êy polarizations, and in principle we must solve for the LDOS at all angles. The simplest approach is to merely sample the set of polarizations to compute the LDOS at many discrete angles, and then to maximize the minimum LDOS) over this set. Although we tried sampling up to 20 discrete angles, we found that it was sufficient (obtaining the same structure) to sample only three angles (0, 60, and 120). Furthermore, the minimum LDOS over several angles is no longer a differentiable function, but we circumvent that problem by the standard transformation [75] of introducing a “dummy” variable t and solving maxt subject to the non-linear constraints t ≤ LDOSj at each angle j. (The resulting nonlinear-programming problem was solved via the CCSA algorithm [65].)

8.3. 2D optimization for different frequencies: max minnLDOS(ω̃n; êj)

In nonlinear devices, e.g. for nonlinear frequency conversion, it is often desirable to design a cavity which resonates at multiple distinct frequencies [9, 10, 7679], leading to a challenging multi-frequency cavity-design problem if one desires a small-volume cavity [80, 81]. The simplest approach to designing such a multi-frequency cavity with our optimization techniques is to maximize the minimum LDOS for sources at two (or more) frequencies, ω̃1 and ω̃2. For example, we begin by considering ω̃2 = 2ω̃1 (coupling TM to TM or TE to TE), the desired relationship for intra-cavity second-harmonic generation (SHG) [79, 81], with results shown in Figs. 8(a) and 8(c). These results exhibit Bragg-onion-like structures similar to the single-frequency optimization in the previous sections, which is not surprising considering that Bragg mirrors tend to have gaps at integer frequency multiples [14] and so the same mirror can confine both a fundamental and harmonic frequency. A more challenging case for optimization, therefore, is to design frequencies that are not integer multiples, and for illustration purposes we considered ω̃2 = 1.5ω̃1, which results in the more complicated structure shown in Figs. 8(b) and 8(d).

 figure: Fig. 8

Fig. 8 Two-frequency cavity optimization from Sec. 8.3, for either TM (top) or TE (bottom) polarizations. Left: microcavities which maximize the minimum LDOS at two frequencies ω̃1 and ω̃2 = 2ω̃1, e.g. for intra-cavity second-harmonic generation applications [79, 81]. Confinement of such integer-multiple frequencies is physically enabled by the fact the concentric Bragg-onion “1d” bandgaps tend to occur at integer-multiple frequencies [14]. A more challenging case is a two-frequency cavity for ω̃2 = 1.5ω̃1, resulting in the more complicated structures shown at right. (All structures were optimized from vacuum initial guesses.)

Download Full Size | PPT Slide | PDF

8.4. 2D TE thin strip case

In previous 2d TM and TE polarization cases, we expect and obtain almost no Q versus V trade off since the cavity can be surrounded by complete photonic bandgap or a Bragg onion, with Q only limited by the computational-cell size. In a 2d setting, to get a Q versus V trade off analogous to 3d slabs, we need to limit the degrees of freedom in one direction in order to force the possibility of radiation loss. In this section, we choose the region for degrees of freedom to be a thin strip [Fig. 3(b)].

Although we expect cavities in a finite-thickness strip to have intrinsic radiation loss in the direction transverse to the strip, we also expect that it should be possible to make this radiation loss arbitrarily small at the expense of modal volume. For example, if one starts with a periodic waveguide structure [14] and introduces a defect in the periodicity, a resonant mode can be trapped, and the Q can be made arbitrarily large by gradually tapering from the defect to the periodic structure [14,8284]. To explore this tradeoff, we limit the modal volume by considering a finite-length d × 1λ strip of degrees of freedom. For each value of d (d = 1, 2, 3, 5λ), we plot the obtained radiation lifetime Qrad as a function of the requested bandwidth , and the result is shown in Fig. 9(a). For any given d, as is increased then Qrad is increased as well (as explained in Sec. 4), until it saturates at a maximum determined by two factors. First, the maximum Qrad is limited by d: a longer d gives more degrees of freedom and increases the maximum possible Qrad, as expected. Second, around Qrad ≈ 107 the improvement becomes limited by the numerical precision, which prevents the optimization from making progress even though higher Qrad should theoretically be possible. For d = 5λ, the resulting structure is shown in Fig. 9(b). [Note that the data in Fig. 9(a) are from the optimization result for the objective ε(x′)LDOS(ω, x′).]

 figure: Fig. 9

Fig. 9 2D TE optimization for thin strips with fixed width (geometry sketched in Fig. 3b). Fig. (a): Qrad vs. for 2d thin stirps with same width (λ) but different length (d = λ, 2λ, 3λ, 5λ). As is increased in the optimization, higher Qrad are obtained until Qrad is limited by the degrees of freedom. As the degrees of freedom increase, Qrad first gets bigger, but becomes saturated at some level around 107 due to numerical precision. Fig. (b): An optimized 2d thin-strip structure with width λ and length d = 5λ.

Download Full Size | PPT Slide | PDF

8.5. 3D case

In this section, we present the optimization results for the TE-like polarization in the 3d slab setting (Fig. 10). We also briefly discuss some variations on the optimized structure and its comparison with an air-slot cavity.

 figure: Fig. 10

Fig. 10 We wish to optimize a microcavity in an air-membrane Si slab in Sec. 8.5, with the effective computational domain depicted in (a), where the degrees of freedom are every pixel in the 2d pattern of the slab cross-section for a fixed thickness. Since all 2d single-polarization optimizations found structures with two mirror symmetry planes, we can reduce the computational domain to 1/8 the volume (b) by imposing these mirror symmetries along with the vertical mirror symmetry.

Download Full Size | PPT Slide | PDF

8.5.1. 3D slab optimization

With the optimization tools developed in the previous sections, we run large-scale simulations on 3d slab case (with an in-plane dipole source, coupling to even-symmetry “TE-like” [14] resonances). Here we choose the dimensions of the slab to be 3λ-3λ-0.19λ, where the thickness is 0.19λ = 0.67(λ/n). A sketch of the physical model is shown in Fig. 10(a), and the real computation domain (with mirror-symmetry reductions) is illustrated in Fig. 10(b). The optimization discovers a structure (Fig. 11) with quality factor Q = 30000 and extremely small mode volume V = 0.06(λ/n)3. [This result is obtained from optimizations with absorption gradually increasing from 10 to 104. The optimization discovers structures with radiation Q = 1.18×104 at = 100, with radiation Q = 2.55 × 104 at = 1000, and with radiation Q = 2.98 × 104 at = 104.]

 figure: Fig. 11

Fig. 11 Optimized pattern for a 3d slab from vacuum initial guess (Sec. 8.5.1) with dimensions 3λ-3λ-0.19λ: Q=30000 and V = 0.06(λ/n)3.

Download Full Size | PPT Slide | PDF

A comparison with other large- or small-scale optimization work, such as 2.5d optimization [72], L3-type cavity [20] and H0-type cavity [1] optimization are given in table 1. Clearly, the optimization was able to achieve four times smaller mode volume than the smallest mode volume (for Q within one order of magnitude of ours) we found in the literature [1]. (Note that L3-type [20] and H0-type [1] cavities are designed from small-scale optimization and can be fabricated; while both 2.5d optimization [72] and our results are purely theoretical and computational investigation from a large-scale optimization perspective.)

Tables Icon

Table 1:. Comparison of Q and V for structures from our result and the literature.

8.5.2. Sensitivity to small features

In the optimized structure, there are some filament-like structures which would be difficult to fabricate at infrared scales. As a first assessment of the importance of these tiny features, we manually remove the filaments and obtain a structure (Fig. 12) with Q = 10000 and roughly same V. Instead of post-processing the structure in this way, which has the disadvantage of no longer being a local optimum, future work should consider suppress these tiny features by imposing some explicit constraints during optimization or by some regularization and projection [3] as further discussed in Sec. 9.

 figure: Fig. 12

Fig. 12 3d slab structure after manually removing tiny features in Fig. 11 (Sec. 8.5.2): Q = 10000 and V = 0.06(λ/n)3.

Download Full Size | PPT Slide | PDF

8.5.3. Comparison with air-slot cavity

All these cavities listed in table 1 are dielectric cavities. In other words, the centers of these cavities are high-dielectric materials (Si and GaAs) and these cavities are useful for dipoles/emitters lying in these materials. It is also reflected in our unit of mode volume. For example, the mode volume of the cavity we obtain is V = 0.06(λ/n)3 = 0.06(λ/nSi)3.

It is known that air-slot cavities [8588] can have extremely small volumes. For example, Nomura [86] reported an air-slot cavity with Q = 4.8 × 106 and V = 0.015(λ/nair)3. Although 0.015 is smaller than 0.06, these two kinds of cavities are not comparable in two ways. First, the two mode volumes are in different units (λ/nair)3 versus (λ/nSi)3. In our units, their modal volume is 0.65(λ/nSi)3. Second, these two types of cavities are for different applications: air-slot cavities are useful for emitters lying in air, while the semiconductor-based cavities are designed for emitters lying in Si and GaAs.

If the application is for emitters lying in air, in theory, we can also introduce an infinitesimal air-slot at the center, oriented perpendicular to the electric field, into our structure. As discussed in [85], after the introduction of an air-slot, the mode volume decreases by a factor of (nSi/nair)2 without changing Q. In our case, this factor is about 12.4, and the new mode volume is 4.8 × 10−3(λ/nSi)3 = 1.1×10−4(λ/nair)3. Because the resolution we used (46-pixel per wavelength in air) is not that high, the optimization discovers a dielectric cavity, instead of one with air-slot type. In future work, one could run the optimizations with high resolutions (at least in 2d cases) to investigate whether air-slot structures can be discovered; at such high resolution, the regularized figure of merit of Eq. (21) discussed in Sec. 5.2 becomes essential.

9. Manufacturability: Projection and Regularization

The primary purpose of this paper is to improve the mathematical formulation of the microcavity problem to make it amenable to large-scale topology optimization. It is well known, however, that such topology optimization can sometimes lead to non-manufacturable designs, due to three problems: regions of intermediate ε values, fine features (such as the “hairs” in Fig. 11), and extreme sensitivity to variations in the design parameters. Fortunately, there are a variety of techniques to correct these difficulties, which could easily be combined with our LDOS formulation, and we briefly review these projection, regularization and robustification techniques here for the benefit of future work.

In cases where the optimization does not lead to “bang-bang” solutions, i.e. where there are large regions of intermediate values that do not correspond to available materials, one can use a variety of penalization techniques that add a penalty (increased as needed) to the objective for intermediate ε values [3, 89]. Another possibility is to use a level-set method [4, 90, 91], which guarantee binary solutions (except possibly on a set of measure zero, since intermediate values are typically used at the level set boundary in order to ensure continuity). A third possibility is the SIMP (Solid Isotropic Material with Penalization) [3], a re-parameterization of the problem that is used in conjunction with the filtering techniques described below in order to project the solution towards a bang-bang result.

To eliminate small features, a common solution is to apply a smoothing filter to the degrees of freedom (combined with a smoothed Heaviside projection to transform back towards bang-bang designs) [2, 58, 9295]. This is often viewed as a regularization to ensure that the problem is well-posed in the sense that the optimum should converge with resolution (rather than yielding finer and finer features) [3]. Another approach that can eliminate small features as well as designs with extreme parameter sensitivity is “robust” optimization, in which one typically optimizes a worst-case design over a set of parameter uncertainties (e.g. a small “noise” added to each pixel) [67,96,97], which has been shown in some cases to also eliminate small features in topology optimization for photonics [68, 98, 99].

10. Conclusion

In this paper, we presented a novel formulation for large-scale optimization of optical cavities via frequency-averaged LDOS. With this formulation, we obtained various 2d and 3d cavity-optimization results for different applications. Our results show that several times smaller modal volume is theoretically possible for silicon cavities compared to previous work, without sacrificing Q. Many other possibilities present themselves for future work. First, the slab thickness in the 3d optimization (Sec. 8.5) is fixed, but one can further extend our approach by allowing the slab thickness to be one additional degree of freedom to improve the figure of merit. Second, although we focused here on silicon-based cavities, one can easily apply our approach to other materials (such as lower-index diamond for visible frequencies [100,101]). Since silicon cavity design has been so heavily studied and many adequate designs are already known, it is especially in the context of new materials systems that optimization can be valuable. Third, instead of maximizing LDOS, one can maximize the frequency-averaged total DOS over the whole computational cell, which is known to be related to the bounds of the light trapping in photovoltaic problems [102, 103]. Fourth, one can extend our work on multi-frequency optimization (Sec. 8.3) by defining a more specialized figure of merit for nonlinear frequency conversion that includes an overlap factor [79, 81] for the two modes.

