Abstract

We simulate light propagation in perturbed whispering-gallery mode microcavities using a two-dimensional finite-difference beam propagation method in a cylindrical coordinate system. Optical properties of whispering-gallery microcavities perturbed by polystyrene nanobeads are investigated through this formulation. The light perturbation as well as quality factor degradation arising from cavity ellipticity are also studied.

© 2013 Optical Society of America

1. Introduction

Whispering-gallery mode (WGM) microcavities are at the frontier of research on subjects ranging from biosensing, nonlinear optics, and laser physics, to fundamental physics such as cavity quantum electrodynamics [115]. Contrary to its rapid experimental advances, numerical exploration of WGM’s has been largely lagging behind with a limited number of available options [1621]. On the other hand, the Beam Propagation Method (BPM) has a long history [2230] in modelling light propagation along both straight and curved waveguides as well as whispering-gallery microcavity eigenmode analyses [31]. Compared to boundary element [20,21,3235], finite element [36], finite-difference time-domain (FDTD) [37], and free space radiation mode methods [38], BPM remains highly efficient without sacrificing substantial accuracy. By adopting a perfectly matched layer (PML) [39,40] to absorb the light which is otherwise reflected at the computation window and following the procedure formulated in [41] to correct inaccuracies incurred at the refractive index discontinuities in high refractive index contrast waveguide structures, the Finite-Difference Beam Propagation Method (FD-BPM) can achieve high accuracy with a rapid convergence rate. Conventional FD-BPM formulations are based on the Fresnel approximation, where light is assumed to propagate close to the propagation axis [2426, 28]. To overcome this limitation for bent waveguide modelling, high-order algorithms known as wide-angle BPM [42] or the conformal mapping approach [43] are desirable. Alternatively, BPM may be reformulated in cylindrical coordinates systems to analyze such structures [4446].

In this work we simulated, within MATLAB, the light propagation in a WGM microcavity by implementing FD-BPM in a cylindrical system as shown in Fig. 1. The field perturbation from a nanobead attached to the microcavity and quality factor degradation arising from cavity deformations were investigated. The computed field distribution correctly includes the radiative field component, which a mode analysis technique would fail to simulate.

 

Fig. 1 A cylindrical coordinate system.

Download Full Size | PPT Slide | PDF

2. Formulation

From the Helmhöltz equation, the electric field component E in a two-dimensional whispering-gallery microcavity under the scalar approximation satisfies

[2ϕ2+ρ22ρ2+ρρ+n2(ρ,ϕ)k02ρ2]E=0
where n(ρ, ϕ) is the refractive index of the cavity, k0 = 2π/λ is the wave number in free space, and λ is the vacuum wavelength of the light circulating in the cavity. For a perfect WGM cavity with azimuthal symmetry, the refractive index is independent of ϕ(n(ρ, ϕ) = n(ρ)). The electric field can be approximated as propagating in the form of
E(ρ,ϕ)=Aψ^mr(ρ)exp(jmϕ)
where m = mr + jmi is a complex constant whose real and imaginary parts are mr and mi, respectively. Note that, in general, the real part mr can be any real number for a given wavelength λ. When a certain wavelength λmr yields an integer value for mr, resonance occurs. This integer value mr represents the azimuthal order of a cavity resonance mode while the imaginary part mi characterizes the attenuation of the field in the azimuthal direction. ψ̂mr (ρ) is the normalized mrth azimuthal modal field distribution such that the squared norm |A|2 represents the circulating power of the mode. In addition, multiple wavelengths may yield an identical integer mr where ψ̂mr correspond to resonance whispering-gallery modes with the same azimuthal order mr but different transverse modes. Both quantities can be obtained from the nonzero solution of the mode equation, in turn described as an eigenequation with the complex eigenvalue m2 and eigenvector ψ̂mr derived from Eq. (1):
[ρ22ρ2+ρρ+n2(ρ)k02ρ2]ψ^mr=m2ψ^mr
If the aforementioned symmetry is broken due to an azimuthal angle dependent perturbation of the refractive index n(ρ, ϕ) = n(ρ) + δn(ρ, ϕ) where the perturbation δn(ρ, ϕ) ≪ n(ρ), one may reformulate E as
E(ρ,ϕ)=ψ(ρ,ϕ)exp(jm¯ϕ)
where is a reference value such that ψ(ρ, ϕ) varies slowly along the azimuthal direction or, equivalently, the slowly varying envelope approximation (SVEA) holds. This is mathematically written as
|2ψϕ2|2|m¯ψϕ|
It is necessary to point out that the choice of is arbitrary as long as SVEA holds; however, if the wavelength of the light is close to the resonance wavelength of the mrth order unperturbed WGM, it is convenient to select = m. We will therefore drop the bar in the rest of the text for convenience. Alternatively, one may treat = m(ϕ) as a ϕ-dependent quantity where m(ϕ) is obtained from solving Eq. (3) at each angle ϕ for higher accuracy. From Eq. (5), we obtain the wave evolution along the azimuthal direction according to
jϕψ=ρ22m2ψρ2+ρ2mψρ+(ρ2k02n2(ρ,ϕ)2mm2)ψ
Discretizing the computation window uniformly so that the coordinates (ρp, ϕl) of each grid (p, l) can be expressed as ρp = pΔρ, ϕl = lΔϕ, and ψ(ρp, ϕl) = ψp,l, one can evolve the field at ϕl from a previous azimuthal angle ϕl−1 according to
apψp1,l+1+(1jΔϕ+bp)ψp,l+1cpψp+1,l+1=apψp1,l+(1jΔϕbp)ψp,l+cpψp+1,l
where
ap=p(12p)8mbp=p2(2Δρ2k02np,l+12)4m+m4cp=p(1+2p)8m
Here Δρ and Δϕ are grid spacings along the ρ̂ and ϕ̂ directions, as illustrated in Fig. 1. Also, np,l is the refractive index of the waveguide structure at each point. Collecting ψp,l into a ket form |ψl〉 = (ψp0,l, ψp0+1,l,... ψp0+N,l)T and rearranging Eq. (7) into a matrix form, we obtain
H˜|ψl+1=D˜|ψl
where and are two tridiagonal matrices. By adopting standard FD-BPM procedures [47], one may obtain the field evolution via Eq. (9) from the excitation field at l = 0. In stark contrast to a boundary element method (BEM, as reported in [3235]) that requires the field of the entire structure for successive azimuthal angle steps, this expression solely requires the field at ϕl to compute that at ϕl+1. Consequently, the efficiency of BPM is orders of magnitude greater than that of BEM and is capable of solving large-scale cavity structures that exceed BEM’s capabilities. Unlike BEM, BPM may also model cavity refractive index profiles that are not necessarily piecewise homogeneous.

3. Results and discussion

To characterize the BPM, we first tested it on a perfect silica microring resonator immersed in water. The refractive index of the silica ring was 1.4508 + j(7.11 × 10−12) [48, 49] at a wavelength of 970 nm and the surrounding water had a refractive index of 1.327 + j(3.37 × 10−6) [50].

