Abstract

Here we report for the first time a passive mode-locking of single section Fabry-Perot (FP) lasers based on InAs quantum dots(QDs) grown on (113)B InP substrate. Devices under study are a 1 and 2 mm long laser diodes emitting around 1.58 µm. Self-starting pulses with repetition rates around 23 and 39 GHz and pulse widths down to 1.5 ps are observed after propagation through a suitable length of single-mode fiber for intracavity dispersion compensation. A RF spectral width as low as 20 kHz has been obtained leading to a low timing jitter RMS.

© 2013 Optical Society of America

1. Introduction

Mode-locked laser (MLL) diodes have been regarded for the last two decades as the centre of interest for a large range of photonics and optical telecommunication applications. According to their capability of generating short pulses at high repetition rates, these sources are well suited for ultra-high bit rate optical telecommunications. In addition, MLLs may serve as building blocks for the development of all optical systems for clock distribution, clock recovery, radio over fiber signal generation and optical sampling so as to overcome the electronic bandwidth limitation at a reasonable cost [1]. For all these applications, low timing jitter is necessary to fulfill bit rate error. QDs are ideal nanostructures for the MLL because of their fast carrier dynamics and their large effective gain bandwidth resulting from inhomogeneous dispersion in volume of dots and leading to an ultra-short pulse generation [2]. The small coupling of the amplified spontaneous emission to the optical mode resulting from the low confinement factor in the dots leads to a low phase noise. It’s known that the timing jitter is related to the phase noise [3]. For applications in the 1.3 µm telecommunication window, QD-lasers have already outperformed the quantum well (QW) lasers [4]. On the other hand for operation in the C and L telecommunication band, much attention is devoted to InAs nanostructures grown on InP substrates. Stransky-Krastanov growth of InAs nanostructures on InP, when grown by Gas source Molecular Beam Epitaxy (GSMBE), leads to the formation of Quantum Dashes (QDashes) on nominal (001) InP substrate [5] or QDs on the (113)B InP substrate [6]. QDashes obtained by GSMBE growth on (001)InP have already demonstrated good results for mode-locking in single or two section devices [7,8]. In contrast, despite the high density (1011/cm2) of small QDs achieved on (113)B InP substrate using GSMBE and the good laser results with low threshold current density [9], no mode-locking results have been reported on this substrate so far. In fact, InAs/InP QD based MLL have been demonstrated on InP nominal substrate using chemical beam epitaxy (CBE) [10] or on misoriented InP substrate using GSMBE [11]. In this work, we report, for the first time to our knowledge, the fabrication and characterization of a mono-section InAs/InP QD MLL on (113)B substrate emitting around 1.58 µm.

2. Fabrication and static characterizations

The active region (AR) consists of 9 layers of QDs embedded in a lattice matched GaInAsP barrier with a corresponding gap of 1.18 µm (Fig. 1(a)) grown by GSMBE on an n doped (113)B InP substrate using the double cap technique [12]. Figure 1(b) shows an atomic force microscopy (AFM) of an uncapped layer of InAs QDs grown on InP (113)B, showing a very high density (1011 /cm2) of small QDs (diameter of 30 nm). As shown in the Fig. 2(a), these QDs exhibit a photoluminescence spectrum centred at 1.52 µm, with a full width at half maximum of 177 nm determined by the inhomogeneous size dispersion of InAs QDs within the 9 stacked QD layers sample. Measurements on broad area lasers processed from such epitaxial structure show an internal efficiency of about 46%, and a modal gain and internal losses of about 25 cm−1 (Fig. 2(b)) and 6 cm−1, respectively. Single section FP ridge lasers have been fabricated by photolithography and inductively coupled plasma (ICP) reactive ion etching. Benzocyclobutene (BCB) is used for laser passivation and planarization. A ridge width of 2 µm has been chosen to ensure single transverse mode operation of the lasers. FP Lasers with cleaved facets cavity lengths of 1 and 2 mm, exhibit threshold currents of about 60 and 80 mA respectively.