Appendix A: Computation of f′(ω, x′)

In this section, we compute f′(ω, x′), the differentiation ∂/∂ω of f (ω, x′) from Eq. (12), to show that the residue of Eq. (21) can be evaluated without any additional matrix solves. Differentiating on both sides of Eq. (8), we have

(ε,ω)E(x,ω)ω+(ε,ω)ωE(x,ω)=iJ(x)E(x,ω)ω=1(iJ(x)(ε,ω)ωE(x,ω))=1(iJ(x)+2ωε(x)E(x,ω)).
Now differentiating on Eq. (12), we have
f(ω,x)=6πJ*(x)E(x,ω)ωdx=6π[1ωJ*(x)1(iωJ(x))dx+2ωJ*(x)1ε(x)E(x,ω)dx]=6π1ωJ*(x)E(x,ω)dx+i12π(1(iωJ(x)))Tε(x)E(x,ω)dx=f(ω,x)ω+i12πε(x)ET(x,ω)E(x,ω)dx.
Note that we use the properties that (ε, ω) is complex symmetric ( = T) for both real and complex ω and J(x) is real [J*(x) = JT (x)].

Appendix B: Computation of the objective and its gradient

In this section, we derive an efficient expression for the objective L = Re f (ω̃ + iΓ̃) − iΓ̃ f′(ω̃ + iΓ̃) defined in Sec. 5.2 as well as its gradient. The gradient of the objective with respect to the design parameters is calculated with standard adjoint methods [54] in order to minimize the number of required matrix solves.

Let us denote its complex version by = f (ω̃ + iΓ̃) − iΓ̃f′(ω̃ + iΓ̃). From Eq. (12) and Eq. (22), we can simplify it as

=f(ω˜+iΓ˜)=iΓ˜f(ω˜+iΓ˜)=f(ω˜+iΓ˜)iΓ˜(f(ω˜+iΓ˜,x)ω˜+iΓ˜+i12πε(x)ET(x,ω˜+iΓ˜)E(x,ω˜+iΓ˜)dx)=ω˜ω˜+iΓ˜f(ω˜+iΓ˜)+12πΓ˜ε(x)ET(x,ω˜+iΓ˜)E(x,ω˜+iΓ˜)dx.=ω˜ω˜+iΓ˜(6π)e^j*E(x,ω˜+iΓ˜)+12πΓ˜ε(x)ET(x,ω˜+iΓ˜)E(x,ω˜+iΓ˜)dx.
In the rest of this section, we compute the gradient of with respect to the design parameter εk, which is the dielectric constant at x = xk. To obtain the sensitivity of E(x, ω̃ + iΓ̃) to εk, we differentiate Eq. (17) with respect to εk
˜(ε,ω˜)E(x,ω˜+iΓ˜)εk+˜(ε,ω˜)εkE(x,ω˜+iΓ˜)=0E(x,ω˜+iΓ˜)εk=˜1[ω˜2(1+i2Q˜)δ(xxk)E(x,ω˜+iΓ˜)].
Therefore, from Eq. (12), Eq. (22) and Eq. (31), we have
J*(x)E(x,ω˜+iΓ˜)dxεk=J*(x)E(x,ω˜+iΓ˜)εkdx=ω˜2(1+i2Q˜)(˜1J(x))Tδ(xxk)E(x,ω˜+iΓ˜)dx=iω˜(1+i2Q˜)ET(x,ω˜+iΓ˜)δ(xxk)E(x,ω˜+iΓ˜)dx=iω˜(1+i2Q˜)ET(xk,ω˜+iΓ˜)E(xk,ω˜+iΓ˜),
and
ε(x)ETEdxεk=2ε(x)EtE(x,ω˜+iΓ˜)εkdx+δ(xxk)ET(x,ω˜+iΓ˜)E(x,ω˜+iΓ˜)dx=2ε(x)ET˜1[ω˜2(1+i2Q˜)δ(xxk)E(x,ω˜+iΓ˜)]+ET(xk,ω˜+iΓ˜)E(xk,ω˜+iΓ˜)=2ω˜2(1+i2Q˜)(˜1[ε(x)E(x,ω˜+iΓ˜)])Tδ(xxk)E(x,ω˜+iΓ˜)dx+ET(xk,ω˜+iΓ˜)E(xk,ω˜+iΓ˜).
Combining Eq. (30), Eq. (32) and Eq. (33), we have
εk=(i+1Q˜)6πω˜ET(xk,ω˜+iΓ˜)E(xk,ω˜+iΓ˜)+12πω˜3Q˜(1+i2Q˜)AT(xk,ω˜+iΓ˜)E(xk,ω˜+iΓ˜),
where A(x, ω̃ + iΓ̃) satisfies the scattering equation
˜(ε,ω˜)A(x,ω˜+iΓ˜)=ε(x)E(x,ω˜+iΓ˜).
Therefore, as usual for adjoint-methods [54], the gradient of with respect to design parameters ε can be evaluated with only a single additional matrix solve Eq. (35).

Acknowledgments

X.L. thanks J. Joannopoulos and B. Zhen for helpful discussions. This work was supported in part by the AFOSR MURI for Complex and Robust On-chip Nanophotonics (Dr. Gernot Pomrenke) grant number FA9550-09-1-0704 and by the Institute for Soldier Nanotechnologies under Contract W911NF-07-D0004. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575.

References and links

1. M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express 18, 8144–8150 (2010). [CrossRef]   [PubMed]  

2. B. Bourdin, “Filters in topology optimization,” Int. J. Numer. Methods Eng. 50, 2143–2158 (2001). [CrossRef]  

3. M. P. Bendsoe and O. Sigmund, Topology Optimization: Theory, Methods and Applications, 2nd ed. (Springer, 2003).

4. M. Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003). [CrossRef]  

5. G. Allaire, F. Jouve, and A.-M. Toader, “Structural optimization using sensitivity analysis and a level-set method,” J. Comput. Phys. 194, 363–393 (2004). [CrossRef]  

6. O. Sigmund, “Manufacturing tolerant topology optimization,” Acta Mech. Sinica 25, 227–239 (2009). [CrossRef]  

7. E. Andreassen, A. Clausen, M. Schevenels, B. Lazarov, and O. Sigmund, “Efficient topology optimization in MATLAB using 88 lines of code,” Struct. Multidiscip. Optim. 43, 1–16 (2011). [CrossRef]  

8. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5, 308–321 (2011). [CrossRef]  

9. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007). [CrossRef]   [PubMed]  

10. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

11. H. Hashemi, C. W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “A diameter–bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86,013804 (2012). [CrossRef]  

12. D. P. Bertsekas, Nonlinear Programming, 2nd ed. (Athena Scientific, 1999).

13. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure and Applied Optics), 2nd ed. (Wiley-Interscience, 2007).

14. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

15. D. G. Rabus, Integrated Ring Resonators, Vol. 127 of Springer Series in Optical Sciences(Springer, 2007).

16. S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010). [CrossRef]   [PubMed]  

17. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38, 850–856 (2002). [CrossRef]  

18. C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S. G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242–1244 (2004). [CrossRef]  

19. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef]   [PubMed]  

20. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005). [CrossRef]   [PubMed]  

21. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005). [CrossRef]  

22. D. C. Dobson and F. Santosa, “Optimal Localization of Eigenfunctions in an Inhomogeneous Medium,” SIAM J. Appl. Math. 64, 762–774 (2004). [CrossRef]  

23. C.-Y. Kao and F. Santosa, “Maximization of the quality factor of an optical resonator,” Wave Motion 45, 412–427 (2008). [CrossRef]  

24. W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103,033102 (2008). [CrossRef]  

25. J. Lu and J. Vuckovic, “Inverse design of nanophotonic structures using complementary convex optimization,” Opt. Express 18, 3793–3804 (2010). [CrossRef]   [PubMed]  

26. A. W. Snyder and J. Love, Optical Waveguide Theory, Science Paperbacks, 190 (Springer, 1983).

27. R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proceedings - Optoelectronics 145, 391–397 (1998). [CrossRef]  

28. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69,674 (1946).

29. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006). [CrossRef]  

30. A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010). [CrossRef]   [PubMed]  

31. B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 110, 13711–13716 (2013). [CrossRef]   [PubMed]  

32. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969). [CrossRef]  

33. F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997). [CrossRef]  

34. V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998). [CrossRef]  

35. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15, 4694–4704 (2007). [CrossRef]   [PubMed]  

36. L. N. Trefethen and D. Bau, Numerical Linear Algebra (SIAM, 1997). [CrossRef]  

37. K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications, Springer Series in Optical Sciences (Springer, 2010).

38. A. Oskooi and S. G. Johnson, “Electromagnetic wave source conditions,” in Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, A. Taflove, A. Oskooi, and S. G. Johnson, eds. (Artech, 2013), Chap. 4, pp. 65–100.

39. J.-M. Gerard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17, 2089–2095 (1999). [CrossRef]  

40. O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998). [CrossRef]  

41. G. D’Aguanno, N. Mattiucci, M. Centini, M. Scalora, and M. J. Bloemer, “Electromagnetic density of modes for a finite-size three-dimensional structure,” Phys. Rev. E 69,057601 (2004). [CrossRef]  

42. J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley, 1975).

43. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).

44. M. E. Peskin and D. V. Schroeder, An Introduction To Quantum Field Theory (Frontiers in Physics) (Westview, 1995).

45. S. G. Johnson, “Numerical methods for computing Casimir interactions,” in Casimir Physics, Vol. 834 of Lecture Notes in Physics, D. Dalvit, P. Milonni, D. Roberts, and F. da Rosa, eds. (Springer, 2011), Chap. 6. [CrossRef]  

46. L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Butterworth-Heinemann, 1984).

47. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995).

48. N. A. P. Nicorovici, R. C. McPhedran, and L. C. Botten, “Relative local density of states for homogeneous lossy materials,” Physica B 405, 2915–2919 (2010). [CrossRef]  

49. L. V. Ahlfors, Complex Analysis, 3rd ed. (McGraw-Hill, 1978).

50. A. W. Rodriguez, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Theoretical ingredients of a Casimir analog computer,” Proc. Natl. Acad. Sci. U. S. A. 107, 9531–9536 (2010). [CrossRef]   [PubMed]  

51. X. Liang, Ph.D. thesis, Massachusetts Institute of Technology, 2013.

52. S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999). [CrossRef]  

53. C. Van Vlack and S. Hughes, “Finite-difference time-domain technique as an efficient tool for calculating the regularized Green function: applications to the local-field problem in quantum optics for inhomogeneous lossy materials,” Opt. Lett. 37, 2880–2882 (2012). [CrossRef]   [PubMed]  

54. G. Strang, Computational Science and Engineering (Wellesley-Cambridge, 2007).

55. A. Christ and H. L. Hartnagel, “Three-dimensional finite-difference method for the analysis of microwave-device embedding,” IEEE Trans. Microwave Theory 35, 688–696 (1987). [CrossRef]  

56. K. Yasumoto, Electromagnetic Theory and Applications for Photonic Crystals, Optical Science and Engineering (CRC, 2005). [CrossRef]  

57. W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” J. Comput. Phys. 231, 3406–3431 (2012). [CrossRef]  

58. T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms) (SIAM, 2006). [CrossRef]  

59. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient Management of Parallelism in Object Oriented Numerical Software Libraries,” In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds. (Birkhäuser, 1997). [CrossRef]  

60. S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual,” Technical Report No. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012).

