Abstract

The plasmonic resonance effect on metasurfaces generates an abrupt phase change. We employ this phase modulation mechanism to design the longitudinal field distribution of an ultrathin terahertz (THz) lens for achieving the axial long-focal-depth (LFD) property. Phase distributions of the designed lens are obtained by the Yang-Gu iterative amplitude-phase retrieval algorithm. By depositing a 100 nm gold film on a 500 μm silicon substrate and etching arrayed V-shaped air holes through the gold film, the designed ultrathin THz lens is fabricated by the micro photolithography technology. Experimental measurements have demonstrated its LFD property, which basically agree with the theoretical simulations. In addition, the designed THz lens possesses a good LFD property with a bandwidth of 200 GHz. It is expected that the designed ultrathin LFD THz lens should have wide potential applications in broadband THz imaging and THz communication systems.

© 2013 Optical Society of America

1. Introduction

The axial long-focal-depth (LFD) property of lenses and mirrors is critically important in optical coupling, optical imaging and optical interconnections, because it can provide a focusing range rather than a definite focal position. In the past, several researchers have designed the three-dimensional large-sized axilenses and axicons from geometrical optics and analyzed their LFD properties based on the scalar diffraction theory [13]. Dong et al. applied a generalized amplitude-phase retrieval algorithm to designing LFD diffractive phase elements, i.e., the Yang-Gu algorithm [4]. In all of the above works, the phase modulation for the LFD property was accumulated by the optical path difference. Therefore, thicknesses of the optical elements are larger than or comparable to the incident wavelength. In order to reduce the thickness further, new phase modulation mechanism needs to be explored.

In recent years, scientists have discovered that refractive index and phase modulation exists in metal-dielectric stratified structures [57], electromagnetic resonant cavities [8, 9], metallic nanoparticle clusters [10], and plasmonic antennas [11]. Quite recently, Yu et al. have disclosed that an abrupt phase change is encountered on an air-metal interface with subwavelength structures and formulated generalized laws of reflection and refraction [12]. Through fabricating the V-shaped thin gold antennas on a silicon substrate, experimental measurements have proved their theoretical predictions. The phase change is originated from plasmonic resonance on the nanostructured metal surface, therefore, it is named as a metasurface. An obvious merit of the optical elements based on metasurfaces is that, they (only about 100 nm) are much thinner than the conventional optical elements, especially for the terahertz (THz) region. For instance, for a 1.0 THz wave with wavelength of 300 μm, the thickness is only 1/3000 of the wavelength. By using the metasurface, a lot of optical functions have been realized including optical focusing [13,14], dispersive focusing [15], optical imaging [16], computer generated holograms [16], ultrahigh refractive index modulation [17], optical vortexes [12, 18, 19], the dual polarity plasmonic metalens [20], quarter-wave plate for generating circularly polarized light [21], Fresnel zone plate [22], helicity dependent surface plasmon excitation [23], and the photonic spin Hall effect [24].

In previous papers, the optical focusing function on a definite transverse focal plane has been successfully realized by using the metasurfaces [15, 16]. In this paper, we extend to modulate the longitudinal field distribution with metasurfaces for obtaining the axial LFD property of a THz lens, which can broaden its applications in THz imaging and THz communication systems. The Yang-Gu amplitude-phase retrieval algorithm [4, 25, 26] is adopted to calculate the phase distributions of the designed ultrathin LFD THz lens. For generating the desired phase changes, we design a metasurface with V-shaped air holes on a thin metal film. Compared with the V-shaped gold antenna in [12], this complementary structure is superior in reducing the background noise in the transmitted region due to blocking the incident field. The designs of the structured metasurfaces are implemented by using the ‘Concerto’ commercial software, which is based on the finite-difference time-domain method [16, 27]. Then, we fabricate the designed lens by the micro photolithography and lift-off technologies. Finally, in order to characterize the performance of the fabricated LFD THz lens, we have developed a THz near-field imaging system. The experimental setup and its working principles were described in [28, 29].

This paper is organized as follows. In Section 2, firstly, the principle of the Yang-Gu iterative amplitude-phase retrieval algorithm is described in detail with formulas. Secondly, the designing parameters of the ultrathin LFD THz lens are given and phase distributions are calculated by the Yang-Gu algorithm. Thirdly, the calculated phases are quantized into eight quantization levels and the designed eight V-shaped air hole structure units are presented with detailed parameters. In Section 3, the designed LFD THz lens is fabricated and its LFD properties are measured in experiments. Numerical simulations are also carried out for comparison with physical explanations. In Section 4, a brief conclusion is drawn with some discussions.

