Abstract

We report the formation of surface self-written waveguides by means of surface pyrolitons in lithium niobate. By a specific orientation of the crystal axis the quasi-local slow photorefractive response of lithium niobate was used to induce a self-confined beam exactly at the crystal-air interface. The mode profile of the photo-induced waveguide is strongly asymmetric due to the interface presence.

© 2013 OSA

1. Introduction

With the expression “self-written” waveguides we intend a guiding refractive pattern for light written inside a photosensitive material by light itself. The mechanism is based on the condition that the material refractive index increases after exposition to light. In this way a guiding channel is assembled by the light that propagates inside it. Due to the temporal and spatial evolution of the photo-induced refractive index modification, the writing beam experiences a self-confinement that is usually known as “spatial soliton” [1-3].

Self-induced waveguides are usually generated in photosensitive media like polymers [47] or photorefractive media [8], just to cite the most used ones.

Photorefractivity was reported for the first time as a dielectric damage of the material in 1966 by Ashkin et al. [9] and only latter spatial solitons based on this nonlinear phenomenon were observed [10]. Photorefractive solitons got a very important role in the soliton waveguiding due to the ferroelectric domain inversion of the illuminated volume [11] which allows either permanent or erasable or transitory waveguiding.

In 2003 spatial solitons were observed in lithium niobate [12]. In such work the authors showed that soliton channels remain active for very long time after their creation, realising almost permanent waveguides. Since then, a large literature was published on solitons and solitonic waveguides in lithium niobate due to the enormous amount of nonlinear properties this material possesses [13], that make it very interesting for signal processing inside low-losses integrated circuits [1418].

The observation of bright spatial solitons supported by the pyroelectric effect [19], the so-called pyrolitons, opened the possibility to realise photorefractive solitonic beams at the surface of lithium niobate crystals [20]. In fact, using the pyroelectric effect no electric contacts are needed to bias the medium, getting access to the material interface.

Surface solitons were already predicted [2126] and observed in other materials like SBN [21,27,28] and BaTiO3 [29].

The photorefractive nonlinearity has indeed a nonlocal response, being mainly related to photoinduced electric current [21,22,30,31]. Alfassi et al. [32] demonstrated that nonlocal response of the optical nonlinearity cannot give rise to spatial solitons exactly at the interface linear-nonlinear media, but it lays few microns below it. You can imagine that charges need space to accumulate, forcing the light to be confined below. This was also confirmed in lithium niobate where surface solitons lay just below the (001) and (001) interfaces [20].

In the present paper we show that the photorefractive nonlinearity can act as local along the ordinary crystallographic directions while remaining non-local along the extraordinary direction (optical axis) where the charge movement occurs. Thus, playing with the crystallographic orientations it is possible to force the self-confined beam to be localized exactly at the interface between linear and nonlinear media, thanks to the quasi-local response orthogonally to the optical axis.

Such technological innovation is fundamental for applications, allowing to use soliton waveguides as evanescent wave sensors [18].

2. Surface pyroliton and associated waveguide

In the first experiment on photorefractive surface solitons in lithium niobate [20] the (001) surfaces was adopted to drive the beams. The natural bending [33] of solitons bows the light path towards the c^ direction, bringing it to knock the lower interface that traps the beam [21]. Such dynamics is indeed governed by the photo-excited electric-charge movement which is defined by the equation of the [30, 31]:

J=μkTne+μqneE+σPVI[NDND+]c^
where μ is the mobility inside the photorefractive medium of the electron spatial density ne, k is the Boltzmann constant, E is the local electric field, σPV the photovoltaic cross section, I the light intensity while ND and ND+ are the intrinsic and photo-excited donor densities.

The equilibrium between fixed (ρ) and moving J charges is indeed governed by the charge continuity equation:

ρt=J
The diffusion term μkTnein Eq. (1) is usually neglected with respect to μqneEbecause is lithium niobate an intense electric bias is needed to reach a positive variation of the refractive index inside the illuminated region. Among all, diffusion is the most isotropic of the current terms. Free and photo-voltaic conductions occur along the c^ direction which consequently acts as nonlocal direction. No significant charge movement occurs along the a^ and b^ directions corresponding to quasi-local directions. Such phenomenon was also observed during the soliton formation transient, where the nonlocal direction experiences much faster selfocusing than the quasi-local directions [12, 34].