61. S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Web page,” http://www.mcs.anl.gov/petsc, 2012.

62. P. Hénon, P. Ramet, and J. Roman, “PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems,” Parallel Computing 28, 301–321 (2002). [CrossRef]  

63. S. G. Johnson, “The NLopt nonlinear-optimization package,” http://ab-initio.mit.edu/nlopt.

64. D. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Math. Program. 45, 503–528 (1989). [CrossRef]  

65. K. Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations,” SIAM J. Optimiz. 12, 555–573 (2002). [CrossRef]  

66. J. Nocedal and S. J. Wright, Numerical Optimization (Springer, 2000).

67. A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optimiz. 41, 365–384 (2009). [CrossRef]  

68. A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20, 21558–21575 (2012). [CrossRef]   [PubMed]  

69. Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “High-quality-factor Bragg onion resonators with omnidirectional reflector cladding,” Opt. Lett. 28, 2144–2146 (2003). [CrossRef]   [PubMed]  

70. Z. Artstein, “Discrete and continuous bang-bang and facial spaces or: Look for the extreme points,” SIAM Rev. 22, 172–185 (1980). [CrossRef]  

71. A. F. Oskooi, Ph.D. thesis, Massachusetts Institute of Technology, 2010.

72. J. Lu, S. Boyd, and J. Vuckovic, “Inverse design of a three-dimensional nanophotonic resonator,” Opt. Express 19, 10563–10570 (2011). [CrossRef]   [PubMed]  

73. B. Osting and M. I. Weinstein, “Long-lived scattering resonances and Bragg structures,” SIAM J. Appl. Math. 73, 827–852 (2013). [CrossRef]  

74. T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics (Springer, 1996).

75. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004). [CrossRef]  

76. P. D. Drummond, K. J. McNeil, and D. F. Walls, “Non-equilibrium transitions in sub/second harmonic generation,” Opt. Acta 27, 321–335 (1980). [CrossRef]  

77. L.-A. Wu, M. Xiao, and H. J. Kimble, “Squeezed states of light from an optical parametric oscillator,” J. Opt. Soc. Am. B 4, 1465–1475 (1987). [CrossRef]  

78. Z. Y. Ou and H. J. Kimble, “Enhanced conversion efficiency for harmonic generation with double resonance,” Opt. Lett. 18, 1053–1055 (1993). [CrossRef]   [PubMed]  

79. A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ(2)and χ(3)harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007). [CrossRef]   [PubMed]  

80. I. B. Burgess, Y. Zhang, M. W. McCutcheon, A. W. Rodriguez, J. Bravo-Abad, S. G. Johnson, and M. Loncar, “Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities,” Opt. Express 17, 20099–20108 (2009). [CrossRef]   [PubMed]  

81. Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2)microring resonators,” Opt. Express 20, 7526–7543 (2012). [CrossRef]   [PubMed]  

82. M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136–19145 (2008). [CrossRef]  

83. A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008). [CrossRef]  

84. Z. M. Meng, F. Qin, Y. Liu, and Z. Y. Li, “High-Q microcavities in low-index one-dimensional photonic crystal slabs based on modal gap confinement,” J. Appl. Phys. 109,043107 (2011). [CrossRef]  

85. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical micro-cavities,” Phys. Rev. Lett. 95,143901 (2005). [CrossRef]  

86. M. Nomura, “GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators,” Opt. Express 20, 5204–5212 (2012). [CrossRef]   [PubMed]  

87. S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic Crystal Point-Shift Nanolasers With and Without Nanoslots Design, Fabrication, Lasing, and Sensing Characteristics,” IEEE J. Sel. Top. Quantum Electron. 17, 1632–1647 (2011). [CrossRef]  

88. Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18, 23844–23856 (2010). [CrossRef]   [PubMed]  

89. O. Sigmund and J. Petersson, “Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima,” Struct. Multidiscip. Optim. 16, 68–75 (1998).

90. S. J. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2002).

91. C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods, Appl. Phys. B 81, 235–244 (2005). [CrossRef]  

92. J. K. Guest, J. H. Prévost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int. J. Numer. Methods Eng. 61, 238–254 (2004). [CrossRef]  

93. O. Sigmund, “Morphology-based black and white filters for topology optimization,” Struct. Multidiscip. Optim. 33, 401–424 (2007). [CrossRef]  

94. S. Xu, Y. Cai, and G. Cheng, “Volume preserving nonlinear density filter based on heaviside functions,” Struct. Multidiscip. Optim. 41, 495–505 (2010). [CrossRef]  

95. F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011). [CrossRef]  

96. A. Ben-Tal, L. El Ghaoui, and A. S. Nemirovski, Robust Optimization (Princeton University, 2009).

97. D. Bertsimas, O. Nohadani, and K. M. Teo, “Robust optimization for unconstrained simulation-based problems,” Oper. Res. 58, 161–178 (2010). [CrossRef]  

98. F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B 28, 387–397 (2011). [CrossRef]  

99. H. Men, R. M. Freund, N. C. Nguyen, J. Saa-Seoane, and J. Peraire, “Fabrication-adaptive optimization with an application to photonic crystal design,” arXiv:1307.5571.

100. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109,033604 (2012). [CrossRef]   [PubMed]  

101. L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood Jr., and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013). [CrossRef]  

102. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010). [CrossRef]   [PubMed]  

103. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 107, 17491–17496 (2010). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express 18, 8144–8150 (2010).
    [Crossref] [PubMed]
  2. B. Bourdin, “Filters in topology optimization,” Int. J. Numer. Methods Eng. 50, 2143–2158 (2001).
    [Crossref]
  3. M. P. Bendsoe and O. Sigmund, Topology Optimization: Theory, Methods and Applications, 2nd ed. (Springer, 2003).
  4. M. Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003).
    [Crossref]
  5. G. Allaire, F. Jouve, and A.-M. Toader, “Structural optimization using sensitivity analysis and a level-set method,” J. Comput. Phys. 194, 363–393 (2004).
    [Crossref]
  6. O. Sigmund, “Manufacturing tolerant topology optimization,” Acta Mech. Sinica 25, 227–239 (2009).
    [Crossref]
  7. E. Andreassen, A. Clausen, M. Schevenels, B. Lazarov, and O. Sigmund, “Efficient topology optimization in MATLAB using 88 lines of code,” Struct. Multidiscip. Optim. 43, 1–16 (2011).
    [Crossref]
  8. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5, 308–321 (2011).
    [Crossref]
  9. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007).
    [Crossref] [PubMed]
  10. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  11. H. Hashemi, C. W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “A diameter–bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86,013804 (2012).
    [Crossref]
  12. D. P. Bertsekas, Nonlinear Programming, 2nd ed. (Athena Scientific, 1999).
  13. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure and Applied Optics), 2nd ed. (Wiley-Interscience, 2007).
  14. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  15. D. G. Rabus, Integrated Ring Resonators, Vol. 127 of Springer Series in Optical Sciences(Springer, 2007).
  16. S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
    [Crossref] [PubMed]
  17. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38, 850–856 (2002).
    [Crossref]
  18. C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S. G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242–1244 (2004).
    [Crossref]
  19. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref] [PubMed]
  20. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
    [Crossref] [PubMed]
  21. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [Crossref]
  22. D. C. Dobson and F. Santosa, “Optimal Localization of Eigenfunctions in an Inhomogeneous Medium,” SIAM J. Appl. Math. 64, 762–774 (2004).
    [Crossref]
  23. C.-Y. Kao and F. Santosa, “Maximization of the quality factor of an optical resonator,” Wave Motion 45, 412–427 (2008).
    [Crossref]
  24. W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103,033102 (2008).
    [Crossref]
  25. J. Lu and J. Vuckovic, “Inverse design of nanophotonic structures using complementary convex optimization,” Opt. Express 18, 3793–3804 (2010).
    [Crossref] [PubMed]
  26. A. W. Snyder and J. Love, Optical Waveguide Theory, Science Paperbacks, 190 (Springer, 1983).
  27. R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proceedings - Optoelectronics 145, 391–397 (1998).
    [Crossref]
  28. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69,674 (1946).
  29. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
    [Crossref]
  30. A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
    [Crossref] [PubMed]
  31. B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 110, 13711–13716 (2013).
    [Crossref] [PubMed]
  32. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
    [Crossref]
  33. F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
    [Crossref]
  34. V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
    [Crossref]
  35. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15, 4694–4704 (2007).
    [Crossref] [PubMed]
  36. L. N. Trefethen and D. Bau, Numerical Linear Algebra (SIAM, 1997).
    [Crossref]
  37. K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications, Springer Series in Optical Sciences (Springer, 2010).
  38. A. Oskooi and S. G. Johnson, “Electromagnetic wave source conditions,” in Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, A. Taflove, A. Oskooi, and S. G. Johnson, eds. (Artech, 2013), Chap. 4, pp. 65–100.
  39. J.-M. Gerard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17, 2089–2095 (1999).
    [Crossref]
  40. O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
    [Crossref]
  41. G. D’Aguanno, N. Mattiucci, M. Centini, M. Scalora, and M. J. Bloemer, “Electromagnetic density of modes for a finite-size three-dimensional structure,” Phys. Rev. E 69,057601 (2004).
    [Crossref]
  42. J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley, 1975).
  43. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).
  44. M. E. Peskin and D. V. Schroeder, An Introduction To Quantum Field Theory (Frontiers in Physics) (Westview, 1995).
  45. S. G. Johnson, “Numerical methods for computing Casimir interactions,” in Casimir Physics, Vol. 834 of Lecture Notes in Physics, D. Dalvit, P. Milonni, D. Roberts, and F. da Rosa, eds. (Springer, 2011), Chap. 6.
    [Crossref]
  46. L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Butterworth-Heinemann, 1984).
  47. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995).
  48. N. A. P. Nicorovici, R. C. McPhedran, and L. C. Botten, “Relative local density of states for homogeneous lossy materials,” Physica B 405, 2915–2919 (2010).
    [Crossref]
  49. L. V. Ahlfors, Complex Analysis, 3rd ed. (McGraw-Hill, 1978).
  50. A. W. Rodriguez, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Theoretical ingredients of a Casimir analog computer,” Proc. Natl. Acad. Sci. U. S. A. 107, 9531–9536 (2010).
    [Crossref] [PubMed]
  51. X. Liang, Ph.D. thesis, Massachusetts Institute of Technology, 2013.
  52. S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
    [Crossref]
  53. C. Van Vlack and S. Hughes, “Finite-difference time-domain technique as an efficient tool for calculating the regularized Green function: applications to the local-field problem in quantum optics for inhomogeneous lossy materials,” Opt. Lett. 37, 2880–2882 (2012).
    [Crossref] [PubMed]
  54. G. Strang, Computational Science and Engineering (Wellesley-Cambridge, 2007).
  55. A. Christ and H. L. Hartnagel, “Three-dimensional finite-difference method for the analysis of microwave-device embedding,” IEEE Trans. Microwave Theory 35, 688–696 (1987).
    [Crossref]
  56. K. Yasumoto, Electromagnetic Theory and Applications for Photonic Crystals, Optical Science and Engineering (CRC, 2005).
    [Crossref]
  57. W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” J. Comput. Phys. 231, 3406–3431 (2012).
    [Crossref]
  58. T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms) (SIAM, 2006).
    [Crossref]
  59. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient Management of Parallelism in Object Oriented Numerical Software Libraries,” In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds. (Birkhäuser, 1997).
    [Crossref]
  60. S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual,” Technical Report No. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012).
  61. S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Web page,” http://www.mcs.anl.gov/petsc , 2012.
  62. P. Hénon, P. Ramet, and J. Roman, “PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems,” Parallel Computing 28, 301–321 (2002).
    [Crossref]
  63. S. G. Johnson, “The NLopt nonlinear-optimization package,” http://ab-initio.mit.edu/nlopt .
  64. D. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Math. Program. 45, 503–528 (1989).
    [Crossref]
  65. K. Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations,” SIAM J. Optimiz. 12, 555–573 (2002).
    [Crossref]
  66. J. Nocedal and S. J. Wright, Numerical Optimization (Springer, 2000).
  67. A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optimiz. 41, 365–384 (2009).
    [Crossref]
  68. A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20, 21558–21575 (2012).
    [Crossref] [PubMed]
  69. Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “High-quality-factor Bragg onion resonators with omnidirectional reflector cladding,” Opt. Lett. 28, 2144–2146 (2003).
    [Crossref] [PubMed]
  70. Z. Artstein, “Discrete and continuous bang-bang and facial spaces or: Look for the extreme points,” SIAM Rev. 22, 172–185 (1980).
    [Crossref]
  71. A. F. Oskooi, Ph.D. thesis, Massachusetts Institute of Technology, 2010.
  72. J. Lu, S. Boyd, and J. Vuckovic, “Inverse design of a three-dimensional nanophotonic resonator,” Opt. Express 19, 10563–10570 (2011).
    [Crossref] [PubMed]
  73. B. Osting and M. I. Weinstein, “Long-lived scattering resonances and Bragg structures,” SIAM J. Appl. Math. 73, 827–852 (2013).
    [Crossref]
  74. T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics (Springer, 1996).
  75. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
    [Crossref]
  76. P. D. Drummond, K. J. McNeil, and D. F. Walls, “Non-equilibrium transitions in sub/second harmonic generation,” Opt. Acta 27, 321–335 (1980).
    [Crossref]
  77. L.-A. Wu, M. Xiao, and H. J. Kimble, “Squeezed states of light from an optical parametric oscillator,” J. Opt. Soc. Am. B 4, 1465–1475 (1987).
    [Crossref]
  78. Z. Y. Ou and H. J. Kimble, “Enhanced conversion efficiency for harmonic generation with double resonance,” Opt. Lett. 18, 1053–1055 (1993).
    [Crossref] [PubMed]
  79. A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ(2)and χ(3)harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
    [Crossref] [PubMed]
  80. I. B. Burgess, Y. Zhang, M. W. McCutcheon, A. W. Rodriguez, J. Bravo-Abad, S. G. Johnson, and M. Loncar, “Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities,” Opt. Express 17, 20099–20108 (2009).
    [Crossref] [PubMed]
  81. Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2)microring resonators,” Opt. Express 20, 7526–7543 (2012).
    [Crossref] [PubMed]
  82. M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136–19145 (2008).
    [Crossref]
  83. A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008).
    [Crossref]
  84. Z. M. Meng, F. Qin, Y. Liu, and Z. Y. Li, “High-Q microcavities in low-index one-dimensional photonic crystal slabs based on modal gap confinement,” J. Appl. Phys. 109,043107 (2011).
    [Crossref]
  85. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical micro-cavities,” Phys. Rev. Lett. 95,143901 (2005).
    [Crossref]
  86. M. Nomura, “GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators,” Opt. Express 20, 5204–5212 (2012).
    [Crossref] [PubMed]
  87. S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic Crystal Point-Shift Nanolasers With and Without Nanoslots Design, Fabrication, Lasing, and Sensing Characteristics,” IEEE J. Sel. Top. Quantum Electron. 17, 1632–1647 (2011).
    [Crossref]
  88. Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18, 23844–23856 (2010).
    [Crossref] [PubMed]
  89. O. Sigmund and J. Petersson, “Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima,” Struct. Multidiscip. Optim. 16, 68–75 (1998).
  90. S. J. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2002).
  91. C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods, Appl. Phys. B 81, 235–244 (2005).
    [Crossref]
  92. J. K. Guest, J. H. Prévost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int. J. Numer. Methods Eng. 61, 238–254 (2004).
    [Crossref]
  93. O. Sigmund, “Morphology-based black and white filters for topology optimization,” Struct. Multidiscip. Optim. 33, 401–424 (2007).
    [Crossref]
  94. S. Xu, Y. Cai, and G. Cheng, “Volume preserving nonlinear density filter based on heaviside functions,” Struct. Multidiscip. Optim. 41, 495–505 (2010).
    [Crossref]
  95. F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
    [Crossref]
  96. A. Ben-Tal, L. El Ghaoui, and A. S. Nemirovski, Robust Optimization (Princeton University, 2009).
  97. D. Bertsimas, O. Nohadani, and K. M. Teo, “Robust optimization for unconstrained simulation-based problems,” Oper. Res. 58, 161–178 (2010).
    [Crossref]
  98. F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B 28, 387–397 (2011).
    [Crossref]
  99. H. Men, R. M. Freund, N. C. Nguyen, J. Saa-Seoane, and J. Peraire, “Fabrication-adaptive optimization with an application to photonic crystal design,” arXiv:1307.5571.
  100. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109,033604 (2012).
    [Crossref] [PubMed]
  101. L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
    [Crossref]
  102. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
    [Crossref] [PubMed]
  103. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 107, 17491–17496 (2010).
    [Crossref] [PubMed]