2. Design of the ultrathin LFD THz lens

Figure 1(a) depicts the focusing geometry. The xy plane is the incident plane, and the z-axis is the propagation direction. The input THz plane wave transmits through the ultrathin THz lens, and it is assumed to be focused in an axial range (f0δf/2, f0 + δf/2), as shown in Fig. 1(a). On the input plane P1 (z = 0), the wave function is written by

U1=U1(X1)=ρ1(X1)exp[iϕ1(X1)],
where the vector X1 represents the input-plane coordinates (x1, y1).

 figure: Fig. 1

Fig. 1 (a) A focusing geometry of the ultrathin LFD THz lens. (b) Eight-level quantized phase distributions of the designed ultrathin LFD THz lens.

Download Full Size | PPT Slide | PDF

The phase distributions of the THz lens are obtained by the Yang-Gu amplitude-phase retrieval algorithm [4]. For evaluating the LFD function, we choose several output sampling planes. The wave function on the αth output plane P2α at z = zα is denoted by

U2α=U2α(X2α,zα)=ρ2α(X2α,zα)exp[iϕ2α(X2α,zα)],
where α = 1, 2, ..., N, indicating the output plane number; the vector X2α stands for the output-plane coordinates (x2α, y2α).

The output wave function is related to the input wave function by the Fresnel diffraction integral as follows

U2α(X2α,zα)=G(X2α,X1,zα)U1(X1)dX1,
where G(X2α, X1, zα) represents the Fresnel diffraction integral kernel given by
G(X2α,X1,zα)=2πiλzαexp[i2πzαλ+iπ(X2αX1)2λzα].
Equation (3) may be written in a compact form as
U2α(X2α,zα)=G^αU1(X1).
For showing how accurate the real output wave function is, an error function is defined as follows
Δ=α(U2α0U2α)2,
where U2α0 represents the ideal complex amplitude on the αth output plane; || · · · || denotes the complex magnitude.

Through searching for the minimum value of Δ with respect to the arguments ϕ1 and ϕ2α, we can obtain

exp[iϕ1(X1)]=Q*/|Q|,
exp[iϕ2α(X2α,zα)]=G^αρ1(X1)exp[iϕ1(X1)]|G^αρ1(X1)exp[iϕ1(X1)]|,
and
Q=αρ1(X1)exp[iϕ1(X1)]A^αρ2α(X2α)exp[iϕ2α(X2α,zα)G^α],
where A^α=G^α+G^α. More detailed deductions of Eqs. (6a), (6b) and (7) were written in references [4, 25, 26]. Generally, Eqs. (6a) and (6b) should be solved numerically.

In our design, parameters are selected as follows. The input plane has a size of 8 mm × 8 mm, which is equally quantized into 40 × 40 pixels. Therefore, the pixel size is 200 μm × 200 μm. The focal length f0 and focal depth δf are preset to 9 and 10 mm, respectively. Therefore, the preset LFD region locates from 4 to 14 mm. We choose three output sampling planes situating at zα = 4, 9, and 14 mm, respectively, namely the parameter is α = 1, 2, 3 in Eqs. (2)(7). The incident wavelength is λ = 400 μm. The three output planes have the same sizes of 16 mm × 16 mm, which are equally quantized into 32 × 32 pixels. By using the Yang-Gu iterative amplitude-phase retrieval algorithm, we can calculate the phase distributions ϕ1(X1) on the input plane. After eight-level phase quantization from π/4 to 2π with a π/4 interval, they are displayed in Fig. 1(b).

Next, for producing the above eight quantized phase changes, we design a metasurface with V-shaped air holes on a thin metal film. A schematic diagram of the structure unit is shown in Fig. 2(a). The yellow and gray regions represent the metal film and the air hole, respectively. Each unit has a size of 200 μm × 200 μm. The polarization of the incident field Einc is along the x-axis. Through changing the air hole length h, width w, angles θ and β, the cross-polarized transmitted field Ey has different phase changes. The width of the air hole is fixed to w = 5 μm. By using the commercial software ‘Concerto’ [16, 27], we have optimized eight structure units whose amplitudes are almost the same while their phases vary from π/4 to 2π for every π/4. They can serve as eight phase quantization levels in diffractive optics. Detailed parameters of the eight designed structure units are listed in Table 1.

 figure: Fig. 2

Fig. 2 (a) A schematic of the metasurface in a unit cell. (b) An optical microscopy of the central part of the fabricated ultrathin LFD THz lens. (c) Experimental intensity distributions in the xz plane. (d) The blue and red curves represent the theoretical and experimental intensity distributions of the LFD THz lens along the z-axis. The black curve plots the axial intensity distributions of a conventional THz lens. The dashed lines mark the three focal depths.