In order to exploit the quasi-local nature of the photorefractivity along the [100] and [010] directions, we have generated Surface pyrolitons in the scheme shown in Fig. 1.

 

Fig. 1 Experimental scheme.

Download Full Size | PPT Slide | PDF

A z-cut lithium niobate crystal from a commercial wafer was used, whose dimensions were 5 mm along [100] and 1 mm thick along the optical axis [001] (i.e. c^). The sample was mounted over a Peltier heater which created a nominal temperature gradient along the optical axis of about 11°C. Following the protocol defined by S.T. Popescu et alii [35], the input laser @405nm was focused onto the input YZ face down to a spot with an elliptical shape of 8x14 μm2 [FWHM]. The effective input power was set at about 10 μW. The soliton was formed over the (010) interface.

An optical system (magnification 21) images the output (100) plane over a CCD camera. The experimental pictures of the output beam profile are reported in Fig. 2.

 

Fig. 2 Experimental images of the output plane of the crystal. Spatial units are microns.

Download Full Size | PPT Slide | PDF

At the beginning (0 sec) diffraction was slightly collected by the crystal surface (0-100 sec) at the (100)-(010) edge. As time passes, the photorefractive nonlinearity becomes more and more active letting light to be selfocused along the diffraction pattern. Between 130 and 180 sec mainly two selfocused channels emerge from diffraction, one exactly at the surface and very similar to a (1D + 1) soliton and one slightly inside the substrate, very similar to a (2D + 1) self-confined structure.

Such behaviour is very similar to previous observations in SBN [21,28]. As time passes, the 2D structure is attracted by the 1D one, which is more stable due to the presence of a strong refractive contrast induced by the interface. Consequently, the 2D beam collapses into the superficial one around 180-200 sec after the starting.

After collapse, a single 2D self-confined channel stabilises at the surface, getting almost the whole energy trapped with a triangular shape: in fact the transverse mode is somehow elongated along the crystal surface (i.e. along the [001] direction) with a beam waist (FWHM) as large as 18 μm, while orthogonally to it (i.e. along the [010] direction) the beam core is 12 μm (FWHM).

A long tail is also present in the [010] direction (i.e. inside the crystal) that penetrates for about 25-30 μm within the substrate (Fig. 2 – image at 240 sec). Such tail is given by the untrapped diffraction orthogonally to the interface and it is few microns above the self-trapped beam. Actually we should say the contrary, i.e. the self-trapped beam is few microns below the untrapped tail, being this displacement originated by the usual bending of the trapped light along the (001) direction.

An enlargement of the output beam profile at 240sec from the starting time (Fig. 3) shows clearly the asymmetric triangular shape of the self-confined beam. Outside the crystal surface a diffraction pattern is still visible, sign that the (100)-(010) edge is indeed hit by light.

 

Fig. 3 Enlargement of the output beam at 240 sec. Spatial dimensions are in microns.

Download Full Size | PPT Slide | PDF

The self-confined beam has indeed written a superficial waveguide. It was checked by switching off the heater and letting the crystal cool down in the dark in order to make the material thermalize and consequently eliminate any residual pyro-electric field. Consequently, all transient effects are cut away even if the refractive index modification remains active.

The 405 nm light is still guided after long time (Fig. 4), with a triangular mode very similar to the writing self-confined beam. At longer wavelengths the guided mode tends to ovalize itself, even if the interface presence gives an asymmetric shape to the transmitted beam.

 

Fig. 4 Propagation mode of the superficial soliton waveguide at different wavelengths. Spatial dimensions are in microns.

Download Full Size | PPT Slide | PDF

3. Numerical simulation

Numerical simulations has been performed using the dynamic three-dimensional photorefractive model introduced by Devaux et al. [36]. It is based on the temporal and spatial analysis of the photoexcited charges responsible of a local electric field which modifies the material refractive index by means of the electro-optic effect. This model considers that all spatial derivative operators are applied along the three dimensions of space, thus including possible influence of the three components of the space charge electric field on an anisotropic dielectrics. As a consequence, the local electric field induced by the photoexcited charges is calculated by solving the expression:

E(r)=14πε¯ρ(r')rr'|rr'|3dV
Such field is responsible for the refractive index modification by means the electro-optic effect:
Δnz=12ne3r33Ez
having called z the optical-axis direction.