2013 (3)

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 110, 13711–13716 (2013).
[Crossref] [PubMed]

B. Osting and M. I. Weinstein, “Long-lived scattering resonances and Bragg structures,” SIAM J. Appl. Math. 73, 827–852 (2013).
[Crossref]

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

2012 (7)

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109,033604 (2012).
[Crossref] [PubMed]

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20, 21558–21575 (2012).
[Crossref] [PubMed]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2)microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref] [PubMed]

M. Nomura, “GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators,” Opt. Express 20, 5204–5212 (2012).
[Crossref] [PubMed]

C. Van Vlack and S. Hughes, “Finite-difference time-domain technique as an efficient tool for calculating the regularized Green function: applications to the local-field problem in quantum optics for inhomogeneous lossy materials,” Opt. Lett. 37, 2880–2882 (2012).
[Crossref] [PubMed]

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” J. Comput. Phys. 231, 3406–3431 (2012).
[Crossref]

H. Hashemi, C. W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “A diameter–bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86,013804 (2012).
[Crossref]

2011 (7)

E. Andreassen, A. Clausen, M. Schevenels, B. Lazarov, and O. Sigmund, “Efficient topology optimization in MATLAB using 88 lines of code,” Struct. Multidiscip. Optim. 43, 1–16 (2011).
[Crossref]

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5, 308–321 (2011).
[Crossref]

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic Crystal Point-Shift Nanolasers With and Without Nanoslots Design, Fabrication, Lasing, and Sensing Characteristics,” IEEE J. Sel. Top. Quantum Electron. 17, 1632–1647 (2011).
[Crossref]

J. Lu, S. Boyd, and J. Vuckovic, “Inverse design of a three-dimensional nanophotonic resonator,” Opt. Express 19, 10563–10570 (2011).
[Crossref] [PubMed]

F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B 28, 387–397 (2011).
[Crossref]

Z. M. Meng, F. Qin, Y. Liu, and Z. Y. Li, “High-Q microcavities in low-index one-dimensional photonic crystal slabs based on modal gap confinement,” J. Appl. Phys. 109,043107 (2011).
[Crossref]

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

2010 (11)

D. Bertsimas, O. Nohadani, and K. M. Teo, “Robust optimization for unconstrained simulation-based problems,” Oper. Res. 58, 161–178 (2010).
[Crossref]

S. Xu, Y. Cai, and G. Cheng, “Volume preserving nonlinear density filter based on heaviside functions,” Struct. Multidiscip. Optim. 41, 495–505 (2010).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 107, 17491–17496 (2010).
[Crossref] [PubMed]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18, 23844–23856 (2010).
[Crossref] [PubMed]

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref] [PubMed]

M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express 18, 8144–8150 (2010).
[Crossref] [PubMed]

J. Lu and J. Vuckovic, “Inverse design of nanophotonic structures using complementary convex optimization,” Opt. Express 18, 3793–3804 (2010).
[Crossref] [PubMed]

N. A. P. Nicorovici, R. C. McPhedran, and L. C. Botten, “Relative local density of states for homogeneous lossy materials,” Physica B 405, 2915–2919 (2010).
[Crossref]

A. W. Rodriguez, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Theoretical ingredients of a Casimir analog computer,” Proc. Natl. Acad. Sci. U. S. A. 107, 9531–9536 (2010).
[Crossref] [PubMed]

A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
[Crossref] [PubMed]

2009 (3)

O. Sigmund, “Manufacturing tolerant topology optimization,” Acta Mech. Sinica 25, 227–239 (2009).
[Crossref]

I. B. Burgess, Y. Zhang, M. W. McCutcheon, A. W. Rodriguez, J. Bravo-Abad, S. G. Johnson, and M. Loncar, “Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities,” Opt. Express 17, 20099–20108 (2009).
[Crossref] [PubMed]

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optimiz. 41, 365–384 (2009).
[Crossref]

2008 (4)

2007 (4)

2005 (4)

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical micro-cavities,” Phys. Rev. Lett. 95,143901 (2005).
[Crossref]

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods, Appl. Phys. B 81, 235–244 (2005).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[Crossref] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

2004 (5)

D. C. Dobson and F. Santosa, “Optimal Localization of Eigenfunctions in an Inhomogeneous Medium,” SIAM J. Appl. Math. 64, 762–774 (2004).
[Crossref]

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S. G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242–1244 (2004).
[Crossref]

G. Allaire, F. Jouve, and A.-M. Toader, “Structural optimization using sensitivity analysis and a level-set method,” J. Comput. Phys. 194, 363–393 (2004).
[Crossref]

G. D’Aguanno, N. Mattiucci, M. Centini, M. Scalora, and M. J. Bloemer, “Electromagnetic density of modes for a finite-size three-dimensional structure,” Phys. Rev. E 69,057601 (2004).
[Crossref]

J. K. Guest, J. H. Prévost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int. J. Numer. Methods Eng. 61, 238–254 (2004).
[Crossref]

2003 (3)

Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “High-quality-factor Bragg onion resonators with omnidirectional reflector cladding,” Opt. Lett. 28, 2144–2146 (2003).
[Crossref] [PubMed]

M. Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

2002 (3)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38, 850–856 (2002).
[Crossref]

K. Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations,” SIAM J. Optimiz. 12, 555–573 (2002).
[Crossref]

P. Hénon, P. Ramet, and J. Roman, “PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems,” Parallel Computing 28, 301–321 (2002).
[Crossref]

2001 (1)

B. Bourdin, “Filters in topology optimization,” Int. J. Numer. Methods Eng. 50, 2143–2158 (2001).
[Crossref]

1999 (2)

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[Crossref]

J.-M. Gerard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17, 2089–2095 (1999).
[Crossref]

1998 (4)

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
[Crossref]

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proceedings - Optoelectronics 145, 391–397 (1998).
[Crossref]

O. Sigmund and J. Petersson, “Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima,” Struct. Multidiscip. Optim. 16, 68–75 (1998).

1997 (1)

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[Crossref]

1993 (1)

1989 (1)

D. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Math. Program. 45, 503–528 (1989).
[Crossref]

1987 (2)

A. Christ and H. L. Hartnagel, “Three-dimensional finite-difference method for the analysis of microwave-device embedding,” IEEE Trans. Microwave Theory 35, 688–696 (1987).
[Crossref]

L.-A. Wu, M. Xiao, and H. J. Kimble, “Squeezed states of light from an optical parametric oscillator,” J. Opt. Soc. Am. B 4, 1465–1475 (1987).
[Crossref]

1980 (2)

P. D. Drummond, K. J. McNeil, and D. F. Walls, “Non-equilibrium transitions in sub/second harmonic generation,” Opt. Acta 27, 321–335 (1980).
[Crossref]

Z. Artstein, “Discrete and continuous bang-bang and facial spaces or: Look for the extreme points,” SIAM Rev. 22, 172–185 (1980).
[Crossref]

1969 (1)

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69,674 (1946).

Acosta, V. M.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109,033604 (2012).
[Crossref] [PubMed]

Adibi, A.

Ahlfors, L. V.

L. V. Ahlfors, Complex Analysis, 3rd ed. (McGraw-Hill, 1978).

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[Crossref] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Allaire, G.

G. Allaire, F. Jouve, and A.-M. Toader, “Structural optimization using sensitivity analysis and a level-set method,” J. Comput. Phys. 194, 363–393 (2004).
[Crossref]

Andreassen, E.

E. Andreassen, A. Clausen, M. Schevenels, B. Lazarov, and O. Sigmund, “Efficient topology optimization in MATLAB using 88 lines of code,” Struct. Multidiscip. Optim. 43, 1–16 (2011).
[Crossref]

Arakawa, Y.

Aras, M. S.

Arita, Y.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic Crystal Point-Shift Nanolasers With and Without Nanoslots Design, Fabrication, Lasing, and Sensing Characteristics,” IEEE J. Sel. Top. Quantum Electron. 17, 1632–1647 (2011).
[Crossref]

Artstein, Z.

Z. Artstein, “Discrete and continuous bang-bang and facial spaces or: Look for the extreme points,” SIAM Rev. 22, 172–185 (1980).
[Crossref]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[Crossref] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Avniel, Y.

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optimiz. 41, 365–384 (2009).
[Crossref]

Baba, T.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic Crystal Point-Shift Nanolasers With and Without Nanoslots Design, Fabrication, Lasing, and Sensing Characteristics,” IEEE J. Sel. Top. Quantum Electron. 17, 1632–1647 (2011).
[Crossref]

Balay, S.

S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient Management of Parallelism in Object Oriented Numerical Software Libraries,” In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds. (Birkhäuser, 1997).
[Crossref]

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual,” Technical Report No. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012).

Barbastathis, G.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S. G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242–1244 (2004).
[Crossref]

Bau, D.

L. N. Trefethen and D. Bau, Numerical Linear Algebra (SIAM, 1997).
[Crossref]

Bayn, I.

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

Beausoleil, R. G.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109,033604 (2012).
[Crossref] [PubMed]

Belytschko, T.

J. K. Guest, J. H. Prévost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int. J. Numer. Methods Eng. 61, 238–254 (2004).
[Crossref]

Bendsoe, M. P.

M. P. Bendsoe and O. Sigmund, Topology Optimization: Theory, Methods and Applications, 2nd ed. (Springer, 2003).

Ben-Tal, A.

A. Ben-Tal, L. El Ghaoui, and A. S. Nemirovski, Robust Optimization (Princeton University, 2009).

Bermel, P.

Bertsekas, D. P.

D. P. Bertsekas, Nonlinear Programming, 2nd ed. (Athena Scientific, 1999).

Bertsimas, D.