 

Fig. 1 (a) Schematic of the epitaxial structure of the InAs/InP QDs MLL under study. (b) Atomic force microscopy of an uncoated layer of QDs.Threshold current density evolution versus reciprocal cavity length for the 9 QDs layer laser, inset: photoluminescence measured at 300K for the investigated 9 QDs layers sample.

Download Full Size | PPT Slide | PDF

 

Fig. 2 (a) Photoluminescence measured at 300K for the investigated 9 QDs layers sample. (b) Threshold current density evolution versus reciprocal cavity length for the 9 QDs layer laser.

Download Full Size | PPT Slide | PDF

3. Mode-locking results and discussions

Mode-locking performances of the devices described above are evaluated in this section. The lasers are operated in CW regime and at room temperature of 20°C controlled by a Peltier cooler. The laser signal is collected by an antireflection coated lensed fiber followed by an optical isolator to prevent feedback from reflections into the laser cavity. Then, the collected signal is analysed using an optical spectrum analyser, an RF electrical spectrum analyser associated with a 50 GHz bandwidth InGaAs photodiode detection and an autocorrelator are also used for RF and pulses measurements. Measurements were performed at 192 and 361 mA respectively for the 1 and 2 mm devices. These operating points were selected by choosing the optimal RF spectra in term of power and width. Figure 3 shows the variation of the RF peak width (Δf) versus the injection current density (J) for the 1 mm (a) and 2 mm (b) cavity length devices. Insets of the figure show the RF spectra for both devices.

 

Fig. 3 RF peak width Δf versus the injection current density J of the 1 mm (a) and 2 mm (b) cavity length devices, (inset): RF spectrum for a gain current of 192 and 361 mA respectively.

Download Full Size | PPT Slide | PDF

The RF peak width decreases with increasing the injection current. The repetition rates are about 39 and 23 GHz and the optimal RF peak width at −3 dB is around 20 and 83 kHz respectively for the two devices which is comparable with the RF peak width of a single section QDashes MLLs [7]. From the RF peak width, we can extract the integrated RMS timing jitterσ. In fact, in passively MLL the RF frequency noise is induced principally by the relatively broadband spontaneous emission and is consequently essentially white. This leads to a lorentzian-shaped of the power spectral density [13,14]. In consequence, the RF width Δf determines completely the RMS of the integrated timing jitter using the following expression [15,16]:

σ= TΔf2π3/21fd1fu,
Where T is the period of the pulse train, fu and fd are the upper and lower frequencies of integration. The result shows an RMS of the integrated timing jitter in the range [1 MHz-100 MHz] of 323 fs and in [16 MHz-320 MHz] of 79 fs for the 1 mm cavity length device. These low values of timing jitter RMS assure a good and stable mode-locking regime with low noise in comparison with double-section QDashes MLLs (800 fs in the range [1MHz-100 MHz) [8] and monosection QDashes MLLs (166 fs in the range [16 MHz-320 MHz]) [17].

The optical spectrum width increases with injection current and reaches a maximum value of 4.0 nm and 4.8 nm respectively (Fig. 4). Self-starting pulses were observed by autocorrelation after propagation through 220 and 230 m of single mode fiber (SMF) respectively to fully compensate the group delay dispersion of the laser. Figure 5 exhibits the optical pulse width Δτ versus the injection current density of the 1 mm (a) and 2 mm (b) cavity length devices. The autocorrelation traces are presented in the inset of the figure. Similarly, the pulse width decreases with the current and reach its minimum value for the optimal current presenting the minimum value of the RF peak width. Assuming a Gaussian fit, we deduce a pulse width of about 1.5 ps for the 1 mm long device and 1.8 ps for the 2 mm long one, after propagation in 220 and 230 m of SMF respectively (in order to compensate the group delay dispersion). We can calculate the time bandwidth product (TBP) to be 0.73 and 1.03 respectively for the 1 mm and 2 mm cavity length devices. These values are above the 0.44 Gaussian Fourier limit indicating some residual frequency chirp being present in the pulses. Recently, a shorter pulse value of 295 fs has been reported on a single section QD MLL using CBE [10]. Here we report for the first time a mode-locking regime on an InAs QD laser elaborated on InP (113)B substrate using GSMBE. This kind of substrate allows obtaining very high density of QD by layer. Higher QD densities lead to an increase of the maximal modal gain, a decrease of the threshold current for the ML, and may enable MLL on shorter cavity and thus higher frequency. Also, real QD like behavior, in association with an important gain, may enhance non-linear effects, which are supposed to drive self-pulsating lasers and to improve their performances. Thus QD monosection MLL devices are expected to demonstrate superior performances in comparison with 1D or 2D like active layers. Furthermore, we can notice on Fig. 5 that the optical pulse width decreases with increasing the gain current. This process has already been observed for the monosection device MLL [7] [11] and has been attributed to a compensation of the dispersion by nonlinear effects enhanced by higher carrier density and larger intracavity laser fields [7]. Thanks to this feature, the monosection MLLs devices can deliver more power comparing to the multi-section devices.