Download Full Size | PPT Slide | PDF

Tables Icon

Table1. Structure units and their parameters for eight quantized phases

3. Performance analysis of the designed ultrathin LFD THz lens

3.1. Axial LFD properties of the designed ultrathin LFD THz lens

After determining the above eight structure units, the ultrathin LFD THz lens is formed by putting the corresponding unit in the definite pixel on the input plane in Fig. 1(b). By using the micro photolithography technology, we have fabricated the sample. On a 500 μm silicon substrate, a 100 nm thick gold film is deposited. Then, we etch the V-shaped air holes by the lift-off technology. Figure 2(b) displays an optical microscopy of the central part of the fabricated sample. Performances of the fabricated LFD THz lens are measured by using the THz near-field imaging system [28, 29]. The incident THz wave is x-polarized ( Exinc), and we measure the perpendicular transmitted intensity |Ey|2 in the xz plane, as shown in Fig. 2(c). It is seen from Fig. 2(c) that the focal region spans an axial range, instead of a focal point. It means that the LFD function is implemented. For demonstrating the LFD property more clearly, theoretical and experimental axial intensity distributions of the LFD THz lens are plotted in Fig. 2(d) by the blue and red curves, respectively. From Fig. 2(d), we can see that the experimental measurements basically agree with the theoretical simulations. The effective focal depth is defined by the axial dimension with intensity over 50% of the maximum intensity [9], as shown by the blue and red dashed lines in Fig. 2(d). The theoretical and experimental LFD regions lie within [7.07, 15.47] mm and [6.40, 15.36] mm, respectively. Hence, the corresponding focal depths are 8.40 and 8.96 mm. Their focal-depth difference is attributed to the experimental fabrication errors. For comparison, we also calculate the axial intensity distributions of a conventional THz lens whose phase distribution is ϕ1c = exp[− (x2 + y2)/(λf0)], as shown by the black curve in Fig. 2(d). The black lines mark the LFD region, locating within [7.72, 10.13] mm. Its focal depth is only 2.41 mm. Consequently, the designed ultrathin LFD THz lens has successfully realized the LFD function as its focal depth is much longer than that of the conventional THz lens.

3.2. Transverse focusing properties of the designed ultrathin LFD THz lens

For the ultrathin LFD THz lens, its lateral resolution inside the focal range is also an important characteristic. Therefore, we select three lateral planes to see the focusing behavior. Figure 3(a) plots the experimental intensity profiles along the x-axis on the three lateral planes at zα = 9 mm (blue solid curve), 11 mm (red dashed curve), and 13 mm (black solid curve), respectively. It is seen in Fig. 3(a) that most of the transmitted energy is concentrated inside the main lobe for all the three focal spots. The full widths at half maximum (FWHM) are 650, 720, and 690 μm, respectively. Figure 3(b) is the same as Fig. 3(a) except for the theoretical simulations. It is apparent in Fig. 3(b) that the designed THz lens maintains high lateral focusing resolution in the LFD region. Numerical results reveal that the FWHM are 711, 763, and 750 μm for zα = 9, 11, and 13 mm, respectively. Figures 3(c) – 3(e) illustrate the experimental focal spots on the above three lateral planes. On each lateral plane, the incident THz plane wave has a good focus. It is concluded that the fabricated ultrathin THz lens has successfully realized the LFD function with high lateral resolution.

 figure: Fig. 3

Fig. 3 (a) Experimental intensity profiles |Ey|2 along the x-axis on the three lateral planes at zα = 9 mm (blue solid curve), 11 mm (red dashed curve), and 13 mm (black solid curve). (b) is the same as (a) except for the theoretical simulations. (c), (d), and (e) are regional intensity patterns on the three lateral planes at zα = 9, 11, and 13 mm, respectively.

Download Full Size | PPT Slide | PDF

3.3. Dispersive LFD properties of the ultrathin LFD THz lens

In addition, by scanning the frequency from 0.603 to 0.809 THz for every 0.147 THz, experimental dispersive LFD properties of the fabricated ultrathin LFD THz lens are measured, as tabulated in Table 2. The focal performances include the focal depth, the beginning focal position, the ending focal position, and the real focal position. The beginning and ending focal positions correspond to the two ends of the LFD region with 50% of the peak intensity. The real focal position is the axial coordinate with the peak intensity. It is seen from Table 2 that all the focal depths are longer than 8.50 mm for the considered frequencies, much larger than that of the conventional THz lens (2.41 mm). Accordingly, we conclude that the fabricated ultrathin LFD THz lens owns a good LFD property with a bandwidth of 200 GHz. It is also noted that the real focal position enlarges with the increase of the incident frequency for the diffractive phase modulated focusing lens, which is consistent with the results in [15].