In the simulation we have considered for the material a refractive index ne = 2.33, the electro-optic coefficient r33 = 32 pm/V and a donor concentration as high as 2.02⋅1015 cm−3. About the electro-magnetic field, we have considered a dark illumination as low as 1 μW/cm2, with an input power at 405 nm as high as 10 μW focused on a 16μm x16μm (FWHM). The input beam was set 20 μm below the surface, with a slight angle toward it. The photovoltaic field was ranging between −3 and −5⋅104 V/cm.

In regime of pure linear propagation of the injected light beam, the outgoing beam shapes as diffracted pattern consequence of the interference between the straight and the internally reflected light from the interface. (Fig. 5 – diffraction).

 

Fig. 5 Simulation of the surface soliton formation

Download Full Size | PPT Slide | PDF

As soon as the nonlinearity grows up, the most intense interference fringe selfocuses, attracting the whole light beam inside the self-generated refractive channel. Such dynamics becomes bistable, evolving towards a final self-confined beam laying exactly at the air-dielectric interface. The beam gets a triangular shape, elongated along the interface, as experimentally observed (Fig. 3).

The refractive index modification is shown in Fig. 6. The whole photoinduced waveguide is indeed asymmetric with respect to the interface. The index profile shapes as hyperbolic secant in the direction orthogonal to the interface (i.e. along the [010] crystallographic direction), well approximated by the following formula:

nsoliton=nsubstrate+δnsech(zz0σ)
with fitting parameters δn = 6.7⋅10−4, z0 = 6 μm and σ = 9 μm. As a consequence, the profile gets the largest contrast at about 6 μm below the interface, decreasing towards the linear value of the refractive index in the bulk. In the transverse direction (i.e. along the [001] crystallographic direction) the central lobe gets almost a cosine shape, as shown in Fig. 6(b) with the back dotted lines. The effective waist (FWHM) is about 12 μm deep and 18 μm wide.

 

Fig. 6 (a) Simulation of photoinduced refractive waveguide. (b) Fitting (with dotted back lines) of the numerical profiles: in red along the [010] direction and in blue along the [001] one.

Download Full Size | PPT Slide | PDF

4. Conclusion

We report the formation of a solitonic waveguide exactly at the interface between the air and the dielectric lithium niobate. Such result was reached taking advantage of the quasi-local nature of the photorefractive nonlinearity moving in a direction orthogonal to the optical axis.

The associated superficial waveguide is very attractive for sensing applications, due to the low losses of soliton waveguides and due to their self-aligning nature.

Acknowledgments

The present work was partially supported by the Italian MIUR contract PRIN2008 N° 20088ZA8H9 AMDG.

References and links

1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13(15), 479–482 (1964). [CrossRef]  

2. A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun. 55(3), 201–206 (1985). [CrossRef]  

3. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68(7), 923–926 (1992). [CrossRef]   [PubMed]  

4. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18(13), 1035–1037 (1993). [CrossRef]   [PubMed]  

5. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21(1), 24–26 (1996). [CrossRef]   [PubMed]  

6. T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol. 24(3), 500–509 (2001). [CrossRef]  

7. M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79(8), 1079–1081 (2001). [CrossRef]  

8. M. F. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett. 21(13), 931–934 (1996). [CrossRef]   [PubMed]  

9. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966). [CrossRef]  

10. G. C. Duree Jr, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).

11. M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett. 24(2), 77–79 (1999). [CrossRef]   [PubMed]  

12. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85(12), 2193–2195 (2004). [CrossRef]  

13. K. K. Wong, ed., Properties of Lithium Niobate, EMIS Datareviews Series No. 28 (INSPEC, London, UK, 2002).

14. V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt. 8(7), S477–S482 (2006). [CrossRef]  

15. V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42(8), 463–465 (2006). [CrossRef]  

16. S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater. 12, 19–23 (2010).

17. M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3 ,” Appl. Phys. Lett. 101, 181104-1–181104-4 (2012).

18. T. Fiumara and E. Fazio, “Design of a refractive-index sensor based on surface soliton waveguides,” J. Opt. , submitted to(2013).