The resonator had a 45-μm major radius and a 10-μm minor diameter. To simplify the analysis, we reduced the three-dimensional waveguide structure to a two-dimensional one through the use of an effective index method (EIM) [51] along the z-direction. The cavity was excited by a modal field obtained from the mode solver. To minimize the spurious reflection at the edges of the computation window, a 4-μm PML [39] was placed at the edge of the computation window. The PML is implemented by replacing the radial derivative with

ρ11+jσ(ρ)ωρ
in which σ(ρ) is defined as
σ(ρ)={σ0(ρρ0)2InsidethePML0Elsewhere
where ρ0 is the inner edge of the PML layer and σ0 is a wavelength independent constant characterized by the light attenuation strength within the PML. To optimize the PML performance and determine the optimal value for σ0, a simple experimental simulation was conducted. An optical beam was launched towards a 2-μm PML through a straight waveguide and the power reflectivity was measured for different values of σ0. The different values of reflectivity in dB versus σ0 are presented in Fig. 2. The insets show the field intensity for three different σ0 values, wherein the white lines are the inner PML edges. Figure 2(a) illustrates an extreme case where the light reaches the outer edge of an undamped PML (i.e. σ0 = 0) and is reflected back. In the case of an overdamped PML (i.e. σ0 = 1020), as illustrated in Fig. 2(c), light is reflected at the PML’s inner edge. The optimum value of σ0 is found at 2.5 × 1016 in Fig. 2(b), where a minimal reflectivity of −50 dB is attained. Note that over a wide span of σ0 between 1016 and 2 × 1017 the reflectivity at the computation window edge is kept below −30 dB. The optimal value was then utilized for the remaining simulations given that σ0 was insensitive to, for example, the incident angle at the PML edge, the wavelength, and the waveguide structures inside the computation window [40].

 

Fig. 2 Reflectivity in dB vs. different σ0 values. The insets are the field intensity for three different σ0 values: (a) 0, (b) 2.5 × 1016, and (c) 1020. The white lines indicate the inner 2-μm PML edges. The σ0 values of inset (a) and (c) are not in the plot σ0 range.

Download Full Size | PPT Slide | PDF

In Fig. 3(a), we plot the intensity distribution in logarithmic scale by setting a 36-μm window size, 1601 grids in the ρ̂ direction, and 3000 grids in the ϕ̂ direction for 2π radians, where we excited the ring with its fundamental mode. The PML thickness at the inside and outside boundaries is 5 μm. The resonance wavelength and the real as well as imaginary parts of the mode number calculated by the mode solver are respectively 970.25 nm, 458, and 4.5 × 10−5. The solid green lines in Fig. 3(a) are showing the resonator edges and the dashed green lines define the PML boundary. As can be seen in this figure, a small portion of the energy radiates towards the computation window edge yet the adopted PML efficiently prevents the otherwise spurious reflection from returning to the resonator. Figure 3(b) provides a portion of the final intensity distribution frame from the supplementary video clip, Media 1 (included in an external, high-resolution video clip that combines this article’s multimedia content [52]), elucidating circular field propagation for 1/4 of one round trip. Note that simulation of the 1-mm diameter microdisk in Fig. 3(b) spanned 23 seconds on a desktop computer equipped with a 3.10 GHz AMD FX-8120 8-core processor and 32 GB of memory. In contrast, a simulation of such a large cavity has yet to be reported from other established methods, such as BEM, finite element method (FEM), or FDTD according to the authors’ knowledge.

 

Fig. 3 (a) Field intensity in logarithmic scale, where the radiation is observable. To reiterate, the solid green lines are showing the resonator edges and the dashed green lines are showing the PML edges. (b) Partial intensity distribution frame (from Media 1) for propagation in a 1-mm diameter microdisk, wherein the PML effectiveness is confirmed by the lack of artificial reflection.

Download Full Size | PPT Slide | PDF

We further computed the quality factor Q for different grid schemes according to Q = 2πmrP(ϕ = 0)/(P(ϕ = 0) − P(ϕ = 2π)). P(ϕ) is the total power at an azimuthal angle ϕ. Figure 4(a) is the plot of quality factor vs. radial and azimuthal grid spacings. The computation window is set to 20 μm in the ρ̂ direction and π in the ϕ̂ direction. As is depicted, the Q converges from 5.4×106 towards 4.99×106 by reducing the grid spacing from 200 nm to 3.1 nm in the radial direction and 0.196 radians to 0.0015 radians in the azimuthal direction. We also computed the relative error by adopting a reference Q at infinitesimal grid spacing predicted by the established Richardson extrapolation approach [53]. A set of Q values were computed at different grid spacings, then the expected value at infinitesimal grid spacing was obtained by treating the data set as a function of grid spacing for a least square fit. As seen in Fig. 4(b) the relative error of Q was reduced to 5 × 10−4 from 8 × 10−2, accordingly. Furthermore, in Fig. 4(c) we plot the Q as well as the relative error as a function of azimuthal grid spacing Δϕ by setting Δρ = 3.1 nm. In Fig. 4(d) the same quantities are plotted as a function of radial grid spacing Δρ. The least square fits to the relative error curves indicate a convergence rate of 0.9 in the azimuthal direction and 2.8 in the radial direction. Clearly, this suggests that faster convergence is attainable by adopting higher-order finite-difference schemes.

 

Fig. 4 (a) Quality factor vs. grid spacings, (b) its relative error vs. grid spacings, (c) variations for the cross section at Δρ = 3.1 nm, and (d) variations for the cross section at Δϕ = 0.0015 radians. In (c), the last two points are omitted for the line of best fit.

Download Full Size | PPT Slide | PDF

In Fig. 5, we plot the resonance wavelength (blue cross markers) and corresponding relative error (red cross markers) vs. radial grid spacing Δρ by setting Δϕ = 0.003 radians. Here, the resonance wavelength λres is obtained from the round trip total phase shift ΔΦ of the electrical field computed from the wavelength λ adopted in the BPM according to λres=ΔΦλmr, where the resonance wavelength λres = 970.21 nm calculated via Richardson extrapolation is used as a reference. A least square fit to the relative error indicates a Oρ) convergence rate.

 

Fig. 5 Resonance wavelength of the ring resonator and its relevant error vs. grid size in the ρ̂ direction.

Download Full Size | PPT Slide | PDF

To further demonstrate the validity of the formulation, we launched an arbitrary Gaussian field at the input of the same structure as illustrated in the insets (red curve) of Fig. 6. For comparison, we also plotted the fundamental mode profile obtained by the mode solver and displayed it as the blue curve in the insets. As shown in the insets of Fig. 6, after propagating 1, 25, and 125 rounds in the resonator from left to right, the circulating field distribution gradually evolves into the mode profile. To quantitatively analyze the field evolution, we de-fine a normalized overlap factor Γ̂ = 〈ψ̂o | ψ̂i〉. ψ̂i is the normalized mode profile and ψ̂o is the normalized output field profile after each round trip of propagation. The magnitude of the overlap factor and its departure from unity are respectively plotted in Fig. 6 as blue and red curves. As is shown, the overlap factor reaches 0.99 at the 200th round trip. In Fig. 7(a), we excited the cavity with a continuous wave (CW) mode and plotted the accumulated power normalized to the input power at the cavity’s input cross section P/Pin as a function of the number of rounds light circulated in the cavity. After circulating more than 25, 000 rounds, P/Pin saturates to 1.385 × 107 (blue curve) when resonance occurs. The saturation power is in excellent agreement with the theoretical prediction of Psat/Pin=(Qπmr)2=1.388×107 (with a quality factor caculated by the mode solver of 5.36 × 106). The relative deviation of the accumulated power from the saturation power (i.e. the red curve) is depicted as well. We further plotted the total power when the input light wavelength had reached the full wave at half maximum point (λFWHM = (1 + 1/2Q)λres, i.e. the green curve). As expected, the power saturated to half of that corresponding to resonance. In Fig. 7(b), the normalized saturation power and its relative error are plotted as a function of grid size in the ρ̂ direction. Next, we applied BPM to whispering-gallery mode nanodetection modelling [4, 5]. Here we simulated the induced resonance wavelength shift caused by single polystyrene beads binding to the surface of a silica microtoroid immersed in water [5], wherein the refractive index of the polystyrene bead was 1.576 + j(3.63 × 10−4) [54]. We modelled the 3D microtoroid and bead structure in 2D using the effective index method (EIM) [51], placing the nanoparticle on the micro-toroid’s equator. The motive for this is to maximize the resonance wavelength shift; however, it is possible to choose other geometries. Note that the 2D refractive index profile is not piecewise homogeneous and thus cannot be modelled with a boundary element method, such as that of [20,21,3235]. The field evolution across a 400-nm radius bead attached to the cavity is displayed in Fig. 8(a), while a zoomed-in plot of field distribution around the bead is displayed as an inset. We further obtained the resonance wavelength shift from the additional phase shift of the electrical field attributed to the bead (i.e. Δλres=ΔΦ2πmλres) and plotted them as a function of bead radius in Fig. 8(b) as red cross markers. For comparison, we also plotted the corresponding shift predicted by the perturbation method [55]. As shown, both are in good agreement aside from the fact that there is a identifiable departure due to the 2D simplification with EIM. We believe that a three-dimensional full wave beam propagation method should model the shift with higher accuracy. Finally, we applied the BPM to model the ellipticity effect and hence emulate a nonideal cavity due to fabrication imperfections. Setting the major radius at ϕ = 0 to 45 μm and sweeping the other radius from 32.5 μm to 55 μm, we calculated the quality factor as explained before using BPM. The window size is set to 50 μm with 2201 grids in the ρ̂ direction and 2π radians with 3000 grids in the ϕ̂ direction. We excited the ring with its fundamental mode for a 45-μm major radius and 10-μm minor diameter ring resonator. Figure 9 shows the quality factor as a function of ellipticity, in which the ellipticity is defined as