 

Fig. 4 Optical spectra of the 1 mm laser (a) and the 2 mm laser (b).

Download Full Size | PPT Slide | PDF

 

Fig. 5 Optical pulse width Δτ versus the injection current density J of the 1mm (a) and 2 mm (b) cavity length devices, (inset): Measured autocorrelation trace, for a gain current of 192 and 361 mA and after propagation in 220 and 230 m of SMF respectively.

Download Full Size | PPT Slide | PDF

4. Conclusion

Mode-locking without the presence of saturable absorber is demonstrated for the first time for single-section QD lasers based on (113)B InP substrates. Lasers with repetition frequencies of 39 and 23 GHz exhibit self-starting pulses with pulse widths down to 1.5 ps after intracavity dispersion compensation by light propagation through suitable lengths of SMF. A low integrated timing jitter RMS has been demonstrated leading to a good mode-locking regime with low noise.

Acknowledgment

This work was supported by the French National Research Agency through the project TELDOT.

References and links

1. T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett. 40(4), 265–267 (2004). [CrossRef]  

2. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007). [CrossRef]  

3. F. X. Kartner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Few-cycle pulses directly from a laser,” Top. Appl. Phys. 95, 73–136 (2004). [CrossRef]  

4. E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005). [CrossRef]  

5. R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Epitaxial growth of 1.55 µm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications,” J. Cryst. Growth 251(1-4), 248–252 (2003). [CrossRef]  

6. P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys. 44(34), L1069–L1071 (2005). [CrossRef]  

7. R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20(8), 8649–8657 (2012). [CrossRef]   [PubMed]  

8. M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys. 111(2), 023102 (2012). [CrossRef]  

9. P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87(24), 243107 (2005). [CrossRef]  

10. Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun. 284(9), 2323–2326 (2011). [CrossRef]  

11. K. Klaime, R. Piron, C. Paranthoen, T. Batte, F. Grillot, O. Dehaese, S. Loualiche, A. Le Corre, R. Rosales, K. Merghem, A. Martinez, and A. Ramdane, “ 20 GHz to 83 GHz single section InAs/InP quantum dot mode-locked lasers grown on (001) misoriented substrate,” IPRM-2012 proceeding, 181–184 (2012).

12. C. Paranthoen, N. Bertru, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett. 78(12), 1751 (2001). [CrossRef]  

13. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993). [CrossRef]  

14. D. Eliyahu, R. A. Salvatore, and A. Yariv, “Effect of noise on the power spectrum of passively mode-locked lasers,” J. Opt. Soc. Am. B 14(1), 167–174 (1997). [CrossRef]  

15. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986). [CrossRef]  