19. J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express 17(24), 22209–22216 (2009). [CrossRef]   [PubMed]  

20. J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive solitons,” Opt. Lett. 35(8), 1254–1256 (2010). [CrossRef]   [PubMed]  

21. M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett. 20(20), 2075–2077 (1995). [CrossRef]   [PubMed]  

22. G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51(2), 1571–1577 (1995). [CrossRef]   [PubMed]  

23. V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron. 33(12), 1205–1221 (2001). [CrossRef]  

24. V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary ,” Phys. Rev. E 64, 056610-1–056610-11 (2001).

25. T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity ,” Phys. Rev. A 76, 013827–1–013827-7 (2007).

26. S. A. Chetkin and I. M. Akhmedzhanov, “Optical surface wave in a crystal with diffusion photorefractive nonlinearity,” Quantum Electron. 41(11), 980–985 (2011). [CrossRef]  

27. H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett. 34(21), 3298–3300 (2009). [CrossRef]   [PubMed]  

28. B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron. 40(5), 437–440 (2010). [CrossRef]  

29. I. I. Smolyaninov and C. C. Davis, “Near-field optical study of photorefractive surface waves in BaTiO3,” Opt. Lett. 24(19), 1367–1369 (1999). [CrossRef]   [PubMed]  

30. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics 22(1), 949–960 (1978). [CrossRef]  

31. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51(2), 1520–1531 (1995). [CrossRef]   [PubMed]  

32. B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons ,” Phys. Rev. Lett . 98, 213901-1–213901-4 (2007).

33. M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett. 30(15), 1977–1979 (2005). [CrossRef]   [PubMed]  

34. E. Fazio, A. Petris, M. Bertolotti, and V. I. Vlad, “Optical bright solitons in lithium niobate and their applications,” in press on Rom. Rep. Phys. (September 2013).

35. S. T. Popescu, A. Petris, and V. I. Vlad, “Fast writing of soliton waveguides in lithium niobate using low-intensity blue light,” Appl. Phys. B 108(4), 799–805 (2012). [CrossRef]  

36. F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25(6), 1081–1086 (2008). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett.13(15), 479–482 (1964).
    [CrossRef]
  2. A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun.55(3), 201–206 (1985).
    [CrossRef]
  3. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992).
    [CrossRef] [PubMed]
  4. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett.18(13), 1035–1037 (1993).
    [CrossRef] [PubMed]
  5. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett.21(1), 24–26 (1996).
    [CrossRef] [PubMed]
  6. T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
    [CrossRef]
  7. M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett.79(8), 1079–1081 (2001).
    [CrossRef]
  8. M. F. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett.21(13), 931–934 (1996).
    [CrossRef] [PubMed]
  9. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
    [CrossRef]
  10. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).
  11. M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett.24(2), 77–79 (1999).
    [CrossRef] [PubMed]
  12. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
    [CrossRef]
  13. K. K. Wong, ed., Properties of Lithium Niobate, EMIS Datareviews Series No. 28 (INSPEC, London, UK, 2002).
  14. V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
    [CrossRef]
  15. V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett.42(8), 463–465 (2006).
    [CrossRef]
  16. S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).
  17. M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).
  18. T. Fiumara and E. Fazio, “Design of a refractive-index sensor based on surface soliton waveguides,” J. Opt., submitted to(2013).
  19. J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express17(24), 22209–22216 (2009).
    [CrossRef] [PubMed]
  20. J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive solitons,” Opt. Lett.35(8), 1254–1256 (2010).
    [CrossRef] [PubMed]
  21. M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett.20(20), 2075–2077 (1995).
    [CrossRef] [PubMed]
  22. G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
    [CrossRef] [PubMed]
  23. V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron.33(12), 1205–1221 (2001).
    [CrossRef]
  24. V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).
  25. T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).
  26. S. A. Chetkin and I. M. Akhmedzhanov, “Optical surface wave in a crystal with diffusion photorefractive nonlinearity,” Quantum Electron.41(11), 980–985 (2011).
    [CrossRef]
  27. H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009).
    [CrossRef] [PubMed]
  28. B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
    [CrossRef]
  29. I. I. Smolyaninov and C. C. Davis, “Near-field optical study of photorefractive surface waves in BaTiO3,” Opt. Lett.24(19), 1367–1369 (1999).
    [CrossRef] [PubMed]
  30. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
    [CrossRef]
  31. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A51(2), 1520–1531 (1995).
    [CrossRef] [PubMed]
  32. B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).
  33. M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett.30(15), 1977–1979 (2005).
    [CrossRef] [PubMed]
  34. E. Fazio, A. Petris, M. Bertolotti, and V. I. Vlad, “Optical bright solitons in lithium niobate and their applications,” in press on Rom. Rep. Phys. (September 2013).
  35. S. T. Popescu, A. Petris, and V. I. Vlad, “Fast writing of soliton waveguides in lithium niobate using low-intensity blue light,” Appl. Phys. B108(4), 799–805 (2012).
    [CrossRef]
  36. F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B25(6), 1081–1086 (2008).
    [CrossRef]