D. Bertsimas, O. Nohadani, and K. M. Teo, “Robust optimization for unconstrained simulation-based problems,” Oper. Res. 58, 161–178 (2010).
[Crossref]

Bi, Z.-F.

Bloemer, M. J.

G. D’Aguanno, N. Mattiucci, M. Centini, M. Scalora, and M. J. Bloemer, “Electromagnetic density of modes for a finite-size three-dimensional structure,” Phys. Rev. E 69,057601 (2004).
[Crossref]

Boroditsky, M.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proceedings - Optoelectronics 145, 391–397 (1998).
[Crossref]

Botten, L. C.

N. A. P. Nicorovici, R. C. McPhedran, and L. C. Botten, “Relative local density of states for homogeneous lossy materials,” Physica B 405, 2915–2919 (2010).
[Crossref]

Bourdin, B.

B. Bourdin, “Filters in topology optimization,” Int. J. Numer. Methods Eng. 50, 2143–2158 (2001).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Boyd, S.

J. Lu, S. Boyd, and J. Vuckovic, “Inverse design of a three-dimensional nanophotonic resonator,” Opt. Express 19, 10563–10570 (2011).
[Crossref] [PubMed]

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optimiz. 41, 365–384 (2009).
[Crossref]

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
[Crossref]

Boyd, S. P.

Bravo-Abad, J.

Brown, J.

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual,” Technical Report No. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012).

Burgess, I. B.

Buschelman, K.

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual,” Technical Report No. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012).

Cai, Y.

S. Xu, Y. Cai, and G. Cheng, “Volume preserving nonlinear density filter based on heaviside functions,” Struct. Multidiscip. Optim. 41, 495–505 (2010).
[Crossref]

Centini, M.

G. D’Aguanno, N. Mattiucci, M. Centini, M. Scalora, and M. J. Bloemer, “Electromagnetic density of modes for a finite-size three-dimensional structure,” Phys. Rev. E 69,057601 (2004).
[Crossref]

Chen, L.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical micro-cavities,” Phys. Rev. Lett. 95,143901 (2005).
[Crossref]

Cheng, C.-J.

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

Cheng, G.

S. Xu, Y. Cai, and G. Cheng, “Volume preserving nonlinear density filter based on heaviside functions,” Struct. Multidiscip. Optim. 41, 495–505 (2010).
[Crossref]

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995).

Choquette, K. D.

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103,033102 (2008).
[Crossref]

Christ, A.

A. Christ and H. L. Hartnagel, “Three-dimensional finite-difference method for the analysis of microwave-device embedding,” IEEE Trans. Microwave Theory 35, 688–696 (1987).
[Crossref]

Chua, S.-L.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 110, 13711–13716 (2013).
[Crossref] [PubMed]

Clausen, A.

E. Andreassen, A. Clausen, M. Schevenels, B. Lazarov, and O. Sigmund, “Efficient topology optimization in MATLAB using 88 lines of code,” Struct. Multidiscip. Optim. 43, 1–16 (2011).
[Crossref]

Coccioli, R.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proceedings - Optoelectronics 145, 391–397 (1998).
[Crossref]

Crozier, K.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref] [PubMed]

D’Aguanno, G.

G. D’Aguanno, N. Mattiucci, M. Centini, M. Scalora, and M. J. Bloemer, “Electromagnetic density of modes for a finite-size three-dimensional structure,” Phys. Rev. E 69,057601 (2004).
[Crossref]

Davis, T. A.

T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms) (SIAM, 2006).
[Crossref]

De La Rue, R. M.

Dobson, D. C.

D. C. Dobson and F. Santosa, “Optimal Localization of Eigenfunctions in an Inhomogeneous Medium,” SIAM J. Appl. Math. 64, 762–774 (2004).
[Crossref]

Drummond, P. D.

P. D. Drummond, K. J. McNeil, and D. F. Walls, “Non-equilibrium transitions in sub/second harmonic generation,” Opt. Acta 27, 321–335 (1980).
[Crossref]

Duchesne, D.

Eijkhout, V.

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual,” Technical Report No. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012).

El Ghaoui, L.

A. Ben-Tal, L. El Ghaoui, and A. S. Nemirovski, Robust Optimization (Princeton University, 2009).

Englund, D.

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

Fan, S.

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” J. Comput. Phys. 231, 3406–3431 (2012).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 107, 17491–17496 (2010).
[Crossref] [PubMed]

Faraon, A.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109,033604 (2012).
[Crossref] [PubMed]

Farjadpour, A.

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optimiz. 41, 365–384 (2009).
[Crossref]

Fedkiw, R. P.

S. J. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2002).

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).

Fleming, J. G.

Frei, W. R.

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103,033102 (2008).
[Crossref]

Freund, R. M.

H. Men, R. M. Freund, N. C. Nguyen, J. Saa-Seoane, and J. Peraire, “Fabrication-adaptive optimization with an application to photonic crystal design,” arXiv:1307.5571.

Gaathon, O.

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

Gao, J.

Gayral, B.

Gerard, J.-M.

Gropp, W. D.

S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient Management of Parallelism in Object Oriented Numerical Software Libraries,” In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds. (Birkhäuser, 1997).
[Crossref]

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual,” Technical Report No. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012).

Guest, J. K.

J. K. Guest, J. H. Prévost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int. J. Numer. Methods Eng. 61, 238–254 (2004).
[Crossref]

Guo, D.

M. Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003).
[Crossref]

Hachuda, S.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic Crystal Point-Shift Nanolasers With and Without Nanoslots Design, Fabrication, Lasing, and Sensing Characteristics,” IEEE J. Sel. Top. Quantum Electron. 17, 1632–1647 (2011).
[Crossref]

Haroche, S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Hartnagel, H. L.

A. Christ and H. L. Hartnagel, “Three-dimensional finite-difference method for the analysis of microwave-device embedding,” IEEE Trans. Microwave Theory 35, 688–696 (1987).
[Crossref]

Hashemi, H.

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2)microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref] [PubMed]

H. Hashemi, C. W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “A diameter–bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86,013804 (2012).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

Hénon, P.

P. Hénon, P. Ramet, and J. Roman, “PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems,” Parallel Computing 28, 301–321 (2002).
[Crossref]

Huang, H.-C.

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

Huang, Z.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109,033604 (2012).
[Crossref] [PubMed]

Hughes, S.

Ilchenko, V. S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Inoue, K.

K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications, Springer Series in Optical Sciences (Springer, 2010).

Inui, T.

T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics (Springer, 1996).

Ippen, E. P.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S. G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242–1244 (2004).
[Crossref]

Iwamoto, S.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley, 1975).

Jensen, J. S.

Jeon, Y.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S. G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242–1244 (2004).
[Crossref]

Joannopoulos, J. D.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 110, 13711–13716 (2013).
[Crossref] [PubMed]

H. Hashemi, C. W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “A diameter–bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86,013804 (2012).
[Crossref]

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20, 21558–21575 (2012).
[Crossref] [PubMed]

A. W. Rodriguez, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Theoretical ingredients of a Casimir analog computer,” Proc. Natl. Acad. Sci. U. S. A. 107, 9531–9536 (2010).
[Crossref] [PubMed]

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007).
[Crossref] [PubMed]

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ(2)and χ(3)harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[Crossref] [PubMed]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Johnson, H. T.

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103,033102 (2008).
[Crossref]

Johnson, N. P.

Johnson, S. G.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 110, 13711–13716 (2013).
[Crossref] [PubMed]

H. Hashemi, C. W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “A diameter–bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86,013804 (2012).
[Crossref]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2)microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref] [PubMed]

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20, 21558–21575 (2012).
[Crossref] [PubMed]

A. W. Rodriguez, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Theoretical ingredients of a Casimir analog computer,” Proc. Natl. Acad. Sci. U. S. A. 107, 9531–9536 (2010).
[Crossref] [PubMed]

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optimiz. 41, 365–384 (2009).
[Crossref]

I. B. Burgess, Y. Zhang, M. W. McCutcheon, A. W. Rodriguez, J. Bravo-Abad, S. G. Johnson, and M. Loncar, “Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities,” Opt. Express 17, 20099–20108 (2009).
[Crossref] [PubMed]

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ(2)and χ(3)harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[Crossref] [PubMed]

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007).
[Crossref] [PubMed]

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S. G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242–1244 (2004).
[Crossref]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

S. G. Johnson, “Numerical methods for computing Casimir interactions,” in Casimir Physics, Vol. 834 of Lecture Notes in Physics, D. Dalvit, P. Milonni, D. Roberts, and F. da Rosa, eds. (Springer, 2011), Chap. 6.
[Crossref]

A. Oskooi and S. G. Johnson, “Electromagnetic wave source conditions,” in Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, A. Taflove, A. Oskooi, and S. G. Johnson, eds. (Artech, 2013), Chap. 4, pp. 65–100.

Jouve, F.

G. Allaire, F. Jouve, and A.-M. Toader, “Structural optimization using sensitivity analysis and a level-set method,” J. Comput. Phys. 194, 363–393 (2004).
[Crossref]

Kao, C. Y.

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods, Appl. Phys. B 81, 235–244 (2005).
[Crossref]

Kao, C.-Y.

C.-Y. Kao and F. Santosa, “Maximization of the quality factor of an optical resonator,” Wave Motion 45, 412–427 (2008).
[Crossref]

Kaushik, D.

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual,” Technical Report No. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012).

Kim, K. W.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proceedings - Optoelectronics 145, 391–397 (1998).
[Crossref]

Kim, S. G.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S. G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242–1244 (2004).
[Crossref]

Kimble, H. J.

Kimerling, L. C.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S. G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242–1244 (2004).
[Crossref]

Kisslinger, K.

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

Kita, S.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic Crystal Point-Shift Nanolasers With and Without Nanoslots Design, Fabrication, Lasing, and Sensing Characteristics,” IEEE J. Sel. Top. Quantum Electron. 17, 1632–1647 (2011).
[Crossref]

Knepley, M. G.

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual,” Technical Report No. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012).

Knöll, L.

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[Crossref]

Koenderink, A. F.

Ladouceur, F.

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[Crossref]

Landau, L. D.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Butterworth-Heinemann, 1984).

Lazarov, B.

E. Andreassen, A. Clausen, M. Schevenels, B. Lazarov, and O. Sigmund, “Efficient topology optimization in MATLAB using 88 lines of code,” Struct. Multidiscip. Optim. 43, 1–16 (2011).
[Crossref]

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

Lee, J.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 110, 13711–13716 (2013).
[Crossref] [PubMed]

Lefèvre-Seguin, V.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Li, L.

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

Li, Y.

Li, Z. Y.

Z. M. Meng, F. Qin, Y. Liu, and Z. Y. Li, “High-Q microcavities in low-index one-dimensional photonic crystal slabs based on modal gap confinement,” J. Appl. Phys. 109,043107 (2011).
[Crossref]

Liang, W.

Liang, X.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 110, 13711–13716 (2013).
[Crossref] [PubMed]

X. Liang, Ph.D. thesis, Massachusetts Institute of Technology, 2013.

Lifshitz, E. M.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Butterworth-Heinemann, 1984).

Lin, S.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref] [PubMed]

Lin, S.-Y.

Lipson, M.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical micro-cavities,” Phys. Rev. Lett. 95,143901 (2005).
[Crossref]

Liu, D.

D. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Math. Program. 45, 503–528 (1989).
[Crossref]

Liu, Y.

Z. M. Meng, F. Qin, Y. Liu, and Z. Y. Li, “High-Q microcavities in low-index one-dimensional photonic crystal slabs based on modal gap confinement,” J. Appl. Phys. 109,043107 (2011).
[Crossref]

Loncar, M.

Love, J.

A. W. Snyder and J. Love, Optical Waveguide Theory, Science Paperbacks, 190 (Springer, 1983).

Lu, J.

Lu, M.

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

Mabuchi, H.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38, 850–856 (2002).
[Crossref]

Manolatou, C.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical micro-cavities,” Phys. Rev. Lett. 95,143901 (2005).
[Crossref]

Marcatili, E. A. J.

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
[Crossref]

Martin, O. J. F.

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
[Crossref]

Mattiucci, N.

G. D’Aguanno, N. Mattiucci, M. Centini, M. Scalora, and M. J. Bloemer, “Electromagnetic density of modes for a finite-size three-dimensional structure,” Phys. Rev. E 69,057601 (2004).
[Crossref]

McCauley, A. P.

H. Hashemi, C. W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “A diameter–bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86,013804 (2012).
[Crossref]

A. W. Rodriguez, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Theoretical ingredients of a Casimir analog computer,” Proc. Natl. Acad. Sci. U. S. A. 107, 9531–9536 (2010).
[Crossref] [PubMed]

McCutcheon, M. W.