16. F. Kefelian, S. O'Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett. 20(16), 1405–1407 (2008). [CrossRef]  

17. R. Rosales, K. Merghem, A. Martinez, F. Lelarge, A. Accard, and A. Ramdane, “Timing jitter from the optical spectrum in semiconductor passively mode locked lasers,” Opt. Express 20(8), 9151–9160 (2012). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett.40(4), 265–267 (2004).
    [CrossRef]
  2. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
    [CrossRef]
  3. F. X. Kartner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Few-cycle pulses directly from a laser,” Top. Appl. Phys.95, 73–136 (2004).
    [CrossRef]
  4. E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
    [CrossRef]
  5. R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Epitaxial growth of 1.55 µm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications,” J. Cryst. Growth251(1-4), 248–252 (2003).
    [CrossRef]
  6. P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys.44(34), L1069–L1071 (2005).
    [CrossRef]
  7. R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express20(8), 8649–8657 (2012).
    [CrossRef] [PubMed]
  8. M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012).
    [CrossRef]
  9. P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005).
    [CrossRef]
  10. Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun.284(9), 2323–2326 (2011).
    [CrossRef]
  11. K. Klaime, R. Piron, C. Paranthoen, T. Batte, F. Grillot, O. Dehaese, S. Loualiche, A. Le Corre, R. Rosales, K. Merghem, A. Martinez, and A. Ramdane, “ 20 GHz to 83 GHz single section InAs/InP quantum dot mode-locked lasers grown on (001) misoriented substrate,” IPRM-2012 proceeding, 181–184 (2012).
  12. C. Paranthoen, N. Bertru, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett.78(12), 1751 (2001).
    [CrossRef]
  13. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron.29(3), 983–996 (1993).
    [CrossRef]
  14. D. Eliyahu, R. A. Salvatore, and A. Yariv, “Effect of noise on the power spectrum of passively mode-locked lasers,” J. Opt. Soc. Am. B14(1), 167–174 (1997).
    [CrossRef]
  15. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986).
    [CrossRef]
  16. F. Kefelian, S. O'Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.20(16), 1405–1407 (2008).
    [CrossRef]
  17. R. Rosales, K. Merghem, A. Martinez, F. Lelarge, A. Accard, and A. Ramdane, “Timing jitter from the optical spectrum in semiconductor passively mode locked lasers,” Opt. Express20(8), 9151–9160 (2012).
    [CrossRef] [PubMed]

2012 (3)

2011 (1)

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun.284(9), 2323–2326 (2011).
[CrossRef]

2008 (1)

F. Kefelian, S. O'Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.20(16), 1405–1407 (2008).
[CrossRef]

2007 (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
[CrossRef]

2005 (3)

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005).
[CrossRef]

P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys.44(34), L1069–L1071 (2005).
[CrossRef]

2004 (2)

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett.40(4), 265–267 (2004).
[CrossRef]

F. X. Kartner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Few-cycle pulses directly from a laser,” Top. Appl. Phys.95, 73–136 (2004).
[CrossRef]

2003 (1)

R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Epitaxial growth of 1.55 µm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications,” J. Cryst. Growth251(1-4), 248–252 (2003).
[CrossRef]

2001 (1)

C. Paranthoen, N. Bertru, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett.78(12), 1751 (2001).
[CrossRef]

1997 (1)

1993 (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron.29(3), 983–996 (1993).
[CrossRef]

1986 (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986).
[CrossRef]

Accard, A.

Alghoraibi, I.

P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys.44(34), L1069–L1071 (2005).
[CrossRef]

Barrios, P. J.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun.284(9), 2323–2326 (2011).
[CrossRef]

Barry, L. P.

Bertru, N.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005).
[CrossRef]

P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys.44(34), L1069–L1071 (2005).
[CrossRef]

C. Paranthoen, N. Bertru, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett.78(12), 1751 (2001).
[CrossRef]

Caballero, J.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun.284(9), 2323–2326 (2011).
[CrossRef]

Caroff, P.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005).
[CrossRef]

P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys.44(34), L1069–L1071 (2005).
[CrossRef]

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Chevalier, N.

M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012).
[CrossRef]

Dehaese, O.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005).
[CrossRef]

P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys.44(34), L1069–L1071 (2005).
[CrossRef]

C. Paranthoen, N. Bertru, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett.78(12), 1751 (2001).
[CrossRef]

Dontabactouny, M.

M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012).
[CrossRef]

Eliyahu, D.

Ell, R.

F. X. Kartner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Few-cycle pulses directly from a laser,” Top. Appl. Phys.95, 73–136 (2004).
[CrossRef]

Folliot, H.

P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys.44(34), L1069–L1071 (2005).
[CrossRef]

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005).
[CrossRef]

Forchel, A.