2013

T. Fiumara and E. Fazio, “Design of a refractive-index sensor based on surface soliton waveguides,” J. Opt., submitted to(2013).

2012

S. T. Popescu, A. Petris, and V. I. Vlad, “Fast writing of soliton waveguides in lithium niobate using low-intensity blue light,” Appl. Phys. B108(4), 799–805 (2012).
[CrossRef]

M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).

2011

S. A. Chetkin and I. M. Akhmedzhanov, “Optical surface wave in a crystal with diffusion photorefractive nonlinearity,” Quantum Electron.41(11), 980–985 (2011).
[CrossRef]

2010

J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive solitons,” Opt. Lett.35(8), 1254–1256 (2010).
[CrossRef] [PubMed]

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).

2009

2008

2007

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

2006

V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
[CrossRef]

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett.42(8), 463–465 (2006).
[CrossRef]

2005

2004

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

2001

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett.79(8), 1079–1081 (2001).
[CrossRef]

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron.33(12), 1205–1221 (2001).
[CrossRef]

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).

1999

1996

1995

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A51(2), 1520–1531 (1995).
[CrossRef] [PubMed]

M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett.20(20), 2075–2077 (1995).
[CrossRef] [PubMed]

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

1993

S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett.18(13), 1035–1037 (1993).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

1992

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992).
[CrossRef] [PubMed]

1985

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun.55(3), 201–206 (1985).
[CrossRef]

1978

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

1966

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

1964

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett.13(15), 479–482 (1964).
[CrossRef]

Akhmedzhanov, I. M.

S. A. Chetkin and I. M. Akhmedzhanov, “Optical surface wave in a crystal with diffusion photorefractive nonlinearity,” Quantum Electron.41(11), 980–985 (2011).
[CrossRef]

Aleshkevich, V.

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron.33(12), 1205–1221 (2001).
[CrossRef]

Alfassi, B.

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).

Anderson, D. Z.

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A51(2), 1520–1531 (1995).
[CrossRef] [PubMed]

Aoki, S.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Ballandras, S.

M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).

Ballmann, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Barthelemy, A.

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun.55(3), 201–206 (1985).
[CrossRef]

Bertolotti, M.

V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Bogodaev, N. V.

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

Bosco, A.

V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Chauvet, M.

M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).

J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive solitons,” Opt. Lett.35(8), 1254–1256 (2010).
[CrossRef] [PubMed]

J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express17(24), 22209–22216 (2009).
[CrossRef] [PubMed]

F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B25(6), 1081–1086 (2008).
[CrossRef]

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett.42(8), 463–465 (2006).
[CrossRef]

M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett.30(15), 1977–1979 (2005).
[CrossRef] [PubMed]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Chetkin, S. A.

S. A. Chetkin and I. M. Akhmedzhanov, “Optical surface wave in a crystal with diffusion photorefractive nonlinearity,” Quantum Electron.41(11), 980–985 (2011).
[CrossRef]

Chiao, R. Y.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett.13(15), 479–482 (1964).
[CrossRef]

Christodoulides, D. N.