Tables Icon

Table 2. Experimental dispersive LFD properties of the fabricated ultrathin LFD THz lens

Figures 4(a), 4(b), and 4(c) display the experimental intensity patterns of the LFD THz lens on the xz-plane at frequencies of 0.617, 0.706, and 0.794 THz, respectively. It is seen from Fig. 4 that all the incident THz plane waves are focused within long axial regions. Figure 4(d) displays their experimental axial intensity distributions. The blue, green, and red curves correspond to different frequencies of 0.617, 0.706, and 0.794 THz, respectively. The dashed lines illustrate the LFD regions, whose focal depths are 10.44, 8.76, and 9.02 mm, respectively. It is also noted in Fig. 4(d) that the real focal position is increased with the increase of the incident frequency. The corresponding experimental real focal positions are 9.60, 10.10, and 13.10 mm. Figure 4(e) is the same as Fig. 4(d) except for theoretical simulations. The three LFD regions locate within [5.95, 12.67], [6.81, 14.49], and [7.67, 16.31] mm, with focal depths of 6.72, 7.68, and 8.64 mm, respectively. In Fig. 4(e), the fact that an increasing incident frequency leads to a farther focal position is verified. The theoretical real focal positions are 9.57, 10.96, and 12.33 mm for incident frequencies of 0.617, 0.706, and 0.794 THz, respectively.

 figure: Fig. 4

Fig. 4 (a), (b) and (c) represent the experimental intensity patterns |Ey|2 of the fabricated ultrathin LFD THz lens on the xz-plane at frequencies of 0.617, 0.706, and 0.794 THz, respectively. (d) The blue, green, and red curves represent the The experimental axial intensity profiles. The dashed lines illustrate the LFD regions. (e) is the same as (d) except for theoretical simulations.

Download Full Size | PPT Slide | PDF

4. Summary and discussions

In conclusion, in this paper we have explored the metasurface to modulate the axial intensity distribution for designing the ultrathin LFD THz lens. The Yang-Gu amplitude-phase retrieval algorithm is employed to calculate the phase distributions. By the THz near-field imaging system, focusing performances of the fabricated ultrathin LFD THz lens are measured in experiments. Experimental measurements have exhibited the LFD property, which agree with the theoretical simulations. Moreover, the fabricated ultrathin LFD THz lens maintains a good LFD property with a bandwidth of 200 GHz. Through changing the V-shaped air holes into C-shaped air holes, focusing efficiency of the THz lens can be substantially increased. It is expected that this kind of LFD THz lens should have wide applications in broadband THz imaging and THz communication systems. Other kinds of ultrathin novel devices may also be realized by using the metasurfaces, including multi focus lenses, beam splitters, and so on.

Acknowledgments

This work was supported by the 973 Program of China (No. 2013CBA01702), the National Natural Science Foundation of China (No. 11374216, 91233202, 11204188, 61205097, 11174211, and 10904099), the National High Technology Research and Development Program of China (No. 2012AA101608-6), the Beijing Natural Science Foundation (No. KZ201110028035 and 1132011), the Program for New Century Excellent Talents in University ( NCET-12-0607), and the CAEP THz Science and Technology Foundation.

References and links

1. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991). [CrossRef]   [PubMed]  

2. J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17, 7–9 (1992). [CrossRef]   [PubMed]  

3. Z. Jaroszewicz, J. Sochacki, A. Kołodziejczyk, and L. R. Staronski, “Apodized annular-aperture logarithmic axicon: smoothness and uniformity of intensity distributions,” Opt. Lett. 18, 1893–1895 (1993). [CrossRef]   [PubMed]  

4. B. Z. Dong, G. Z. Yang, B. Y. Gu, and O. K. Ersoy, “Iterative optimization approach for designing an axicon with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 13, 97–103 (1996). [CrossRef]  

5. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013). [CrossRef]   [PubMed]  

6. X. Y. He, Q. J. Wang, and S. F. Yu, “Investigation of multilayer subwavelength metallic-dielectric stratified structures,” IEEE J. Quantum Electron. 48, 1554–1559 (2012). [CrossRef]  