e=1R90°R0°
where R = 45 μm is the fixed radius and R90° is the variable radius for ϕ = 90°. Inset (a) in Fig. 9 shows the field intensity for R90° = 37.5 μm while inset (b) corresponds to the extreme case of R90° = 32.5 μm. The time duration for Media 2 and Media 3, consisting of two rounds of propagation, is 3.5 minutes.

 

Fig. 6 Magnitude of the overlap factor between the output profile and mode profile as well as its relative error vs. round trip number. The mode profile (blue) and output profile (red) at the 1st, 25th, and 125th rounds of propagation are plotted in insets from left to right.

Download Full Size | PPT Slide | PDF

 

Fig. 7 (a) Power at the output of the ring after each round trip normalized to the first round power for resonance (blue) and for λres(1+12Q) (green). The red curve represents the relative deviation of the power from the saturation power. (b) Normalized saturation power and its relative error vs. grid size in the ρ̂ direction.

Download Full Size | PPT Slide | PDF

 

Fig. 8 (a) Field intensity (in logarithmic scale) over a slice of the ring, where the 400-nm bead is located. The inset shows the field distribution inside the bead. (b) Resonance wavelength shift vs. nanobead radius, for λ = 970 nm, calculated by the BPM method (red) and perturbation method (black).

Download Full Size | PPT Slide | PDF

 

Fig. 9 Quality factor vs. ellipticity. The insets show the field intensities at the second round of propagation for (a) R = 45 μm and R90° = 37.5 μm as well as (b) R = 45 μm and R90° = 32.5 μm taken from Media 2 and Media 3, respectively.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, we implemented a 2D Finite-Difference Beam Propagation Method for simulating light propagation in whispering-gallery mode microcavities. With this method, we demonstrate the calculation of key optical properties such as resonance wavelength, quality factor in cases where the azimuthal symmetry is absent due to singular perturbations from nano particles, and ellipticity of the cavity. The field scattering that arises from asymmetry is clearly visible from our simulation. The BPM is capable of modelling whispering-gallery mode cavities ranging from micron to millimeter or even meter scale with no additional computational resource requirements. Therefore, cylindrical BPM addresses the need for in-depth study of areas such as biosensing with WGM’s where azimuthal symmetry is perturbed. The presented 2D FD-BPM is capable of simulating other deformations like those for quadrupoles, spirals, stadiums, or quasistadiums [56, 57]. Other deformation effects such as cavity emission and wave-chaos can also be treated by this method. Numerical techniques that are used for WGM cavity deformation simulations have limitations on the maximum cavity size, while such a limitation is of the least concern for BPM. Research regarding full-vectorial three-dimensional BPM, PML optimization in the presented simulation domain, and wave chaos analysis is forthcoming.

References and links

1. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef]   [PubMed]  

2. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef]   [PubMed]  

3. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002). [CrossRef]  

4. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nat. Methods 5, 591–596 (2008). [CrossRef]   [PubMed]  

5. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108, 5976–5979 (2011). [CrossRef]   [PubMed]  

6. J. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 1–8 (2010).

7. J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010). [CrossRef]  

8. Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal.Chem. 399, 205–211 (2011). [CrossRef]  

9. S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric mcirocavity,” Nature 415, 621–623 (2002). [CrossRef]   [PubMed]  

10. B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded raman laser,” Opt. Lett. 28, 1507–1509 (2003). [CrossRef]   [PubMed]  

11. M. Cai and K. J. Vahala, “Highly efficient hybrid fiber taper coupled microsphere laser,” Opt. Lett. 26, 884–886 (2001). [CrossRef]  

12. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004). [CrossRef]  

13. T. Lu, L. Yang, R. V. A. van Loon, A. Polman, and K. J. Vahala, “On-chip green silica upconversion microlaser,” Opt. Lett. 34, 482–484 (2009). [CrossRef]   [PubMed]  

14. T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47, 320–326 (2011). [CrossRef]  

15. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A At. Mol. Opt. Phys. 71, 013817 (2005). [CrossRef]  

16. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209–1218 (2007). [CrossRef]  

17. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004). [CrossRef]   [PubMed]  

18. J. Hong, W. P. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10, 1860–1868 (1992). [CrossRef]  

19. X. Du, S. Vincent, and T. Lu, “Full-vectorial whispering-gallery-mode cavity analysis,” Opt. Express 21, 22012–22022 (2013). [CrossRef]   [PubMed]  

20. J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A 5, 53 (2003). [CrossRef]  

21. C.-L. Zou, H. G. L. Schwefel, F.-W. Sun, Z.-F. Han, and G.-C. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express 19, 15669–15678 (2011). [CrossRef]   [PubMed]  

22. M. D. Feit and J. J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978). [CrossRef]   [PubMed]  

23. D. Yevick and B. Hermansson, “Efficient beam propagation techniques,” IEEE J. Quantum Electron. 26, 109–112 (1990). [CrossRef]  

24. J. Saijonmaa and D. Yevick, “Beam-propagation analysis of loss in bent optical waveguides and fibers,” J. Opt. Soc. Am. 73, 1785–1791 (1983). [CrossRef]  

25. W. Huang, C. Xu, S.-T. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: Analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992). [CrossRef]  

26. J. V. Roey, J. van der Donk, and P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am. 71, 803–810 (1981). [CrossRef]  

27. W. Huang, C. Xu, and S. Chaudhuri, “A finite-difference vector beam propagation method for three-dimensional waveguide structures,” IEEE Photonics Technol. Lett. 4, 148–151 (1992). [CrossRef]  

28. B. Hermansson and D. Yevick, “Propagating-beam-method analysis of two-dimensional microlenses and three-dimensional taper structures,” Opt. Soc. Am. A 1, 663–671 (1984). [CrossRef]  

29. H. Rao, R. Scarmozzino, and R. M. Osgood, “A bidirectional beam propagation method for multiple dielectric interfaces,” IEEE Photonics Technol. Lett. 11, 830–832 (1999). [CrossRef]  

30. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000). [CrossRef]  

31. A. Ahmed, R. Koya, O. Wada, M. Wang, and R. Koga, “Eigenmode analysis of whispering gallery mode of pillbox-type optical resonators utilizing the FE-BPM formulation,” IEICE Trans. Electron. E78-C, 1638–1645 (1995).