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).

Coda, V.

Cronin-Golomb, M.

Crosignani, B.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992).
[CrossRef] [PubMed]

Davis, C. C.

Devaux, F.

Duree, G. C.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Egorov, A.

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).

Fares, L. A.

M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).

Fazio, E.

T. Fiumara and E. Fazio, “Design of a refractive-index sensor based on surface soliton waveguides,” J. Opt., submitted to(2013).

J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive solitons,” Opt. Lett.35(8), 1254–1256 (2010).
[CrossRef] [PubMed]

S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett.42(8), 463–465 (2006).
[CrossRef]

V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
[CrossRef]

M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett.30(15), 1977–1979 (2005).
[CrossRef] [PubMed]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Feng, L.

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Fischer, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992).
[CrossRef] [PubMed]

Fiumara, T.

T. Fiumara and E. Fazio, “Design of a refractive-index sensor based on surface soliton waveguides,” J. Opt., submitted to(2013).

Frisken, S. J.

Froehly, C.

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun.55(3), 201–206 (1985).
[CrossRef]

Garcia Quirino, G. S.

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

Garmire, E.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett.13(15), 479–482 (1964).
[CrossRef]

Guichardaz, B.

M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).

Hu, Z. J.

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Inao, M.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Ishitsuka, T.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Ito, H.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett.79(8), 1079–1081 (2001).
[CrossRef]

Ivleva, L. I.

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

Kagami, M.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett.79(8), 1079–1081 (2001).
[CrossRef]

Kang, H. Z.

H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009).
[CrossRef] [PubMed]

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Kartashov, Y.

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron.33(12), 1205–1221 (2001).
[CrossRef]

Kewitsch, A. S.

Klotz, M.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Levinstein, H. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Liu, S. M.

Lou, C. B.

H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009).
[CrossRef] [PubMed]

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Lykov, P. A.

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

Ma, H. H.

Maillotte, H.

Manela, O.

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).

Maneuf, S.

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun.55(3), 201–206 (1985).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Meng, H.

Montgomery, S. R.

Motoyoshi, K.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Neurgaonkar, R. R.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

Nurligareev, D. K.

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Passier, R.

Petris, A.

S. T. Popescu, A. Petris, and V. I. Vlad, “Fast writing of soliton waveguides in lithium niobate using low-intensity blue light,” Appl. Phys. B108(4), 799–805 (2012).
[CrossRef]

S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).

V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Pettazzi, F.

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett.42(8), 463–465 (2006).
[CrossRef]

Popescu, S. T.

S. T. Popescu, A. Petris, and V. I. Vlad, “Fast writing of soliton waveguides in lithium niobate using low-intensity blue light,” Appl. Phys. B108(4), 799–805 (2012).
[CrossRef]

S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).

Porto, P. D.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

Ramadan, W.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Ren, X. K.

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Renzi, F.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Rinaldi, R.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Roman, J.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Rotschild, C.

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).

Safioui, J.

Salamo, G.

Salamo, G. J.

M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett.24(2), 77–79 (1999).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

Sanchez-Mondragon, J. J.

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

Segev, M.

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).

M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett.24(2), 77–79 (1999).
[CrossRef] [PubMed]

M. F. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett.21(13), 931–934 (1996).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992).
[CrossRef] [PubMed]

Shao, W. W.

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Sharp, E. J.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

Shih, M. F.

Shultz, J. L.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Smolyaninov, I. I.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Sotoyama, W.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Stepanov, S.

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

Sychugov, V. A.

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

Takahashi, Y.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Tian, J. G.

Townes, C. H.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett.13(15), 479–482 (1964).
[CrossRef]

Tsukamoto, K.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Usievich, B. A.

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Vlad, V. I.

S. T. Popescu, A. Petris, and V. I. Vlad, “Fast writing of soliton waveguides in lithium niobate using low-intensity blue light,” Appl. Phys. B108(4), 799–805 (2012).
[CrossRef]

S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).

V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Vysloukh, V.

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron.33(12), 1205–1221 (2001).
[CrossRef]

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).

Wang, B. H.