7. X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures: transfer matrix method for plasmonic devices,” J. Appl. Phys. 111,073108 (2012). [CrossRef]  

8. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010). [CrossRef]  

9. L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng. 50,063001 (2011). [CrossRef]  

10. J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010). [CrossRef]   [PubMed]  

11. L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011). [CrossRef]  

12. N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011). [CrossRef]   [PubMed]  

13. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010). [CrossRef]   [PubMed]  

14. F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012). [CrossRef]   [PubMed]  

15. X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2,e72 (2013). [CrossRef]  

16. D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013). [CrossRef]  

17. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011). [CrossRef]   [PubMed]  

18. P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100,013101 (2012). [CrossRef]  

19. J. W. He, X. K. Wang, D. Hu, J. S. Ye, S. F. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express 21, 20230–20239 (2013). [CrossRef]   [PubMed]  

20. X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3,1198 (2012). [CrossRef]   [PubMed]  

21. N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012). [CrossRef]   [PubMed]  

22. X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4566–4571 (2013). [CrossRef]  

23. L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl. 2,e70 (2013). [CrossRef]  

24. X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013). [CrossRef]   [PubMed]  

25. G. Z. Yang, B. Z. Dong, B. Y. Gu, J. Y. Zhuang, and O. K. Ersoy, “Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison,” Appl. Opt. 33, 209–218 (1994). [CrossRef]   [PubMed]  

26. G. Z. Yang, B. Y. Gu, X. Tan, M. P. Chang, B. Z. Dong, and O. K. Ersoy, “Iterative optimization approach for the design of diffractive phase elements simultaneously implementing several optical functions,” J. Opt. Soc. Am. A 11, 1632–1640 (1994). [CrossRef]  

27. D. Hu, C. Q. Xie, M. Liu, and Y. Zhang, “High transmission of annular aperture arrays caused by symmetry breaking,” Phys. Rev. A 85,045801 (2012). [CrossRef]  

28. X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27, 2387–2393 (2010). [CrossRef]  

29. X. K. Wang, W. F. Sun, Y. Cui, J. S. Ye, S. F. Feng, and Y. Zhang, “Complete presentation of the Gouy phase shift with the THz digital holography,” Opt. Express 21, 2337–2346 (2013). [CrossRef]   [PubMed]  

References

  • View by:

  1. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991).
    [Crossref] [PubMed]
  2. J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17, 7–9 (1992).
    [Crossref] [PubMed]
  3. Z. Jaroszewicz, J. Sochacki, A. Kołodziejczyk, and L. R. Staronski, “Apodized annular-aperture logarithmic axicon: smoothness and uniformity of intensity distributions,” Opt. Lett. 18, 1893–1895 (1993).
    [Crossref] [PubMed]
  4. B. Z. Dong, G. Z. Yang, B. Y. Gu, and O. K. Ersoy, “Iterative optimization approach for designing an axicon with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 13, 97–103 (1996).
    [Crossref]
  5. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
    [Crossref] [PubMed]
  6. X. Y. He, Q. J. Wang, and S. F. Yu, “Investigation of multilayer subwavelength metallic-dielectric stratified structures,” IEEE J. Quantum Electron. 48, 1554–1559 (2012).
    [Crossref]
  7. X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures: transfer matrix method for plasmonic devices,” J. Appl. Phys. 111,073108 (2012).
    [Crossref]
  8. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
    [Crossref]
  9. L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng. 50,063001 (2011).
    [Crossref]
  10. J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
    [Crossref] [PubMed]
  11. L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
    [Crossref]
  12. N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  13. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
    [Crossref] [PubMed]
  14. F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
    [Crossref] [PubMed]
  15. X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2,e72 (2013).
    [Crossref]
  16. D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
    [Crossref]
  17. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
    [Crossref] [PubMed]
  18. P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100,013101 (2012).
    [Crossref]
  19. J. W. He, X. K. Wang, D. Hu, J. S. Ye, S. F. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express 21, 20230–20239 (2013).
    [Crossref] [PubMed]
  20. X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3,1198 (2012).
    [Crossref] [PubMed]
  21. N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
    [Crossref] [PubMed]
  22. X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4566–4571 (2013).
    [Crossref]
  23. L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl. 2,e70 (2013).
    [Crossref]
  24. X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
    [Crossref] [PubMed]
  25. G. Z. Yang, B. Z. Dong, B. Y. Gu, J. Y. Zhuang, and O. K. Ersoy, “Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison,” Appl. Opt. 33, 209–218 (1994).
    [Crossref] [PubMed]
  26. G. Z. Yang, B. Y. Gu, X. Tan, M. P. Chang, B. Z. Dong, and O. K. Ersoy, “Iterative optimization approach for the design of diffractive phase elements simultaneously implementing several optical functions,” J. Opt. Soc. Am. A 11, 1632–1640 (1994).
    [Crossref]
  27. D. Hu, C. Q. Xie, M. Liu, and Y. Zhang, “High transmission of annular aperture arrays caused by symmetry breaking,” Phys. Rev. A 85,045801 (2012).
    [Crossref]
  28. X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27, 2387–2393 (2010).
    [Crossref]
  29. X. K. Wang, W. F. Sun, Y. Cui, J. S. Ye, S. F. Feng, and Y. Zhang, “Complete presentation of the Gouy phase shift with the THz digital holography,” Opt. Express 21, 2337–2346 (2013).
    [Crossref] [PubMed]