32. W. Yang and A. Gopinath, “A boundary integral method for propagation problems in integrated optical structures,” IEEE Photonics Technol. Lett. 7, 777–779 (1995). [CrossRef]  

33. T. Lu and D. Yevick, “Boundary element analysis of dielectric waveguides,” J. Opt. Soc. Am. A 19, 1197–1206 (2002). [CrossRef]  

34. T. Lu and D. Yevick, “Comparative evaluation of a novel series approximation for electromagnetic fields at dielectric corners with boundary element method applications,” J. Lightwave Technol. 22, 1426–1432 (2004). [CrossRef]  

35. T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Light-wave Technol. 21, 1793–1807 (2003). [CrossRef]  

36. H. Deng and D. Yevick, “The nonunitarity of finite-element beam propagation algorithms,” IEEE Photonics Technol. Lett. 17, 1429–1431 (2005). [CrossRef]  

37. S.-T. Chu and S. Chaudhuri, “A finite-difference time-domain method for the design and analysis of guided-wave optical structures,” J. Lightwave Technol. 7, 2033–2038 (1989). [CrossRef]  

38. M. Reed, T. M. Benson, P. C. Kendall, and P. Sewell, “Antireflection-coated angled facet design,” Proc. Inst. Electr. Eng. 143, 214–220 (1996).

39. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]  

40. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8, 649–651 (1996). [CrossRef]  

41. G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces,” J. Lightwave Technol. 20, 1210–1218 (2002). [CrossRef]  

42. G. R. Hadley, “Wide-angle beam propagation using pade approximant operators,” Opt. Lett. 17, 1426–1428 (1992). [CrossRef]   [PubMed]  

43. S. Lidgate, P. Sewell, and T. Benson, “Conformal mapping: limitations for waveguide bend analysis,” IEE Proc. Sci. Meas. Technol. 149, 262–266 (2002). [CrossRef]  

44. M. Rivera, “A finite difference BPM analysis of bent dielectric waveguides,” J. Lightwave Technol. 13, 233 (1995). [CrossRef]  

45. H. Deng, G. H. Jin, J. Harari, J. P. Vilcot, and D. Decoster, “Investigation of 3-D semivectorial finite-difference beam propagation method for bent waveguides,” J. Lightwave Technol. 16, 915–922 (1998). [CrossRef]  

46. M. Krause, “Finite-difference mode solver for curved waveguides with angled and curved dielectric interfaces,” J. Lightwave Technol. 29, 691–699 (2011). [CrossRef]  

47. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (John Wiley, 2001).

48. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965). [CrossRef]  

49. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46, 8118–8133 (2007). [CrossRef]   [PubMed]  

50. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-m wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef]   [PubMed]  

51. K. S. Chiang, “Performance of the effective-index method for the analysis of dielectric waveguides,” Opt. Lett. 16, 714–716 (1991). [CrossRef]   [PubMed]  

52. M. A. C. Shirazi, W. Yu, S. Vincent, and T. Lu, “Whispering-gallery mode propagation simulations,” http://youtu.be/SJpEIkmsfMs (2013).

53. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2 (Cambridge University, 1992), chap. 16, pp. 718–725.

54. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003). [CrossRef]  

55. M. A. Waldron, “Perturbation theory of resonant cavities,” Proc. IEE Part C Monogr. 107, 272–274 (1960). [CrossRef]  

56. H. G. L. Schwefel, H. E. Tureci, D. A. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities, K. Vahala, ed. (World Scientific, 2005).

57. Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3, 109–124 (2010). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [Crossref] [PubMed]
  2. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref] [PubMed]
  3. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
    [Crossref]
  4. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref] [PubMed]
  5. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108, 5976–5979 (2011).
    [Crossref] [PubMed]
  6. J. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 1–8 (2010).
  7. J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010).
    [Crossref]
  8. Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal.Chem. 399, 205–211 (2011).
    [Crossref]
  9. S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric mcirocavity,” Nature 415, 621–623 (2002).
    [Crossref] [PubMed]
  10. B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded raman laser,” Opt. Lett. 28, 1507–1509 (2003).
    [Crossref] [PubMed]
  11. M. Cai and K. J. Vahala, “Highly efficient hybrid fiber taper coupled microsphere laser,” Opt. Lett. 26, 884–886 (2001).
    [Crossref]
  12. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
    [Crossref]
  13. T. Lu, L. Yang, R. V. A. van Loon, A. Polman, and K. J. Vahala, “On-chip green silica upconversion microlaser,” Opt. Lett. 34, 482–484 (2009).
    [Crossref] [PubMed]
  14. T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47, 320–326 (2011).
    [Crossref]
  15. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A At. Mol. Opt. Phys. 71, 013817 (2005).
    [Crossref]
  16. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209–1218 (2007).
    [Crossref]
  17. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004).
    [Crossref] [PubMed]
  18. J. Hong, W. P. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10, 1860–1868 (1992).
    [Crossref]
  19. X. Du, S. Vincent, and T. Lu, “Full-vectorial whispering-gallery-mode cavity analysis,” Opt. Express 21, 22012–22022 (2013).
    [Crossref] [PubMed]
  20. J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A 5, 53 (2003).
    [Crossref]
  21. C.-L. Zou, H. G. L. Schwefel, F.-W. Sun, Z.-F. Han, and G.-C. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express 19, 15669–15678 (2011).
    [Crossref] [PubMed]
  22. M. D. Feit and J. J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
    [Crossref] [PubMed]
  23. D. Yevick and B. Hermansson, “Efficient beam propagation techniques,” IEEE J. Quantum Electron. 26, 109–112 (1990).
    [Crossref]
  24. J. Saijonmaa and D. Yevick, “Beam-propagation analysis of loss in bent optical waveguides and fibers,” J. Opt. Soc. Am. 73, 1785–1791 (1983).
    [Crossref]
  25. W. Huang, C. Xu, S.-T. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: Analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
    [Crossref]
  26. J. V. Roey, J. van der Donk, and P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am. 71, 803–810 (1981).
    [Crossref]
  27. W. Huang, C. Xu, and S. Chaudhuri, “A finite-difference vector beam propagation method for three-dimensional waveguide structures,” IEEE Photonics Technol. Lett. 4, 148–151 (1992).
    [Crossref]
  28. B. Hermansson and D. Yevick, “Propagating-beam-method analysis of two-dimensional microlenses and three-dimensional taper structures,” Opt. Soc. Am. A 1, 663–671 (1984).
    [Crossref]
  29. H. Rao, R. Scarmozzino, and R. M. Osgood, “A bidirectional beam propagation method for multiple dielectric interfaces,” IEEE Photonics Technol. Lett. 11, 830–832 (1999).
    [Crossref]
  30. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
    [Crossref]
  31. A. Ahmed, R. Koya, O. Wada, M. Wang, and R. Koga, “Eigenmode analysis of whispering gallery mode of pillbox-type optical resonators utilizing the FE-BPM formulation,” IEICE Trans. Electron. E78-C, 1638–1645 (1995).
  32. W. Yang and A. Gopinath, “A boundary integral method for propagation problems in integrated optical structures,” IEEE Photonics Technol. Lett. 7, 777–779 (1995).
    [Crossref]
  33. T. Lu and D. Yevick, “Boundary element analysis of dielectric waveguides,” J. Opt. Soc. Am. A 19, 1197–1206 (2002).
    [Crossref]
  34. T. Lu and D. Yevick, “Comparative evaluation of a novel series approximation for electromagnetic fields at dielectric corners with boundary element method applications,” J. Lightwave Technol. 22, 1426–1432 (2004).
    [Crossref]
  35. T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Light-wave Technol. 21, 1793–1807 (2003).
    [Crossref]
  36. H. Deng and D. Yevick, “The nonunitarity of finite-element beam propagation algorithms,” IEEE Photonics Technol. Lett. 17, 1429–1431 (2005).
    [Crossref]
  37. S.-T. Chu and S. Chaudhuri, “A finite-difference time-domain method for the design and analysis of guided-wave optical structures,” J. Lightwave Technol. 7, 2033–2038 (1989).
    [Crossref]
  38. M. Reed, T. M. Benson, P. C. Kendall, and P. Sewell, “Antireflection-coated angled facet design,” Proc. Inst. Electr. Eng. 143, 214–220 (1996).
  39. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [Crossref]
  40. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8, 649–651 (1996).
    [Crossref]
  41. G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces,” J. Lightwave Technol. 20, 1210–1218 (2002).
    [Crossref]
  42. G. R. Hadley, “Wide-angle beam propagation using pade approximant operators,” Opt. Lett. 17, 1426–1428 (1992).
    [Crossref] [PubMed]
  43. S. Lidgate, P. Sewell, and T. Benson, “Conformal mapping: limitations for waveguide bend analysis,” IEE Proc. Sci. Meas. Technol. 149, 262–266 (2002).
    [Crossref]
  44. M. Rivera, “A finite difference BPM analysis of bent dielectric waveguides,” J. Lightwave Technol. 13, 233 (1995).
    [Crossref]
  45. H. Deng, G. H. Jin, J. Harari, J. P. Vilcot, and D. Decoster, “Investigation of 3-D semivectorial finite-difference beam propagation method for bent waveguides,” J. Lightwave Technol. 16, 915–922 (1998).
    [Crossref]
  46. M. Krause, “Finite-difference mode solver for curved waveguides with angled and curved dielectric interfaces,” J. Lightwave Technol. 29, 691–699 (2011).
    [Crossref]
  47. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (John Wiley, 2001).
  48. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
    [Crossref]
  49. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46, 8118–8133 (2007).
    [Crossref] [PubMed]
  50. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-m wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [Crossref] [PubMed]
  51. K. S. Chiang, “Performance of the effective-index method for the analysis of dielectric waveguides,” Opt. Lett. 16, 714–716 (1991).
    [Crossref] [PubMed]
  52. M. A. C. Shirazi, W. Yu, S. Vincent, and T. Lu, “Whispering-gallery mode propagation simulations,” http://youtu.be/SJpEIkmsfMs (2013).
  53. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2 (Cambridge University, 1992), chap. 16, pp. 718–725.
  54. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
    [Crossref]
  55. M. A. Waldron, “Perturbation theory of resonant cavities,” Proc. IEE Part C Monogr. 107, 272–274 (1960).
    [Crossref]
  56. H. G. L. Schwefel, H. E. Tureci, D. A. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities, K. Vahala, ed. (World Scientific, 2005).
  57. Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3, 109–124 (2010).
    [Crossref]