McInnes, L. C.

S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient Management of Parallelism in Object Oriented Numerical Software Libraries,” In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds. (Birkhäuser, 1997).
[Crossref]

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual,” Technical Report No. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012).

McNeil, K. J.

P. D. Drummond, K. J. McNeil, and D. F. Walls, “Non-equilibrium transitions in sub/second harmonic generation,” Opt. Acta 27, 321–335 (1980).
[Crossref]

McPhedran, R. C.

N. A. P. Nicorovici, R. C. McPhedran, and L. C. Botten, “Relative local density of states for homogeneous lossy materials,” Physica B 405, 2915–2919 (2010).
[Crossref]

Md Zain, A. R.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Men, H.

H. Men, R. M. Freund, N. C. Nguyen, J. Saa-Seoane, and J. Peraire, “Fabrication-adaptive optimization with an application to photonic crystal design,” arXiv:1307.5571.

Meng, Z. M.

Z. M. Meng, F. Qin, Y. Liu, and Z. Y. Li, “High-Q microcavities in low-index one-dimensional photonic crystal slabs based on modal gap confinement,” J. Appl. Phys. 109,043107 (2011).
[Crossref]

Mutapcic, A.

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20, 21558–21575 (2012).
[Crossref] [PubMed]

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optimiz. 41, 365–384 (2009).
[Crossref]

Nakada, T.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic Crystal Point-Shift Nanolasers With and Without Nanoslots Design, Fabrication, Lasing, and Sensing Characteristics,” IEEE J. Sel. Top. Quantum Electron. 17, 1632–1647 (2011).
[Crossref]

Nemirovski, A. S.

A. Ben-Tal, L. El Ghaoui, and A. S. Nemirovski, Robust Optimization (Princeton University, 2009).

Nguyen, N. C.

H. Men, R. M. Freund, N. C. Nguyen, J. Saa-Seoane, and J. Peraire, “Fabrication-adaptive optimization with an application to photonic crystal design,” arXiv:1307.5571.

Nicorovici, N. A. P.

N. A. P. Nicorovici, R. C. McPhedran, and L. C. Botten, “Relative local density of states for homogeneous lossy materials,” Physica B 405, 2915–2919 (2010).
[Crossref]

Nocedal, J.

D. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Math. Program. 45, 503–528 (1989).
[Crossref]

J. Nocedal and S. J. Wright, Numerical Optimization (Springer, 2000).

Noda, S.

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20, 21558–21575 (2012).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[Crossref] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Nohadani, O.

D. Bertsimas, O. Nohadani, and K. M. Teo, “Robust optimization for unconstrained simulation-based problems,” Oper. Res. 58, 161–178 (2010).
[Crossref]

Nomura, M.

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

Nozaki, K.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic Crystal Point-Shift Nanolasers With and Without Nanoslots Design, Fabrication, Lasing, and Sensing Characteristics,” IEEE J. Sel. Top. Quantum Electron. 17, 1632–1647 (2011).
[Crossref]

Ohtaka, K.

K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications, Springer Series in Optical Sciences (Springer, 2010).

Onodera, Y.

T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics (Springer, 1996).

Osgood, R. M.

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

Osher, S.

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods, Appl. Phys. B 81, 235–244 (2005).
[Crossref]

Osher, S. J.

S. J. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2002).

Oskooi, A.

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20, 21558–21575 (2012).
[Crossref] [PubMed]

A. Oskooi and S. G. Johnson, “Electromagnetic wave source conditions,” in Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, A. Taflove, A. Oskooi, and S. G. Johnson, eds. (Artech, 2013), Chap. 4, pp. 65–100.

Oskooi, A. F.

A. F. Oskooi, Ph.D. thesis, Massachusetts Institute of Technology, 2010.

Osting, B.

B. Osting and M. I. Weinstein, “Long-lived scattering resonances and Bragg structures,” SIAM J. Appl. Math. 73, 827–852 (2013).
[Crossref]

Otsuka, S.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic Crystal Point-Shift Nanolasers With and Without Nanoslots Design, Fabrication, Lasing, and Sensing Characteristics,” IEEE J. Sel. Top. Quantum Electron. 17, 1632–1647 (2011).
[Crossref]

Ou, Z. Y.

Peraire, J.

H. Men, R. M. Freund, N. C. Nguyen, J. Saa-Seoane, and J. Peraire, “Fabrication-adaptive optimization with an application to photonic crystal design,” arXiv:1307.5571.

Peskin, M. E.

M. E. Peskin and D. V. Schroeder, An Introduction To Quantum Field Theory (Frontiers in Physics) (Westview, 1995).

Petersson, J.

O. Sigmund and J. Petersson, “Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima,” Struct. Multidiscip. Optim. 16, 68–75 (1998).

Piller, N. B.

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
[Crossref]

Pitaevskii, L. P.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Butterworth-Heinemann, 1984).

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).

Prévost, J. H.

J. K. Guest, J. H. Prévost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int. J. Numer. Methods Eng. 61, 238–254 (2004).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69,674 (1946).

Qi, M.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S. G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242–1244 (2004).
[Crossref]

Qin, F.

Z. M. Meng, F. Qin, Y. Liu, and Z. Y. Li, “High-Q microcavities in low-index one-dimensional photonic crystal slabs based on modal gap confinement,” J. Appl. Phys. 109,043107 (2011).
[Crossref]

Qiu, C. W.

H. Hashemi, C. W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “A diameter–bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86,013804 (2012).
[Crossref]

Rabus, D. G.

D. G. Rabus, Integrated Ring Resonators, Vol. 127 of Springer Series in Optical Sciences(Springer, 2007).

Rahmat-Samii, Y.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proceedings - Optoelectronics 145, 391–397 (1998).
[Crossref]

Raimond, J. M.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Rakich, P. T.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S. G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242–1244 (2004).
[Crossref]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 107, 17491–17496 (2010).
[Crossref] [PubMed]

Ramet, P.

P. Hénon, P. Ramet, and J. Roman, “PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems,” Parallel Computing 28, 301–321 (2002).
[Crossref]

Robinson, J. T.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical micro-cavities,” Phys. Rev. Lett. 95,143901 (2005).
[Crossref]

Rodriguez, A.

Rodriguez, A. W.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 110, 13711–13716 (2013).
[Crossref] [PubMed]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2)microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref] [PubMed]

A. W. Rodriguez, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Theoretical ingredients of a Casimir analog computer,” Proc. Natl. Acad. Sci. U. S. A. 107, 9531–9536 (2010).
[Crossref] [PubMed]

I. B. Burgess, Y. Zhang, M. W. McCutcheon, A. W. Rodriguez, J. Bravo-Abad, S. G. Johnson, and M. Loncar, “Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities,” Opt. Express 17, 20099–20108 (2009).
[Crossref] [PubMed]

Roman, J.

P. Hénon, P. Ramet, and J. Roman, “PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems,” Parallel Computing 28, 301–321 (2002).
[Crossref]

Saa-Seoane, J.

H. Men, R. M. Freund, N. C. Nguyen, J. Saa-Seoane, and J. Peraire, “Fabrication-adaptive optimization with an application to photonic crystal design,” arXiv:1307.5571.

Saito, Y.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic Crystal Point-Shift Nanolasers With and Without Nanoslots Design, Fabrication, Lasing, and Sensing Characteristics,” IEEE J. Sel. Top. Quantum Electron. 17, 1632–1647 (2011).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure and Applied Optics), 2nd ed. (Wiley-Interscience, 2007).

Santori, C.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109,033604 (2012).
[Crossref] [PubMed]

Santosa, F.

C.-Y. Kao and F. Santosa, “Maximization of the quality factor of an optical resonator,” Wave Motion 45, 412–427 (2008).
[Crossref]

D. C. Dobson and F. Santosa, “Optimal Localization of Eigenfunctions in an Inhomogeneous Medium,” SIAM J. Appl. Math. 64, 762–774 (2004).
[Crossref]

Scalora, M.

G. D’Aguanno, N. Mattiucci, M. Centini, M. Scalora, and M. J. Bloemer, “Electromagnetic density of modes for a finite-size three-dimensional structure,” Phys. Rev. E 69,057601 (2004).
[Crossref]

Scheel, S.

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[Crossref]

Scherer, A.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38, 850–856 (2002).
[Crossref]

Schevenels, M.

E. Andreassen, A. Clausen, M. Schevenels, B. Lazarov, and O. Sigmund, “Efficient topology optimization in MATLAB using 88 lines of code,” Struct. Multidiscip. Optim. 43, 1–16 (2011).
[Crossref]

Schonbrun, E.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref] [PubMed]

Schroeder, D. V.

M. E. Peskin and D. V. Schroeder, An Introduction To Quantum Field Theory (Frontiers in Physics) (Westview, 1995).

Shapira, O.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 110, 13711–13716 (2013).
[Crossref] [PubMed]

Shin, W.

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” J. Comput. Phys. 231, 3406–3431 (2012).
[Crossref]

Shu, J.

Sigmund, O.

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

E. Andreassen, A. Clausen, M. Schevenels, B. Lazarov, and O. Sigmund, “Efficient topology optimization in MATLAB using 88 lines of code,” Struct. Multidiscip. Optim. 43, 1–16 (2011).
[Crossref]

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5, 308–321 (2011).
[Crossref]

F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B 28, 387–397 (2011).
[Crossref]

O. Sigmund, “Manufacturing tolerant topology optimization,” Acta Mech. Sinica 25, 227–239 (2009).
[Crossref]

O. Sigmund, “Morphology-based black and white filters for topology optimization,” Struct. Multidiscip. Optim. 33, 401–424 (2007).
[Crossref]

O. Sigmund and J. Petersson, “Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima,” Struct. Multidiscip. Optim. 16, 68–75 (1998).

M. P. Bendsoe and O. Sigmund, Topology Optimization: Theory, Methods and Applications, 2nd ed. (Springer, 2003).

Smith, B. F.

S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient Management of Parallelism in Object Oriented Numerical Software Libraries,” In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds. (Birkhäuser, 1997).
[Crossref]

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual,” Technical Report No. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012).

Smith, H. I.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S. G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242–1244 (2004).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. Love, Optical Waveguide Theory, Science Paperbacks, 190 (Springer, 1983).

Soljacic, M.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 110, 13711–13716 (2013).
[Crossref] [PubMed]

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007).
[Crossref] [PubMed]

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ(2)and χ(3)harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[Crossref] [PubMed]

Soltani, M.

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Sorel, M.

Strang, G.

G. Strang, Computational Science and Engineering (Wellesley-Cambridge, 2007).

Su, D.

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

Svanberg, K.

K. Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations,” SIAM J. Optimiz. 12, 555–573 (2002).
[Crossref]

Tanabe, K.

Tanabe, Y.

T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics (Springer, 1996).

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure and Applied Optics), 2nd ed. (Wiley-Interscience, 2007).

Teo, K. M.

D. Bertsimas, O. Nohadani, and K. M. Teo, “Robust optimization for unconstrained simulation-based problems,” Oper. Res. 58, 161–178 (2010).
[Crossref]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).

Toader, A.-M.

G. Allaire, F. Jouve, and A.-M. Toader, “Structural optimization using sensitivity analysis and a level-set method,” J. Comput. Phys. 194, 363–393 (2004).
[Crossref]

Trefethen, L. N.

L. N. Trefethen and D. Bau, Numerical Linear Algebra (SIAM, 1997).
[Crossref]

Treussart, F.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Trusheim, M.

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

Van Vlack, C.

Vandenberghe, L.

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
[Crossref]

Velichansky, V. L.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).

Volikov, P. S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Vuckovic, J.

Walls, D. F.

P. D. Drummond, K. J. McNeil, and D. F. Walls, “Non-equilibrium transitions in sub/second harmonic generation,” Opt. Acta 27, 321–335 (1980).
[Crossref]

Wang, F.

F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B 28, 387–397 (2011).
[Crossref]

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

Wang, K.-M.

Wang, M. Y.

M. Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003).
[Crossref]

Wang, X.

M. Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003).
[Crossref]

Watanabe, H.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic Crystal Point-Shift Nanolasers With and Without Nanoslots Design, Fabrication, Lasing, and Sensing Characteristics,” IEEE J. Sel. Top. Quantum Electron. 17, 1632–1647 (2011).
[Crossref]

Weinstein, M. I.

B. Osting and M. I. Weinstein, “Long-lived scattering resonances and Bragg structures,” SIAM J. Appl. Math. 73, 827–852 (2013).
[Crossref]

Welsch, D. G.