2013 (8)

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref] [PubMed]

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2,e72 (2013).
[Crossref]

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4566–4571 (2013).
[Crossref]

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl. 2,e70 (2013).
[Crossref]

X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref] [PubMed]

J. W. He, X. K. Wang, D. Hu, J. S. Ye, S. F. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express 21, 20230–20239 (2013).
[Crossref] [PubMed]

X. K. Wang, W. F. Sun, Y. Cui, J. S. Ye, S. F. Feng, and Y. Zhang, “Complete presentation of the Gouy phase shift with the THz digital holography,” Opt. Express 21, 2337–2346 (2013).
[Crossref] [PubMed]

2012 (7)

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3,1198 (2012).
[Crossref] [PubMed]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref] [PubMed]

D. Hu, C. Q. Xie, M. Liu, and Y. Zhang, “High transmission of annular aperture arrays caused by symmetry breaking,” Phys. Rev. A 85,045801 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100,013101 (2012).
[Crossref]

X. Y. He, Q. J. Wang, and S. F. Yu, “Investigation of multilayer subwavelength metallic-dielectric stratified structures,” IEEE J. Quantum Electron. 48, 1554–1559 (2012).
[Crossref]

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures: transfer matrix method for plasmonic devices,” J. Appl. Phys. 111,073108 (2012).
[Crossref]

2011 (4)

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng. 50,063001 (2011).
[Crossref]

L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[Crossref]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

2010 (4)

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[Crossref] [PubMed]

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
[Crossref]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27, 2387–2393 (2010).
[Crossref]

1996 (1)

1994 (2)

1993 (1)

1992 (1)

1991 (1)

Abashin, M.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref] [PubMed]

Agrawal, A.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref] [PubMed]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100,013101 (2012).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Bai, B. F.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl. 2,e70 (2013).
[Crossref]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3,1198 (2012).
[Crossref] [PubMed]

Bao, J. M.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref] [PubMed]

Bao, K.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref] [PubMed]

Bará, S.

Bardhan, R.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref] [PubMed]

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
[Crossref]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100,013101 (2012).
[Crossref]

Capasso, F.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100,013101 (2012).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref] [PubMed]

Chang, M. P.

Chau, K. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref] [PubMed]

Chen, X. Z.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl. 2,e70 (2013).
[Crossref]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3,1198 (2012).
[Crossref] [PubMed]

Choi, M.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Cui, Y.

Davidson, N.

Deng, Q. L.

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng. 50,063001 (2011).
[Crossref]

Dong, B. Z.

Dong, X. C.

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng. 50,063001 (2011).
[Crossref]

Du, C. L.

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng. 50,063001 (2011).
[Crossref]

Ersoy, O. K.

Fan, J. A.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref] [PubMed]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
[Crossref]

Feng, S. F.

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
[Crossref]

Friesem, A. A.

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100,013101 (2012).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100,013101 (2012).
[Crossref]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Goh, X. M.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[Crossref] [PubMed]

Gu, B. Y.

Gu, J. Q.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4566–4571 (2013).
[Crossref]

Halas, N. J.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref] [PubMed]

Han, J. G.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4566–4571 (2013).
[Crossref]

Hasman, E.

He, J. W.

He, X. Y.