2013 (1)

2011 (5)

C.-L. Zou, H. G. L. Schwefel, F.-W. Sun, Z.-F. Han, and G.-C. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express 19, 15669–15678 (2011).
[Crossref] [PubMed]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal.Chem. 399, 205–211 (2011).
[Crossref]

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47, 320–326 (2011).
[Crossref]

M. Krause, “Finite-difference mode solver for curved waveguides with angled and curved dielectric interfaces,” J. Lightwave Technol. 29, 691–699 (2011).
[Crossref]

2010 (3)

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3, 109–124 (2010).
[Crossref]

J. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 1–8 (2010).

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

2009 (1)

2008 (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

2007 (2)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209–1218 (2007).
[Crossref]

R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46, 8118–8133 (2007).
[Crossref] [PubMed]

2005 (2)

H. Deng and D. Yevick, “The nonunitarity of finite-element beam propagation algorithms,” IEEE Photonics Technol. Lett. 17, 1429–1431 (2005).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A At. Mol. Opt. Phys. 71, 013817 (2005).
[Crossref]

2004 (3)

2003 (5)

T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Light-wave Technol. 21, 1793–1807 (2003).
[Crossref]

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A 5, 53 (2003).
[Crossref]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded raman laser,” Opt. Lett. 28, 1507–1509 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[Crossref]

2002 (5)

G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces,” J. Lightwave Technol. 20, 1210–1218 (2002).
[Crossref]

S. Lidgate, P. Sewell, and T. Benson, “Conformal mapping: limitations for waveguide bend analysis,” IEE Proc. Sci. Meas. Technol. 149, 262–266 (2002).
[Crossref]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric mcirocavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

T. Lu and D. Yevick, “Boundary element analysis of dielectric waveguides,” J. Opt. Soc. Am. A 19, 1197–1206 (2002).
[Crossref]

2001 (1)

2000 (1)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[Crossref]

1999 (1)

H. Rao, R. Scarmozzino, and R. M. Osgood, “A bidirectional beam propagation method for multiple dielectric interfaces,” IEEE Photonics Technol. Lett. 11, 830–832 (1999).
[Crossref]

1998 (1)

1996 (3)

W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8, 649–651 (1996).
[Crossref]

M. Reed, T. M. Benson, P. C. Kendall, and P. Sewell, “Antireflection-coated angled facet design,” Proc. Inst. Electr. Eng. 143, 214–220 (1996).

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[Crossref] [PubMed]

1995 (3)

A. Ahmed, R. Koya, O. Wada, M. Wang, and R. Koga, “Eigenmode analysis of whispering gallery mode of pillbox-type optical resonators utilizing the FE-BPM formulation,” IEICE Trans. Electron. E78-C, 1638–1645 (1995).

W. Yang and A. Gopinath, “A boundary integral method for propagation problems in integrated optical structures,” IEEE Photonics Technol. Lett. 7, 777–779 (1995).
[Crossref]

M. Rivera, “A finite difference BPM analysis of bent dielectric waveguides,” J. Lightwave Technol. 13, 233 (1995).
[Crossref]

1994 (1)

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

1992 (4)

G. R. Hadley, “Wide-angle beam propagation using pade approximant operators,” Opt. Lett. 17, 1426–1428 (1992).
[Crossref] [PubMed]

W. Huang, C. Xu, and S. Chaudhuri, “A finite-difference vector beam propagation method for three-dimensional waveguide structures,” IEEE Photonics Technol. Lett. 4, 148–151 (1992).
[Crossref]

W. Huang, C. Xu, S.-T. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: Analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

J. Hong, W. P. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10, 1860–1868 (1992).
[Crossref]

1991 (1)

1990 (1)

D. Yevick and B. Hermansson, “Efficient beam propagation techniques,” IEEE J. Quantum Electron. 26, 109–112 (1990).
[Crossref]

1989 (1)

S.-T. Chu and S. Chaudhuri, “A finite-difference time-domain method for the design and analysis of guided-wave optical structures,” J. Lightwave Technol. 7, 2033–2038 (1989).
[Crossref]

1984 (1)

B. Hermansson and D. Yevick, “Propagating-beam-method analysis of two-dimensional microlenses and three-dimensional taper structures,” Opt. Soc. Am. A 1, 663–671 (1984).
[Crossref]

1983 (1)

1981 (1)

1978 (1)

1973 (1)

1965 (1)

1960 (1)

M. A. Waldron, “Perturbation theory of resonant cavities,” Proc. IEE Part C Monogr. 107, 272–274 (1960).
[Crossref]

Ahmed, A.

A. Ahmed, R. Koya, O. Wada, M. Wang, and R. Koga, “Eigenmode analysis of whispering gallery mode of pillbox-type optical resonators utilizing the FE-BPM formulation,” IEICE Trans. Electron. E78-C, 1638–1645 (1995).

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Benson, T.

S. Lidgate, P. Sewell, and T. Benson, “Conformal mapping: limitations for waveguide bend analysis,” IEE Proc. Sci. Meas. Technol. 149, 262–266 (2002).
[Crossref]

Benson, T. M.