R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Epitaxial growth of 1.55 µm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications,” J. Cryst. Growth251(1-4), 248–252 (2003).
[CrossRef]

Fujimoto, J. G.

F. X. Kartner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Few-cycle pulses directly from a laser,” Top. Appl. Phys.95, 73–136 (2004).
[CrossRef]

Furuta, T.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett.40(4), 265–267 (2004).
[CrossRef]

Gold, D.

R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Epitaxial growth of 1.55 µm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications,” J. Cryst. Growth251(1-4), 248–252 (2003).
[CrossRef]

Haus, H. A.

F. X. Kartner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Few-cycle pulses directly from a laser,” Top. Appl. Phys.95, 73–136 (2004).
[CrossRef]

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron.29(3), 983–996 (1993).
[CrossRef]

Homeyer, E.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005).
[CrossRef]

Huyet, G.

F. Kefelian, S. O'Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.20(16), 1405–1407 (2008).
[CrossRef]

Iga, R.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett.40(4), 265–267 (2004).
[CrossRef]

Il’inskaya, N. D.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Ippen, E. P.

F. X. Kartner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Few-cycle pulses directly from a laser,” Top. Appl. Phys.95, 73–136 (2004).
[CrossRef]

Ito, H.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett.40(4), 265–267 (2004).
[CrossRef]

Ito, I.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett.40(4), 265–267 (2004).
[CrossRef]

Jiao, Z. J.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun.284(9), 2323–2326 (2011).
[CrossRef]

Kartner, F. X.

F. X. Kartner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Few-cycle pulses directly from a laser,” Top. Appl. Phys.95, 73–136 (2004).
[CrossRef]

Kefelian, F.

F. Kefelian, S. O'Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.20(16), 1405–1407 (2008).
[CrossRef]

Klaime, K.

M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012).
[CrossRef]

Kondo, Y.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett.40(4), 265–267 (2004).
[CrossRef]

Kovsh, A. R.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Labbé, C.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005).
[CrossRef]

Lambert, B.

C. Paranthoen, N. Bertru, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett.78(12), 1751 (2001).
[CrossRef]

Larsson, D.

M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012).
[CrossRef]

Le Corre, A.

M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012).
[CrossRef]

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005).
[CrossRef]

P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys.44(34), L1069–L1071 (2005).
[CrossRef]

C. Paranthoen, N. Bertru, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett.78(12), 1751 (2001).
[CrossRef]

Ledentsov, N. N.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Lelarge, F.

Liu, J. R.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun.284(9), 2323–2326 (2011).
[CrossRef]

Livshits, D. A.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Loualiche, S.

M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012).
[CrossRef]

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005).
[CrossRef]

P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys.44(34), L1069–L1071 (2005).
[CrossRef]

C. Paranthoen, N. Bertru, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett.78(12), 1751 (2001).
[CrossRef]

Lu, Z. G.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun.284(9), 2323–2326 (2011).
[CrossRef]

Martinez, A.

McInerney, J. G.

F. Kefelian, S. O'Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.20(16), 1405–1407 (2008).
[CrossRef]

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron.29(3), 983–996 (1993).
[CrossRef]

Merghem, K.

Morgner, U.

F. X. Kartner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Few-cycle pulses directly from a laser,” Top. Appl. Phys.95, 73–136 (2004).
[CrossRef]

Murdoch, S. G.

O'Donoghue, S.

F. Kefelian, S. O'Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.20(16), 1405–1407 (2008).
[CrossRef]

Ohno, T.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett.40(4), 265–267 (2004).
[CrossRef]

Paranthoen, C.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005).
[CrossRef]

C. Paranthoen, N. Bertru, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett.78(12), 1751 (2001).
[CrossRef]

Patriarche, G.

C. Paranthoen, N. Bertru, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett.78(12), 1751 (2001).
[CrossRef]

Piron, R.

M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012).
[CrossRef]

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005).
[CrossRef]

Platz, C.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005).
[CrossRef]

Poitras, D.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun.284(9), 2323–2326 (2011).
[CrossRef]

Poole, P. J.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun.284(9), 2323–2326 (2011).
[CrossRef]

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Ramdane, A.