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures: transfer matrix method for plasmonic devices,” J. Appl. Phys. 111,073108 (2012).
[Crossref]

X. Y. He, Q. J. Wang, and S. F. Yu, “Investigation of multilayer subwavelength metallic-dielectric stratified structures,” IEEE J. Quantum Electron. 48, 1554–1559 (2012).
[Crossref]

Hu, D.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

J. W. He, X. K. Wang, D. Hu, J. S. Ye, S. F. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express 21, 20230–20239 (2013).
[Crossref] [PubMed]

D. Hu, C. Q. Xie, M. Liu, and Y. Zhang, “High transmission of annular aperture arrays caused by symmetry breaking,” Phys. Rev. A 85,045801 (2012).
[Crossref]

Huang, L. L.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl. 2,e70 (2013).
[Crossref]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3,1198 (2012).
[Crossref] [PubMed]

Hulst, N. V.

L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[Crossref]

Ishii, S.

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2,e72 (2013).
[Crossref]

Jaroszewicz, Z.

Jin, G. F.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl. 2,e70 (2013).
[Crossref]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3,1198 (2012).
[Crossref] [PubMed]

Kan, Q.

J. W. He, X. K. Wang, D. Hu, J. S. Ye, S. F. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express 21, 20230–20239 (2013).
[Crossref] [PubMed]

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Kang, K. Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Kats, M. A.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100,013101 (2012).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2,e72 (2013).
[Crossref]

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Klar, P. J.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Kolodziejczyk, A.

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Lee, S. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Lee, Y. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Lezec, H. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref] [PubMed]

Li, G. X.

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3,1198 (2012).
[Crossref] [PubMed]

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
[Crossref]

Lin, J.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100,013101 (2012).
[Crossref]

Lin, L.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[Crossref] [PubMed]

Liu, M.

D. Hu, C. Q. Xie, M. Liu, and Y. Zhang, “High transmission of annular aperture arrays caused by symmetry breaking,” Phys. Rev. A 85,045801 (2012).
[Crossref]

Lu, Y. G.

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng. 50,063001 (2011).
[Crossref]

Manoharan, V. N.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref] [PubMed]

McGuinness, L. P.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[Crossref] [PubMed]

Min, B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Mühlenbernd, H.

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3,1198 (2012).
[Crossref] [PubMed]

Ni, X. J.

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2,e72 (2013).
[Crossref]

Nordlander, P.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[Crossref]

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
[Crossref]

Qiu, C. W.

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3,1198 (2012).
[Crossref] [PubMed]

Rho, J.

X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref] [PubMed]

Roberts, A.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[Crossref] [PubMed]

Scully, M. O.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100,013101 (2012).
[Crossref]

Shalaev, V. M.

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2,e72 (2013).
[Crossref]

Shi, L. F.

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng. 50,063001 (2011).
[Crossref]

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Shvets, G.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref] [PubMed]

Sochacki, J.

Staronski, L. R.

Sun, W. F.

Tan, Q. F.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl. 2,e70 (2013).
[Crossref]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3,1198 (2012).
[Crossref] [PubMed]

Tan, X.

Tetienne, J. P.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Tian, Z.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4566–4571 (2013).
[Crossref]

Wang, Q. J.

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures: transfer matrix method for plasmonic devices,” J. Appl. Phys. 111,073108 (2012).
[Crossref]

X. Y. He, Q. J. Wang, and S. F. Yu, “Investigation of multilayer subwavelength metallic-dielectric stratified structures,” IEEE J. Quantum Electron. 48, 1554–1559 (2012).
[Crossref]

Wang, X. K.

Wang, Y.

X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref] [PubMed]

Wu, C. H.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref] [PubMed]

Xie, C. Q.

D. Hu, C. Q. Xie, M. Liu, and Y. Zhang, “High transmission of annular aperture arrays caused by symmetry breaking,” Phys. Rev. A 85,045801 (2012).
[Crossref]

Xu, T.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref] [PubMed]

Yang, G. Z.

Ye, J. S.

Ye, Y. T.

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng. 50,063001 (2011).
[Crossref]

Ye, Z. L.

X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref] [PubMed]

Yin, X. B.

X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref] [PubMed]

Yu, N. F.

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100,013101 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Yu, S. F.

X. Y. He, Q. J. Wang, and S. F. Yu, “Investigation of multilayer subwavelength metallic-dielectric stratified structures,” IEEE J. Quantum Electron. 48, 1554–1559 (2012).
[Crossref]

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures: transfer matrix method for plasmonic devices,” J. Appl. Phys. 111,073108 (2012).
[Crossref]

Yue, W. S.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4566–4571 (2013).
[Crossref]

Zentgraf, T.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl. 2,e70 (2013).
[Crossref]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3,1198 (2012).
[Crossref] [PubMed]

Zhang, S.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4566–4571 (2013).
[Crossref]

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl. 2,e70 (2013).
[Crossref]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3,1198 (2012).
[Crossref] [PubMed]

Zhang, W. L.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4566–4571 (2013).
[Crossref]

Zhang, X.