M. Reed, T. M. Benson, P. C. Kendall, and P. Sewell, “Antireflection-coated angled facet design,” Proc. Inst. Electr. Eng. 143, 214–220 (1996).

Berenger, J.-P.

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

Bowen, W. P.

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Brock, R. S.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[Crossref]

Cai, M.

Carmon, T.

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47, 320–326 (2011).
[Crossref]

Chang, R. K.

H. G. L. Schwefel, H. E. Tureci, D. A. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities, K. Vahala, ed. (World Scientific, 2005).

Chaudhuri, S.

W. Huang, C. Xu, and S. Chaudhuri, “A finite-difference vector beam propagation method for three-dimensional waveguide structures,” IEEE Photonics Technol. Lett. 4, 148–151 (1992).
[Crossref]

S.-T. Chu and S. Chaudhuri, “A finite-difference time-domain method for the design and analysis of guided-wave optical structures,” J. Lightwave Technol. 7, 2033–2038 (1989).
[Crossref]

Chaudhuri, S. K.

W. Huang, C. Xu, S.-T. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: Analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Chiang, K. S.

Chu, S.-T.

W. Huang, C. Xu, S.-T. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: Analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

S.-T. Chu and S. Chaudhuri, “A finite-difference time-domain method for the design and analysis of guided-wave optical structures,” J. Lightwave Technol. 7, 2033–2038 (1989).
[Crossref]

Decoster, D.

Deng, H.

Dominguez-Juarez, J.

J. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 1–8 (2010).

Dong, C.-H.

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3, 109–124 (2010).
[Crossref]

Du, X.

Fan, X.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal.Chem. 399, 205–211 (2011).
[Crossref]

Feit, M. D.

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2 (Cambridge University, 1992), chap. 16, pp. 718–725.

Fleck, J. J. A.

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A At. Mol. Opt. Phys. 71, 013817 (2005).
[Crossref]

Gong, Q.

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3, 109–124 (2010).
[Crossref]

Gopinath, A.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[Crossref]

W. Yang and A. Gopinath, “A boundary integral method for propagation problems in integrated optical structures,” IEEE Photonics Technol. Lett. 7, 777–779 (1995).
[Crossref]

Gorodetsky, M. L.

Guo, G.-C.

Hadley, G. R.

Hale, G. M.

Han, Z.-F.

C.-L. Zou, H. G. L. Schwefel, F.-W. Sun, Z.-F. Han, and G.-C. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express 19, 15669–15678 (2011).
[Crossref] [PubMed]

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3, 109–124 (2010).
[Crossref]

Harari, J.

Helfert, S.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[Crossref]

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Hermansson, B.

D. Yevick and B. Hermansson, “Efficient beam propagation techniques,” IEEE J. Quantum Electron. 26, 109–112 (1990).
[Crossref]

B. Hermansson and D. Yevick, “Propagating-beam-method analysis of two-dimensional microlenses and three-dimensional taper structures,” Opt. Soc. Am. A 1, 663–671 (1984).
[Crossref]

Hong, J.

J. Hong, W. P. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10, 1860–1868 (1992).
[Crossref]

Hu, X.-H.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[Crossref]

Huang, W.

W. Huang, C. Xu, and S. Chaudhuri, “A finite-difference vector beam propagation method for three-dimensional waveguide structures,” IEEE Photonics Technol. Lett. 4, 148–151 (1992).
[Crossref]

W. Huang, C. Xu, S.-T. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: Analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

Huang, W. P.

W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8, 649–651 (1996).
[Crossref]

J. Hong, W. P. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10, 1860–1868 (1992).
[Crossref]

Huang, Y.

Ilchenko, V. S.

Jacobs, K. M.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[Crossref]

Jin, G. H.

Jonasz, M.

Kalkman, J.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
[Crossref]

Kawano, K.

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (John Wiley, 2001).

Kendall, P. C.

M. Reed, T. M. Benson, P. C. Kendall, and P. Sewell, “Antireflection-coated angled facet design,” Proc. Inst. Electr. Eng. 143, 214–220 (1996).

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Kimble, H. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A At. Mol. Opt. Phys. 71, 013817 (2005).
[Crossref]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A At. Mol. Opt. Phys. 71, 013817 (2005).
[Crossref]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
[Crossref]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded raman laser,” Opt. Lett. 28, 1507–1509 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric mcirocavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Kitamura, R.

Kitoh, T.

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (John Wiley, 2001).

Knittel, J.

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

Koga, R.

A. Ahmed, R. Koya, O. Wada, M. Wang, and R. Koga, “Eigenmode analysis of whispering gallery mode of pillbox-type optical resonators utilizing the FE-BPM formulation,” IEICE Trans. Electron. E78-C, 1638–1645 (1995).

Koya, R.

A. Ahmed, R. Koya, O. Wada, M. Wang, and R. Koga, “Eigenmode analysis of whispering gallery mode of pillbox-type optical resonators utilizing the FE-BPM formulation,” IEICE Trans. Electron. E78-C, 1638–1645 (1995).

Kozyreff, G.

J. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 1–8 (2010).

Krause, M.

Lagasse, P. E.

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Lee, K. H.

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

Li, Y.

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3, 109–124 (2010).
[Crossref]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Lidgate, S.

S. Lidgate, P. Sewell, and T. Benson, “Conformal mapping: limitations for waveguide bend analysis,” IEE Proc. Sci. Meas. Technol. 149, 262–266 (2002).
[Crossref]

Lu, J. Q.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[Crossref]

Lu, T.

X. Du, S. Vincent, and T. Lu, “Full-vectorial whispering-gallery-mode cavity analysis,” Opt. Express 21, 22012–22022 (2013).
[Crossref] [PubMed]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47, 320–326 (2011).
[Crossref]

T. Lu, L. Yang, R. V. A. van Loon, A. Polman, and K. J. Vahala, “On-chip green silica upconversion microlaser,” Opt. Lett. 34, 482–484 (2009).
[Crossref] [PubMed]

T. Lu and D. Yevick, “Comparative evaluation of a novel series approximation for electromagnetic fields at dielectric corners with boundary element method applications,” J. Lightwave Technol. 22, 1426–1432 (2004).
[Crossref]

T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Light-wave Technol. 21, 1793–1807 (2003).
[Crossref]

T. Lu and D. Yevick, “Boundary element analysis of dielectric waveguides,” J. Opt. Soc. Am. A 19, 1197–1206 (2002).
[Crossref]

Lui, W.

W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8, 649–651 (1996).
[Crossref]

Ma, X.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[Crossref]

Makino, T.

J. Hong, W. P. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10, 1860–1868 (1992).
[Crossref]

Malitson, I. H.

Martorell, J.

J. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 1–8 (2010).

McRae, T. G.

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

Min, B.

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47, 320–326 (2011).
[Crossref]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
[Crossref]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded raman laser,” Opt. Lett. 28, 1507–1509 (2003).
[Crossref] [PubMed]

Mookherjea, S.

Osgood, R. M.

H. Rao, R. Scarmozzino, and R. M. Osgood, “A bidirectional beam propagation method for multiple dielectric interfaces,” IEEE Photonics Technol. Lett. 11, 830–832 (1999).
[Crossref]

Oxborrow, M.

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209–1218 (2007).
[Crossref]

Paloczi, G. T.

Pilon, L.

Polman, A.

T. Lu, L. Yang, R. V. A. van Loon, A. Polman, and K. J. Vahala, “On-chip green silica upconversion microlaser,” Opt. Lett. 34, 482–484 (2009).
[Crossref] [PubMed]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
[Crossref]

Poon, J. K. S.

Pregla, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[Crossref]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2 (Cambridge University, 1992), chap. 16, pp. 718–725.

Querry, M. R.