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Wolcott, A.

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

Wong, C. W.

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18, 23844–23856 (2010).
[Crossref] [PubMed]

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S. G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242–1244 (2004).
[Crossref]

Wright, S. J.

J. Nocedal and S. J. Wright, Numerical Optimization (Springer, 2000).

Wu, L.-A.

Xiao, M.

Xu, S.

S. Xu, Y. Cai, and G. Cheng, “Volume preserving nonlinear density filter based on heaviside functions,” Struct. Multidiscip. Optim. 41, 495–505 (2010).
[Crossref]

Xu, Y.

Yablonovitch, E.

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods, Appl. Phys. B 81, 235–244 (2005).
[Crossref]

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proceedings - Optoelectronics 145, 391–397 (1998).
[Crossref]

Yao, X.

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

Yariv, A.

Yasumoto, K.

K. Yasumoto, Electromagnetic Theory and Applications for Photonic Crystals, Optical Science and Engineering (CRC, 2005).
[Crossref]

Yegnanarayanan, S.

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 107, 17491–17496 (2010).
[Crossref] [PubMed]

Zhang, H.

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual,” Technical Report No. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012).

Zhang, Y.

Zhen, B.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 110, 13711–13716 (2013).
[Crossref] [PubMed]

Zheng, J.

Acta Mech. Sinica (1)

O. Sigmund, “Manufacturing tolerant topology optimization,” Acta Mech. Sinica 25, 227–239 (2009).
[Crossref]

Appl. Phys. B (1)

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods, Appl. Phys. B 81, 235–244 (2005).
[Crossref]

Appl. Phys. Lett. (1)

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S. G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242–1244 (2004).
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
[Crossref]

Comput. Methods Appl. Mech. Eng. (1)

M. Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003).
[Crossref]

Eng. Optimiz. (1)

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optimiz. 41, 365–384 (2009).
[Crossref]

IEE Proceedings - Optoelectronics (1)

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proceedings - Optoelectronics 145, 391–397 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38, 850–856 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic Crystal Point-Shift Nanolasers With and Without Nanoslots Design, Fabrication, Lasing, and Sensing Characteristics,” IEEE J. Sel. Top. Quantum Electron. 17, 1632–1647 (2011).
[Crossref]

IEEE Trans. Microwave Theory (1)

A. Christ and H. L. Hartnagel, “Three-dimensional finite-difference method for the analysis of microwave-device embedding,” IEEE Trans. Microwave Theory 35, 688–696 (1987).
[Crossref]

Int. J. Numer. Methods Eng. (2)

B. Bourdin, “Filters in topology optimization,” Int. J. Numer. Methods Eng. 50, 2143–2158 (2001).
[Crossref]

J. K. Guest, J. H. Prévost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int. J. Numer. Methods Eng. 61, 238–254 (2004).
[Crossref]

J. Appl. Phys. (2)

Z. M. Meng, F. Qin, Y. Liu, and Z. Y. Li, “High-Q microcavities in low-index one-dimensional photonic crystal slabs based on modal gap confinement,” J. Appl. Phys. 109,043107 (2011).
[Crossref]

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103,033102 (2008).
[Crossref]

J. Comput. Phys. (2)

G. Allaire, F. Jouve, and A.-M. Toader, “Structural optimization using sensitivity analysis and a level-set method,” J. Comput. Phys. 194, 363–393 (2004).
[Crossref]

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” J. Comput. Phys. 231, 3406–3431 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. B (1)

L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. Cheng, M. Lu, D. Su, X. Yao, H.-C. Huang, I. Bayn, A. Wolcott, R. M. Osgood, and D. Englund, “Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy,” J. Vac. Sci. Technol. B 31,06FF01 (2013).
[Crossref]

Laser Photonics Rev. (1)

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5, 308–321 (2011).
[Crossref]

Math. Program. (1)

D. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Math. Program. 45, 503–528 (1989).
[Crossref]

Nano Lett. (1)

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Nature (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Oper. Res. (1)

D. Bertsimas, O. Nohadani, and K. M. Teo, “Robust optimization for unconstrained simulation-based problems,” Oper. Res. 58, 161–178 (2010).
[Crossref]

Opt. Acta (1)

P. D. Drummond, K. J. McNeil, and D. F. Walls, “Non-equilibrium transitions in sub/second harmonic generation,” Opt. Acta 27, 321–335 (1980).
[Crossref]

Opt. Commun. (1)

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Opt. Express (15)

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15, 4694–4704 (2007).
[Crossref] [PubMed]

J. Lu, S. Boyd, and J. Vuckovic, “Inverse design of a three-dimensional nanophotonic resonator,” Opt. Express 19, 10563–10570 (2011).
[Crossref] [PubMed]

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20, 21558–21575 (2012).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[Crossref] [PubMed]

M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express 18, 8144–8150 (2010).
[Crossref] [PubMed]

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007).
[Crossref] [PubMed]

J. Lu and J. Vuckovic, “Inverse design of nanophotonic structures using complementary convex optimization,” Opt. Express 18, 3793–3804 (2010).
[Crossref] [PubMed]

M. Nomura, “GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators,” Opt. Express 20, 5204–5212 (2012).
[Crossref] [PubMed]

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ(2)and χ(3)harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[Crossref] [PubMed]

I. B. Burgess, Y. Zhang, M. W. McCutcheon, A. W. Rodriguez, J. Bravo-Abad, S. G. Johnson, and M. Loncar, “Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities,” Opt. Express 17, 20099–20108 (2009).
[Crossref] [PubMed]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2)microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref] [PubMed]

M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136–19145 (2008).
[Crossref]

A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008).
[Crossref]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18, 23844–23856 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
[Crossref] [PubMed]

Opt. Lett. (4)

Parallel Computing (1)

P. Hénon, P. Ramet, and J. Roman, “PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems,” Parallel Computing 28, 301–321 (2002).
[Crossref]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69,674 (1946).

Phys. Rev. A (2)

H. Hashemi, C. W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “A diameter–bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86,013804 (2012).
[Crossref]

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[Crossref]

Phys. Rev. E (2)

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
[Crossref]

G. D’Aguanno, N. Mattiucci, M. Centini, M. Scalora, and M. J. Bloemer, “Electromagnetic density of modes for a finite-size three-dimensional structure,” Phys. Rev. E 69,057601 (2004).
[Crossref]

Phys. Rev. Lett. (2)

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109,033604 (2012).
[Crossref] [PubMed]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical micro-cavities,” Phys. Rev. Lett. 95,143901 (2005).
[Crossref]

Physica B (1)

N. A. P. Nicorovici, R. C. McPhedran, and L. C. Botten, “Relative local density of states for homogeneous lossy materials,” Physica B 405, 2915–2919 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (3)

A. W. Rodriguez, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Theoretical ingredients of a Casimir analog computer,” Proc. Natl. Acad. Sci. U. S. A. 107, 9531–9536 (2010).
[Crossref] [PubMed]

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 110, 13711–13716 (2013).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 107, 17491–17496 (2010).
[Crossref] [PubMed]

SIAM J. Appl. Math. (2)

D. C. Dobson and F. Santosa, “Optimal Localization of Eigenfunctions in an Inhomogeneous Medium,” SIAM J. Appl. Math. 64, 762–774 (2004).
[Crossref]

B. Osting and M. I. Weinstein, “Long-lived scattering resonances and Bragg structures,” SIAM J. Appl. Math. 73, 827–852 (2013).
[Crossref]

SIAM J. Optimiz. (1)

K. Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations,” SIAM J. Optimiz. 12, 555–573 (2002).
[Crossref]

SIAM Rev. (1)

Z. Artstein, “Discrete and continuous bang-bang and facial spaces or: Look for the extreme points,” SIAM Rev. 22, 172–185 (1980).
[Crossref]

Struct. Multidiscip. Optim. (5)

E. Andreassen, A. Clausen, M. Schevenels, B. Lazarov, and O. Sigmund, “Efficient topology optimization in MATLAB using 88 lines of code,” Struct. Multidiscip. Optim. 43, 1–16 (2011).
[Crossref]

O. Sigmund and J. Petersson, “Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima,” Struct. Multidiscip. Optim. 16, 68–75 (1998).

O. Sigmund, “Morphology-based black and white filters for topology optimization,” Struct. Multidiscip. Optim. 33, 401–424 (2007).
[Crossref]

S. Xu, Y. Cai, and G. Cheng, “Volume preserving nonlinear density filter based on heaviside functions,” Struct. Multidiscip. Optim. 41, 495–505 (2010).
[Crossref]

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

Wave Motion (1)

C.-Y. Kao and F. Santosa, “Maximization of the quality factor of an optical resonator,” Wave Motion 45, 412–427 (2008).
[Crossref]

Other (33)

A. W. Snyder and J. Love, Optical Waveguide Theory, Science Paperbacks, 190 (Springer, 1983).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley, 1975).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).

M. E. Peskin and D. V. Schroeder, An Introduction To Quantum Field Theory (Frontiers in Physics) (Westview, 1995).

S. G. Johnson, “Numerical methods for computing Casimir interactions,” in Casimir Physics, Vol. 834 of Lecture Notes in Physics, D. Dalvit, P. Milonni, D. Roberts, and F. da Rosa, eds. (Springer, 2011), Chap. 6.
[Crossref]

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Butterworth-Heinemann, 1984).

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

M. P. Bendsoe and O. Sigmund, Topology Optimization: Theory, Methods and Applications, 2nd ed. (Springer, 2003).

D. P. Bertsekas, Nonlinear Programming, 2nd ed. (Athena Scientific, 1999).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure and Applied Optics), 2nd ed. (Wiley-Interscience, 2007).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

D. G. Rabus, Integrated Ring Resonators, Vol. 127 of Springer Series in Optical Sciences(Springer, 2007).

A. F. Oskooi, Ph.D. thesis, Massachusetts Institute of Technology, 2010.

S. G. Johnson, “The NLopt nonlinear-optimization package,” http://ab-initio.mit.edu/nlopt .

K. Yasumoto, Electromagnetic Theory and Applications for Photonic Crystals, Optical Science and Engineering (CRC, 2005).
[Crossref]

J. Nocedal and S. J. Wright, Numerical Optimization (Springer, 2000).

T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics (Springer, 1996).

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
[Crossref]

X. Liang, Ph.D. thesis, Massachusetts Institute of Technology, 2013.

L. V. Ahlfors, Complex Analysis, 3rd ed. (McGraw-Hill, 1978).

L. N. Trefethen and D. Bau, Numerical Linear Algebra (SIAM, 1997).
[Crossref]

K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications, Springer Series in Optical Sciences (Springer, 2010).

A. Oskooi and S. G. Johnson, “Electromagnetic wave source conditions,” in Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, A. Taflove, A. Oskooi, and S. G. Johnson, eds. (Artech, 2013), Chap. 4, pp. 65–100.

G. Strang, Computational Science and Engineering (Wellesley-Cambridge, 2007).

T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms) (SIAM, 2006).
[Crossref]

S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient Management of Parallelism in Object Oriented Numerical Software Libraries,” In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds. (Birkhäuser, 1997).
[Crossref]

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual,” Technical Report No. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012).

S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Web page,” http://www.mcs.anl.gov/petsc , 2012.