Reithmaier, J. P.

R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Epitaxial growth of 1.55 µm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications,” J. Cryst. Growth251(1-4), 248–252 (2003).
[CrossRef]

Rohel, T.

P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys.44(34), L1069–L1071 (2005).
[CrossRef]

Rosales, R.

Rosenberg, C.

M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012).
[CrossRef]

Salvatore, R. A.

Sato, K.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett.40(4), 265–267 (2004).
[CrossRef]

Schibli, T.

F. X. Kartner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Few-cycle pulses directly from a laser,” Top. Appl. Phys.95, 73–136 (2004).
[CrossRef]

Schwertberger, R.

R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Epitaxial growth of 1.55 µm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications,” J. Cryst. Growth251(1-4), 248–252 (2003).
[CrossRef]

Semenova, E.

M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012).
[CrossRef]

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Tavernier, K.

M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012).
[CrossRef]

Todaro, M. T.

F. Kefelian, S. O'Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.20(16), 1405–1407 (2008).
[CrossRef]

Ustinov, V. M.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986).
[CrossRef]

Watts, R. T.

Yariv, A.

Yoshino, K.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett.40(4), 265–267 (2004).
[CrossRef]

Yvind, K.

M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012).
[CrossRef]

Zadiranov, Yu. M.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Zhang, X. P.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun.284(9), 2323–2326 (2011).
[CrossRef]

Zhukov, A. E.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Appl. Phys. B (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986).
[CrossRef]

Appl. Phys. Lett. (3)

C. Paranthoen, N. Bertru, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett.78(12), 1751 (2001).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005).
[CrossRef]

Electron. Lett. (1)

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett.40(4), 265–267 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron.29(3), 983–996 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Kefelian, S. O'Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.20(16), 1405–1407 (2008).
[CrossRef]

J. Appl. Phys. (1)

M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012).
[CrossRef]

J. Cryst. Growth (1)

R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Epitaxial growth of 1.55 µm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications,” J. Cryst. Growth251(1-4), 248–252 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys.44(34), L1069–L1071 (2005).
[CrossRef]

Nat. Photonics (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
[CrossRef]

Opt. Commun. (1)

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun.284(9), 2323–2326 (2011).
[CrossRef]

Opt. Express (2)

Top. Appl. Phys. (1)

F. X. Kartner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Few-cycle pulses directly from a laser,” Top. Appl. Phys.95, 73–136 (2004).
[CrossRef]

Other (1)

K. Klaime, R. Piron, C. Paranthoen, T. Batte, F. Grillot, O. Dehaese, S. Loualiche, A. Le Corre, R. Rosales, K. Merghem, A. Martinez, and A. Ramdane, “ 20 GHz to 83 GHz single section InAs/InP quantum dot mode-locked lasers grown on (001) misoriented substrate,” IPRM-2012 proceeding, 181–184 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the epitaxial structure of the InAs/InP QDs MLL under study. (b) Atomic force microscopy of an uncoated layer of QDs.Threshold current density evolution versus reciprocal cavity length for the 9 QDs layer laser, inset: photoluminescence measured at 300K for the investigated 9 QDs layers sample.

Fig. 2
Fig. 2

(a) Photoluminescence measured at 300K for the investigated 9 QDs layers sample. (b) Threshold current density evolution versus reciprocal cavity length for the 9 QDs layer laser.

Fig. 3
Fig. 3

RF peak width Δf versus the injection current density J of the 1 mm (a) and 2 mm (b) cavity length devices, (inset): RF spectrum for a gain current of 192 and 361 mA respectively.

Fig. 4
Fig. 4

Optical spectra of the 1 mm laser (a) and the 2 mm laser (b).

Fig. 5
Fig. 5

Optical pulse width Δτ versus the injection current density J of the 1mm (a) and 2 mm (b) cavity length devices, (inset): Measured autocorrelation trace, for a gain current of 192 and 361 mA and after propagation in 220 and 230 m of SMF respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ=  T Δf 2 π 3/2 1 f d 1 f u ,

Metrics