Rao, H.

H. Rao, R. Scarmozzino, and R. M. Osgood, “A bidirectional beam propagation method for multiple dielectric interfaces,” IEEE Photonics Technol. Lett. 11, 830–832 (1999).
[Crossref]

Reed, M.

M. Reed, T. M. Benson, P. C. Kendall, and P. Sewell, “Antireflection-coated angled facet design,” Proc. Inst. Electr. Eng. 143, 214–220 (1996).

Rivera, M.

M. Rivera, “A finite difference BPM analysis of bent dielectric waveguides,” J. Lightwave Technol. 13, 233 (1995).
[Crossref]

Roey, J. V.

Saijonmaa, J.

Savchenkov, A. A.

Scarmozzino, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[Crossref]

H. Rao, R. Scarmozzino, and R. M. Osgood, “A bidirectional beam propagation method for multiple dielectric interfaces,” IEEE Photonics Technol. Lett. 11, 830–832 (1999).
[Crossref]

Scheuer, J.

Schwefel, H. G. L.

C.-L. Zou, H. G. L. Schwefel, F.-W. Sun, Z.-F. Han, and G.-C. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express 19, 15669–15678 (2011).
[Crossref] [PubMed]

H. G. L. Schwefel, H. E. Tureci, D. A. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities, K. Vahala, ed. (World Scientific, 2005).

Sewell, P.

S. Lidgate, P. Sewell, and T. Benson, “Conformal mapping: limitations for waveguide bend analysis,” IEE Proc. Sci. Meas. Technol. 149, 262–266 (2002).
[Crossref]

M. Reed, T. M. Benson, P. C. Kendall, and P. Sewell, “Antireflection-coated angled facet design,” Proc. Inst. Electr. Eng. 143, 214–220 (1996).

Spillane, S.

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric mcirocavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A At. Mol. Opt. Phys. 71, 013817 (2005).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Stone, D. A.

H. G. L. Schwefel, H. E. Tureci, D. A. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities, K. Vahala, ed. (World Scientific, 2005).

Sun, F.-W.

Sun, Y.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal.Chem. 399, 205–211 (2011).
[Crossref]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2 (Cambridge University, 1992), chap. 16, pp. 718–725.

Tureci, H. E.

H. G. L. Schwefel, H. E. Tureci, D. A. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities, K. Vahala, ed. (World Scientific, 2005).

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Vahala, K. J.

T. Lu, L. Yang, R. V. A. van Loon, A. Polman, and K. J. Vahala, “On-chip green silica upconversion microlaser,” Opt. Lett. 34, 482–484 (2009).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A At. Mol. Opt. Phys. 71, 013817 (2005).
[Crossref]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
[Crossref]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded raman laser,” Opt. Lett. 28, 1507–1509 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric mcirocavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

M. Cai and K. J. Vahala, “Highly efficient hybrid fiber taper coupled microsphere laser,” Opt. Lett. 26, 884–886 (2001).
[Crossref]

van der Donk, J.

van Loon, R. V. A.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2 (Cambridge University, 1992), chap. 16, pp. 718–725.

Vilcot, J. P.

Vincent, S.

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Wada, O.

A. Ahmed, R. Koya, O. Wada, M. Wang, and R. Koga, “Eigenmode analysis of whispering gallery mode of pillbox-type optical resonators utilizing the FE-BPM formulation,” IEICE Trans. Electron. E78-C, 1638–1645 (1995).

Waldron, M. A.

M. A. Waldron, “Perturbation theory of resonant cavities,” Proc. IEE Part C Monogr. 107, 272–274 (1960).
[Crossref]

Wang, M.

A. Ahmed, R. Koya, O. Wada, M. Wang, and R. Koga, “Eigenmode analysis of whispering gallery mode of pillbox-type optical resonators utilizing the FE-BPM formulation,” IEICE Trans. Electron. E78-C, 1638–1645 (1995).

Wiersig, J.

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A 5, 53 (2003).
[Crossref]

Wilcut, E.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A At. Mol. Opt. Phys. 71, 013817 (2005).
[Crossref]

Xiao, Y.-F.

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3, 109–124 (2010).
[Crossref]

Xu, C.

W. Huang, C. Xu, S.-T. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: Analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

W. Huang, C. Xu, and S. Chaudhuri, “A finite-difference vector beam propagation method for three-dimensional waveguide structures,” IEEE Photonics Technol. Lett. 4, 148–151 (1992).
[Crossref]

Xu, C. L.

W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8, 649–651 (1996).
[Crossref]

Yang, L.

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47, 320–326 (2011).
[Crossref]

T. Lu, L. Yang, R. V. A. van Loon, A. Polman, and K. J. Vahala, “On-chip green silica upconversion microlaser,” Opt. Lett. 34, 482–484 (2009).
[Crossref] [PubMed]

Yang, P.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[Crossref]

Yang, W.

W. Yang and A. Gopinath, “A boundary integral method for propagation problems in integrated optical structures,” IEEE Photonics Technol. Lett. 7, 777–779 (1995).
[Crossref]

Yariv, A.

Yevick, D.

H. Deng and D. Yevick, “The nonunitarity of finite-element beam propagation algorithms,” IEEE Photonics Technol. Lett. 17, 1429–1431 (2005).
[Crossref]

T. Lu and D. Yevick, “Comparative evaluation of a novel series approximation for electromagnetic fields at dielectric corners with boundary element method applications,” J. Lightwave Technol. 22, 1426–1432 (2004).
[Crossref]

T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Light-wave Technol. 21, 1793–1807 (2003).
[Crossref]

T. Lu and D. Yevick, “Boundary element analysis of dielectric waveguides,” J. Opt. Soc. Am. A 19, 1197–1206 (2002).
[Crossref]

D. Yevick and B. Hermansson, “Efficient beam propagation techniques,” IEEE J. Quantum Electron. 26, 109–112 (1990).
[Crossref]

B. Hermansson and D. Yevick, “Propagating-beam-method analysis of two-dimensional microlenses and three-dimensional taper structures,” Opt. Soc. Am. A 1, 663–671 (1984).
[Crossref]

J. Saijonmaa and D. Yevick, “Beam-propagation analysis of loss in bent optical waveguides and fibers,” J. Opt. Soc. Am. 73, 1785–1791 (1983).
[Crossref]

Yokoyama, K.

W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8, 649–651 (1996).
[Crossref]

Zou, C.-L.

C.-L. Zou, H. G. L. Schwefel, F.-W. Sun, Z.-F. Han, and G.-C. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express 19, 15669–15678 (2011).
[Crossref] [PubMed]

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3, 109–124 (2010).
[Crossref]

Anal. Bioanal.Chem. (1)

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal.Chem. 399, 205–211 (2011).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
[Crossref]

Front. Optoelectron. China (1)

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3, 109–124 (2010).
[Crossref]

IEE Proc. Sci. Meas. Technol. (1)

S. Lidgate, P. Sewell, and T. Benson, “Conformal mapping: limitations for waveguide bend analysis,” IEE Proc. Sci. Meas. Technol. 149, 262–266 (2002).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47, 320–326 (2011).
[Crossref]

D. Yevick and B. Hermansson, “Efficient beam propagation techniques,” IEEE J. Quantum Electron. 26, 109–112 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (5)

W. Huang, C. Xu, and S. Chaudhuri, “A finite-difference vector beam propagation method for three-dimensional waveguide structures,” IEEE Photonics Technol. Lett. 4, 148–151 (1992).
[Crossref]

W. Yang and A. Gopinath, “A boundary integral method for propagation problems in integrated optical structures,” IEEE Photonics Technol. Lett. 7, 777–779 (1995).
[Crossref]

H. Rao, R. Scarmozzino, and R. M. Osgood, “A bidirectional beam propagation method for multiple dielectric interfaces,” IEEE Photonics Technol. Lett. 11, 830–832 (1999).
[Crossref]

H. Deng and D. Yevick, “The nonunitarity of finite-element beam propagation algorithms,” IEEE Photonics Technol. Lett. 17, 1429–1431 (2005).
[Crossref]

W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8, 649–651 (1996).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209–1218 (2007).
[Crossref]

IEICE Trans. Electron. (1)

A. Ahmed, R. Koya, O. Wada, M. Wang, and R. Koga, “Eigenmode analysis of whispering gallery mode of pillbox-type optical resonators utilizing the FE-BPM formulation,” IEICE Trans. Electron. E78-C, 1638–1645 (1995).