X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref] [PubMed]

Zhang, X. Q.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4566–4571 (2013).
[Crossref]

Zhang, Y.

Zhuang, J. Y.

Adv. Mater. (1)

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4566–4571 (2013).
[Crossref]

Adv. Opt. Mater. (1)

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100,013101 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Y. He, Q. J. Wang, and S. F. Yu, “Investigation of multilayer subwavelength metallic-dielectric stratified structures,” IEEE J. Quantum Electron. 48, 1554–1559 (2012).
[Crossref]

J. Appl. Phys. (1)

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures: transfer matrix method for plasmonic devices,” J. Appl. Phys. 111,073108 (2012).
[Crossref]

J. Opt. Soc. Am. A (3)

Light: Sci. Appl. (2)

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl. 2,e70 (2013).
[Crossref]

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2,e72 (2013).
[Crossref]

Nano Lett. (3)

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref] [PubMed]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3,1198 (2012).
[Crossref] [PubMed]

Nat. Photon. (2)

L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[Crossref]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
[Crossref]

Nature (2)

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Opt. Eng. (1)

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng. 50,063001 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (1)

D. Hu, C. Q. Xie, M. Liu, and Y. Zhang, “High transmission of annular aperture arrays caused by symmetry breaking,” Phys. Rev. A 85,045801 (2012).
[Crossref]

Science (3)

X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref] [PubMed]

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) A focusing geometry of the ultrathin LFD THz lens. (b) Eight-level quantized phase distributions of the designed ultrathin LFD THz lens.
Fig. 2
Fig. 2 (a) A schematic of the metasurface in a unit cell. (b) An optical microscopy of the central part of the fabricated ultrathin LFD THz lens. (c) Experimental intensity distributions in the xz plane. (d) The blue and red curves represent the theoretical and experimental intensity distributions of the LFD THz lens along the z-axis. The black curve plots the axial intensity distributions of a conventional THz lens. The dashed lines mark the three focal depths.
Fig. 3
Fig. 3 (a) Experimental intensity profiles |Ey|2 along the x-axis on the three lateral planes at zα = 9 mm (blue solid curve), 11 mm (red dashed curve), and 13 mm (black solid curve). (b) is the same as (a) except for the theoretical simulations. (c), (d), and (e) are regional intensity patterns on the three lateral planes at zα = 9, 11, and 13 mm, respectively.
Fig. 4
Fig. 4 (a), (b) and (c) represent the experimental intensity patterns |Ey|2 of the fabricated ultrathin LFD THz lens on the xz-plane at frequencies of 0.617, 0.706, and 0.794 THz, respectively. (d) The blue, green, and red curves represent the The experimental axial intensity profiles. The dashed lines illustrate the LFD regions. (e) is the same as (d) except for theoretical simulations.

Tables (2)

Tables Icon

Table1 Structure units and their parameters for eight quantized phases

Tables Icon

Table 2 Experimental dispersive LFD properties of the fabricated ultrathin LFD THz lens

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

U 1 = U 1 ( X 1 ) = ρ 1 ( X 1 ) exp [ i ϕ 1 ( X 1 ) ] ,
U 2 α = U 2 α ( X 2 α , z α ) = ρ 2 α ( X 2 α , z α ) exp [ i ϕ 2 α ( X 2 α , z α ) ] ,
U 2 α ( X 2 α , z α ) = G ( X 2 α , X 1 , z α ) U 1 ( X 1 ) d X 1 ,
G ( X 2 α , X 1 , z α ) = 2 π i λ z α exp [ i 2 π z α λ + i π ( X 2 α X 1 ) 2 λ z α ] .
U 2 α ( X 2 α , z α ) = G ^ α U 1 ( X 1 ) .
Δ = α ( U 2 α 0 U 2 α ) 2 ,
exp [ i ϕ 1 ( X 1 ) ] = Q * / | Q | ,
exp [ i ϕ 2 α ( X 2 α , z α ) ] = G ^ α ρ 1 ( X 1 ) exp [ i ϕ 1 ( X 1 ) ] | G ^ α ρ 1 ( X 1 ) exp [ i ϕ 1 ( X 1 ) ] | ,
Q = α ρ 1 ( X 1 ) exp [ i ϕ 1 ( X 1 ) ] A ^ α ρ 2 α ( X 2 α ) exp [ i ϕ 2 α ( X 2 α , z α ) G ^ α ] ,

Metrics