A. Ben-Tal, L. El Ghaoui, and A. S. Nemirovski, Robust Optimization (Princeton University, 2009).

S. J. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2002).

H. Men, R. M. Freund, N. C. Nguyen, J. Saa-Seoane, and J. Peraire, “Fabrication-adaptive optimization with an application to photonic crystal design,” arXiv:1307.5571.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Starting with the naive objective of maximizing a microcavity’s Purcell factor Q/V, we perform a sequence of transformations of the problem in order to make it well posed and tractable. Here, we give a schematic diagram of each transformation, along with the corresponding section of the paper in which they are discussed.
Fig. 2
Fig. 2 Contour integration path. The frequency-averaged LDOS is the path integral along arc A1 in the limit of an infinite-radius arc. By choosing the proper window/weight function W (ω) for optimizing LDOS in a desired bandwidth, the contribution along arcs A2 and A3 can be made negligible compared to A1. Therefore, the residues at poles ω̄k enclosed by this contour can be used to approximate the averaged LDOS.
Fig. 3
Fig. 3 For 2d cavity optimization, we start in Secs. 8.1–8.3 by optimizing over every pixel in the interior of the computational domain as indicated in (a). This leads to cavities that utilize bandgap structures to confine light with arbitrary Q, regardless of V, limited only by the size of the domain. In order to investigate Q vs. V tradeoffs analogous to those in 3d slabs, in Sec. 8.4 we limit the degrees of freedom to a thin strip (b), which imposes intrinsic radiation losses (perpendicular to the strip) and forces the optimization to sacrifice V in order to increase Q. A full 3d optimization is considered in Sec. 8.5.
Fig. 4
Fig. 4 2d TM optimization from PhC cavity initial guess (Sec. 8.1).
Fig. 5
Fig. 5 2d TM optimization from vacuum initial guess (Sec. 8.1). Q=1.30×109 and V = 0.075(λ/n)2.
Fig. 6
Fig. 6 2d TE optimization for êx polarization from Sec. 8.2.1. The structure has Q=5.16×108 and V = 0.092(λ/n)2 obtained from vacuum initial guess.
Fig. 7
Fig. 7 Optimized doubly-degenerate cavity from Sec. 8.2.3, generated by maximizing the minimum LDOS over all in-plane polarizations. Starting from a vacuum initial guess, the optimization discovers a structure with C3v (3-fold) rotational symmetry (top), which supports doubly-degenerate [74] TE modes whose Hz fields are plotted at bottom (blue/white/red = negative/zero/positive). (The rectangular FDFD grid slightly breaks the three-fold symmetry and the degeneracy, but the results converge to exact C3v symmetry and degeneracy as resolution increases.)
Fig. 8
Fig. 8 Two-frequency cavity optimization from Sec. 8.3, for either TM (top) or TE (bottom) polarizations. Left: microcavities which maximize the minimum LDOS at two frequencies ω̃1 and ω̃2 = 2ω̃1, e.g. for intra-cavity second-harmonic generation applications [79, 81]. Confinement of such integer-multiple frequencies is physically enabled by the fact the concentric Bragg-onion “1d” bandgaps tend to occur at integer-multiple frequencies [14]. A more challenging case is a two-frequency cavity for ω̃2 = 1.5ω̃1, resulting in the more complicated structures shown at right. (All structures were optimized from vacuum initial guesses.)
Fig. 9
Fig. 9 2D TE optimization for thin strips with fixed width (geometry sketched in Fig. 3b). Fig. (a): Qrad vs. for 2d thin stirps with same width (λ) but different length (d = λ, 2λ, 3λ, 5λ). As is increased in the optimization, higher Qrad are obtained until Qrad is limited by the degrees of freedom. As the degrees of freedom increase, Qrad first gets bigger, but becomes saturated at some level around 107 due to numerical precision. Fig. (b): An optimized 2d thin-strip structure with width λ and length d = 5λ.
Fig. 10
Fig. 10 We wish to optimize a microcavity in an air-membrane Si slab in Sec. 8.5, with the effective computational domain depicted in (a), where the degrees of freedom are every pixel in the 2d pattern of the slab cross-section for a fixed thickness. Since all 2d single-polarization optimizations found structures with two mirror symmetry planes, we can reduce the computational domain to 1/8 the volume (b) by imposing these mirror symmetries along with the vertical mirror symmetry.
Fig. 11
Fig. 11 Optimized pattern for a 3d slab from vacuum initial guess (Sec. 8.5.1) with dimensions 3λ-3λ-0.19λ: Q=30000 and V = 0.06(λ/n)3.
Fig. 12
Fig. 12 3d slab structure after manually removing tiny features in Fig. 11 (Sec. 8.5.2): Q = 10000 and V = 0.06(λ/n)3.

Tables (1)

Tables Icon

Table 1: Comparison of Q and V for structures from our result and the literature.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

× 1 μ ( x ) × E n ( x ) = ω n 2 ε ( x ) E n ( x )
Q = Re [ ω n ] 2 Im [ ω n ] .
V = ε ( x ) | E n ( x ) | 2 d x max { ε ( x ) | E n ( x ) | 2 } ,
3 Q 4 π 2 V ( λ n ) 3 .
1 Q total = 1 Q rad + 1 Q roughness + 1 Q absorption .
min V s . t . Q Q ˜ ,
P j ( ω , x ) = 1 2 Re [ J * ( x ) E ( x ) ] d x ,
( ε , ω ) E ( x ) = i ω J ( x ) ( ε , ω ) = × 1 μ ( x ) × ε ( x ) ω 2 J ( x ) = δ ( x x ) e ^ j .
LDOS j ( ω , x ) = 12 π P j ( ω , x ) = 6 π Re [ J * ( x ) E ( x ) d x ] ,
LDOS j ( ω , x ) = 6 π ω ε ( x ) Q V ,
L = LDOS ( ω ) W ( ω ) d ω .
f ( ω , x ) = 6 π J * ( x ) E ( x , ω ) d x .
L = LDOS ( ω ) W ( ω ) d ω = Re [ f ( ω ) ] W ( ω ) d ω = Re [ p . v . f ( ω ) W ( ω ) d ω ] .
A 1 + A 2 + A 3 f ( ω ) W ( ω ) d ω = 2 π i k Res [ f ( ω ) W ( ω ) , ω ¯ k ] .
A 2 f ( ω ) W ( ω ) d ω = 1 2 2 π i W ( 0 ) lim ω 0 ω f ( ω ) .
L = Re [ 2 π i k Res [ f ( ω ) W ( ω ) , ω ¯ k ] ( A 2 + A 3 f ( ω ) W ( ω ) d ω ) ] Re [ 2 π i k Res [ f ( ω ) W ( ω ) , ω ¯ k ] ] .
( × 1 μ ( x ) × ε ( x ) ( ω + i Γ ) 2 ) E ( x , ω + i Γ ) = i ( ω + i Γ ) J ( x ) ( × 1 μ ( x ) ( 1 + i Γ ω ) × ε ( x ) ω 2 ( 1 + i Γ ω ) ) E ( x , ω + i Γ ) = i ω J ( x ) ( × 1 μ ( x ) ( 1 + i 2 Q ) × ε ( x ) ( 1 + i 2 Q ) ω 2 ) E ( x , ω + i Γ ) = i ω J ( x ) .
˜ ( ε , ω ) = × 1 μ ( x ) ( 1 + i 2 Q ) × ε ( x ) ( 1 + i 2 Q ) ω 2 = × 1 μ ˜ ( x ) × ε ˜ ( x ) ω 2 .
L 1 = LDOS ( ω ) Γ ˜ / π ( ω ω ˜ ) 2 + Γ ˜ 2 = Re [ f ( ω ˜ + i Γ ˜ ) ] ,
W ( ω ) = 2 Γ ˜ 3 / π ( ( ω ω ˜ ) 2 + Γ ˜ 2 ) 2 ,
L = LDOS ( ω ) W ( ω ) d ω Re [ f ( ω ˜ + i Γ ˜ ) i Γ ˜ f ( ω ˜ + i Γ ˜ ) ] ,
f ( ω , x ) = f ( ω , x ) ω + i 12 π ε ( x ) E T ( x , ω ) E ( x , ω ) d x .
f ( ω ˜ + i Γ ˜ ) i Γ ˜ f ( ω ˜ + i Γ ˜ ) = ω ˜ ω ˜ + i Γ ˜ ( 6 π ) e ^ j * E ( x , ω ˜ + i Γ ˜ ) + 12 π Γ ˜ ε ( x ) E T ( x , ω ˜ + i Γ ˜ ) E ( x , ω ˜ + i Γ ˜ ) d x .
max { designs } L = LDOS ( ω ) W ( ω ) d ω .
max { designs } L = Re [ = f ( ω ˜ + i Γ ˜ ) i Γ ˜ f ( ω ˜ + i Γ ˜ ) ] .
˜ ( ε , ω ˜ ) A ( x , ω ˜ + i Γ ˜ ) = ε ( x ) E ( x , ω ˜ + i Γ ˜ )
ε k = ( i + 1 Q ˜ ) 2 π ω ˜ E T ( x k , ω ˜ + i Γ ˜ ) E ( x k , ω ˜ + i Γ ˜ ) + 12 π ω ˜ 3 Q ˜ ( 1 + i 2 Q ˜ ) A T ( x k , ω ˜ + i Γ ˜ ) E ( x k , ω ˜ + i Γ ˜ ) .
( ε , ω ) E ( x , ω ) ω + ( ε , ω ) ω E ( x , ω ) = i J ( x ) E ( x , ω ) ω = 1 ( i J ( x ) ( ε , ω ) ω E ( x , ω ) ) = 1 ( i J ( x ) + 2 ω ε ( x ) E ( x , ω ) ) .
f ( ω , x ) = 6 π J * ( x ) E ( x , ω ) ω d x = 6 π [ 1 ω J * ( x ) 1 ( i ω J ( x ) ) d x + 2 ω J * ( x ) 1 ε ( x ) E ( x , ω ) d x ] = 6 π 1 ω J * ( x ) E ( x , ω ) d x + i 12 π ( 1 ( i ω J ( x ) ) ) T ε ( x ) E ( x , ω ) d x = f ( ω , x ) ω + i 12 π ε ( x ) E T ( x , ω ) E ( x , ω ) d x .
= f ( ω ˜ + i Γ ˜ ) = i Γ ˜ f ( ω ˜ + i Γ ˜ ) = f ( ω ˜ + i Γ ˜ ) i Γ ˜ ( f ( ω ˜ + i Γ ˜ , x ) ω ˜ + i Γ ˜ + i 12 π ε ( x ) E T ( x , ω ˜ + i Γ ˜ ) E ( x , ω ˜ + i Γ ˜ ) d x ) = ω ˜ ω ˜ + i Γ ˜ f ( ω ˜ + i Γ ˜ ) + 12 π Γ ˜ ε ( x ) E T ( x , ω ˜ + i Γ ˜ ) E ( x , ω ˜ + i Γ ˜ ) d x . = ω ˜ ω ˜ + i Γ ˜ ( 6 π ) e ^ j * E ( x , ω ˜ + i Γ ˜ ) + 12 π Γ ˜ ε ( x ) E T ( x , ω ˜ + i Γ ˜ ) E ( x , ω ˜ + i Γ ˜ ) d x .
˜ ( ε , ω ˜ ) E ( x , ω ˜ + i Γ ˜ ) ε k + ˜ ( ε , ω ˜ ) ε k E ( x , ω ˜ + i Γ ˜ ) = 0 E ( x , ω ˜ + i Γ ˜ ) ε k = ˜ 1 [ ω ˜ 2 ( 1 + i 2 Q ˜ ) δ ( x x k ) E ( x , ω ˜ + i Γ ˜ ) ] .
J * ( x ) E ( x , ω ˜ + i Γ ˜ ) d x ε k = J * ( x ) E ( x , ω ˜ + i Γ ˜ ) ε k d x = ω ˜ 2 ( 1 + i 2 Q ˜ ) ( ˜ 1 J ( x ) ) T δ ( x x k ) E ( x , ω ˜ + i Γ ˜ ) d x = i ω ˜ ( 1 + i 2 Q ˜ ) E T ( x , ω ˜ + i Γ ˜ ) δ ( x x k ) E ( x , ω ˜ + i Γ ˜ ) d x = i ω ˜ ( 1 + i 2 Q ˜ ) E T ( x k , ω ˜ + i Γ ˜ ) E ( x k , ω ˜ + i Γ ˜ ) ,
ε ( x ) E T E d x ε k = 2 ε ( x ) E t E ( x , ω ˜ + i Γ ˜ ) ε k d x + δ ( x x k ) E T ( x , ω ˜ + i Γ ˜ ) E ( x , ω ˜ + i Γ ˜ ) d x = 2 ε ( x ) E T ˜ 1 [ ω ˜ 2 ( 1 + i 2 Q ˜ ) δ ( x x k ) E ( x , ω ˜ + i Γ ˜ ) ] + E T ( x k , ω ˜ + i Γ ˜ ) E ( x k , ω ˜ + i Γ ˜ ) = 2 ω ˜ 2 ( 1 + i 2 Q ˜ ) ( ˜ 1 [ ε ( x ) E ( x , ω ˜ + i Γ ˜ ) ] ) T δ ( x x k ) E ( x , ω ˜ + i Γ ˜ ) d x + E T ( x k , ω ˜ + i Γ ˜ ) E ( x k , ω ˜ + i Γ ˜ ) .
ε k = ( i + 1 Q ˜ ) 6 π ω ˜ E T ( x k , ω ˜ + i Γ ˜ ) E ( x k , ω ˜ + i Γ ˜ ) + 12 π ω ˜ 3 Q ˜ ( 1 + i 2 Q ˜ ) A T ( x k , ω ˜ + i Γ ˜ ) E ( x k , ω ˜ + i Γ ˜ ) ,
˜ ( ε , ω ˜ ) A ( x , ω ˜ + i Γ ˜ ) = ε ( x ) E ( x , ω ˜ + i Γ ˜ ) .

Metrics