J. Comput. Phys. (1)

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

J. Light-wave Technol. (1)

T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Light-wave Technol. 21, 1793–1807 (2003).
[Crossref]

J. Lightwave Technol. (8)

S.-T. Chu and S. Chaudhuri, “A finite-difference time-domain method for the design and analysis of guided-wave optical structures,” J. Lightwave Technol. 7, 2033–2038 (1989).
[Crossref]

M. Rivera, “A finite difference BPM analysis of bent dielectric waveguides,” J. Lightwave Technol. 13, 233 (1995).
[Crossref]

H. Deng, G. H. Jin, J. Harari, J. P. Vilcot, and D. Decoster, “Investigation of 3-D semivectorial finite-difference beam propagation method for bent waveguides,” J. Lightwave Technol. 16, 915–922 (1998).
[Crossref]

M. Krause, “Finite-difference mode solver for curved waveguides with angled and curved dielectric interfaces,” J. Lightwave Technol. 29, 691–699 (2011).
[Crossref]

G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces,” J. Lightwave Technol. 20, 1210–1218 (2002).
[Crossref]

T. Lu and D. Yevick, “Comparative evaluation of a novel series approximation for electromagnetic fields at dielectric corners with boundary element method applications,” J. Lightwave Technol. 22, 1426–1432 (2004).
[Crossref]

W. Huang, C. Xu, S.-T. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: Analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

J. Hong, W. P. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10, 1860–1868 (1992).
[Crossref]

J. Opt. A (1)

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A 5, 53 (2003).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

J. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 1–8 (2010).

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Nature (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric mcirocavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (6)

Opt. Soc. Am. A (1)

B. Hermansson and D. Yevick, “Propagating-beam-method analysis of two-dimensional microlenses and three-dimensional taper structures,” Opt. Soc. Am. A 1, 663–671 (1984).
[Crossref]

Phys. Med. Biol. (1)

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[Crossref]

Phys. Rev. A At. Mol. Opt. Phys. (1)

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A At. Mol. Opt. Phys. 71, 013817 (2005).
[Crossref]

Proc. IEE Part C Monogr. (1)

M. A. Waldron, “Perturbation theory of resonant cavities,” Proc. IEE Part C Monogr. 107, 272–274 (1960).
[Crossref]

Proc. Inst. Electr. Eng. (1)

M. Reed, T. M. Benson, P. C. Kendall, and P. Sewell, “Antireflection-coated angled facet design,” Proc. Inst. Electr. Eng. 143, 214–220 (1996).

Proc. Natl. Acad. Sci. U. S. A. (1)

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Other (4)

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (John Wiley, 2001).

H. G. L. Schwefel, H. E. Tureci, D. A. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities, K. Vahala, ed. (World Scientific, 2005).

M. A. C. Shirazi, W. Yu, S. Vincent, and T. Lu, “Whispering-gallery mode propagation simulations,” http://youtu.be/SJpEIkmsfMs (2013).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2 (Cambridge University, 1992), chap. 16, pp. 718–725.

Supplementary Material (3)

» Media 1: AVI (14325 KB)     
» Media 2: AVI (13400 KB)     
» Media 3: AVI (13400 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 A cylindrical coordinate system.
Fig. 2
Fig. 2 Reflectivity in dB vs. different σ0 values. The insets are the field intensity for three different σ0 values: (a) 0, (b) 2.5 × 1016, and (c) 1020. The white lines indicate the inner 2-μm PML edges. The σ0 values of inset (a) and (c) are not in the plot σ0 range.
Fig. 3
Fig. 3 (a) Field intensity in logarithmic scale, where the radiation is observable. To reiterate, the solid green lines are showing the resonator edges and the dashed green lines are showing the PML edges. (b) Partial intensity distribution frame (from Media 1) for propagation in a 1-mm diameter microdisk, wherein the PML effectiveness is confirmed by the lack of artificial reflection.
Fig. 4
Fig. 4 (a) Quality factor vs. grid spacings, (b) its relative error vs. grid spacings, (c) variations for the cross section at Δρ = 3.1 nm, and (d) variations for the cross section at Δϕ = 0.0015 radians. In (c), the last two points are omitted for the line of best fit.
Fig. 5
Fig. 5 Resonance wavelength of the ring resonator and its relevant error vs. grid size in the ρ̂ direction.
Fig. 6
Fig. 6 Magnitude of the overlap factor between the output profile and mode profile as well as its relative error vs. round trip number. The mode profile (blue) and output profile (red) at the 1st, 25th, and 125th rounds of propagation are plotted in insets from left to right.
Fig. 7
Fig. 7 (a) Power at the output of the ring after each round trip normalized to the first round power for resonance (blue) and for λ res ( 1 + 1 2 Q ) (green). The red curve represents the relative deviation of the power from the saturation power. (b) Normalized saturation power and its relative error vs. grid size in the ρ̂ direction.
Fig. 8
Fig. 8 (a) Field intensity (in logarithmic scale) over a slice of the ring, where the 400-nm bead is located. The inset shows the field distribution inside the bead. (b) Resonance wavelength shift vs. nanobead radius, for λ = 970 nm, calculated by the BPM method (red) and perturbation method (black).
Fig. 9
Fig. 9 Quality factor vs. ellipticity. The insets show the field intensities at the second round of propagation for (a) R = 45 μm and R90° = 37.5 μm as well as (b) R = 45 μm and R90° = 32.5 μm taken from Media 2 and Media 3, respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

[ 2 ϕ 2 + ρ 2 2 ρ 2 + ρ ρ + n 2 ( ρ , ϕ ) k 0 2 ρ 2 ] E = 0
E ( ρ , ϕ ) = A ψ ^ m r ( ρ ) exp ( j m ϕ )
[ ρ 2 2 ρ 2 + ρ ρ + n 2 ( ρ ) k 0 2 ρ 2 ] ψ ^ m r = m 2 ψ ^ m r
E ( ρ , ϕ ) = ψ ( ρ , ϕ ) exp ( j m ¯ ϕ )
| 2 ψ ϕ 2 | 2 | m ¯ ψ ϕ |
j ϕ ψ = ρ 2 2 m 2 ψ ρ 2 + ρ 2 m ψ ρ + ( ρ 2 k 0 2 n 2 ( ρ , ϕ ) 2 m m 2 ) ψ
a p ψ p 1 , l + 1 + ( 1 j Δ ϕ + b p ) ψ p , l + 1 c p ψ p + 1 , l + 1 = a p ψ p 1 , l + ( 1 j Δ ϕ b p ) ψ p , l + c p ψ p + 1 , l
a p = p ( 1 2 p ) 8 m b p = p 2 ( 2 Δ ρ 2 k 0 2 n p , l + 1 2 ) 4 m + m 4 c p = p ( 1 + 2 p ) 8 m
H ˜ | ψ l + 1 = D ˜ | ψ l
ρ 1 1 + j σ ( ρ ) ω ρ
σ ( ρ ) = { σ 0 ( ρ ρ 0 ) 2 Inside the PML 0 Elsewhere
e = 1 R 90 ° R 0 °

Metrics