H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009).
[CrossRef] [PubMed]

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Wang, W.-C. V.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Xu, J. J.

H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009).
[CrossRef] [PubMed]

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Xu, Y. H.

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Yamashita, T.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett.79(8), 1079–1081 (2001).
[CrossRef]

Yang, D. P.

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Yang, J.

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Yariv, A.

A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett.21(1), 24–26 (1996).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992).
[CrossRef] [PubMed]

Yoshimura, T.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Zhang, T. H.

H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009).
[CrossRef] [PubMed]

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Zhu, B. G.

Zozulya, A. A.

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A51(2), 1520–1531 (1995).
[CrossRef] [PubMed]

Appl. Phys. B

S. T. Popescu, A. Petris, and V. I. Vlad, “Fast writing of soliton waveguides in lithium niobate using low-intensity blue light,” Appl. Phys. B108(4), 799–805 (2012).
[CrossRef]

Appl. Phys. Lett.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett.79(8), 1079–1081 (2001).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Electron. Lett.

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett.42(8), 463–465 (2006).
[CrossRef]

Ferroelectrics

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

IEEE Trans Comp. Pack. Technol.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Integrated optofluidic index sensor based on self-trapped beams in LiNbO3

M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).

J. Opt.

T. Fiumara and E. Fazio, “Design of a refractive-index sensor based on surface soliton waveguides,” J. Opt., submitted to(2013).

J. Opt. A, Pure Appl. Opt.

V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
[CrossRef]

J. Opt. Soc. Am. B

J. Optoelectron. Adv. Mater.

S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).

Nonlocal surface-wave solitons

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).

Opt. Commun.

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun.55(3), 201–206 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive solitons,” Opt. Lett.35(8), 1254–1256 (2010).
[CrossRef] [PubMed]

H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009).
[CrossRef] [PubMed]

S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett.18(13), 1035–1037 (1993).
[CrossRef] [PubMed]

M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett.20(20), 2075–2077 (1995).
[CrossRef] [PubMed]

M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett.24(2), 77–79 (1999).
[CrossRef] [PubMed]

I. I. Smolyaninov and C. C. Davis, “Near-field optical study of photorefractive surface waves in BaTiO3,” Opt. Lett.24(19), 1367–1369 (1999).
[CrossRef] [PubMed]

A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett.21(1), 24–26 (1996).
[CrossRef] [PubMed]

M. F. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett.21(13), 931–934 (1996).
[CrossRef] [PubMed]

M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett.30(15), 1977–1979 (2005).
[CrossRef] [PubMed]

Opt. Quantum Electron.

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron.33(12), 1205–1221 (2001).
[CrossRef]

Phys. Rev. A

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A51(2), 1520–1531 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992).
[CrossRef] [PubMed]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett.13(15), 479–482 (1964).
[CrossRef]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

Quantum Electron.

S. A. Chetkin and I. M. Akhmedzhanov, “Optical surface wave in a crystal with diffusion photorefractive nonlinearity,” Quantum Electron.41(11), 980–985 (2011).
[CrossRef]

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).

Surface waves with photorefractive nonlinearity

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Other

K. K. Wong, ed., Properties of Lithium Niobate, EMIS Datareviews Series No. 28 (INSPEC, London, UK, 2002).

E. Fazio, A. Petris, M. Bertolotti, and V. I. Vlad, “Optical bright solitons in lithium niobate and their applications,” in press on Rom. Rep. Phys. (September 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental scheme.

Fig. 2
Fig. 2

Experimental images of the output plane of the crystal. Spatial units are microns.

Fig. 3
Fig. 3

Enlargement of the output beam at 240 sec. Spatial dimensions are in microns.

Fig. 4
Fig. 4

Propagation mode of the superficial soliton waveguide at different wavelengths. Spatial dimensions are in microns.

Fig. 5
Fig. 5

Simulation of the surface soliton formation

Fig. 6
Fig. 6

(a) Simulation of photoinduced refractive waveguide. (b) Fitting (with dotted back lines) of the numerical profiles: in red along the [010] direction and in blue along the [001] one.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

J =μkT n e +μq n e E + σ PV I[ N D N D + ] c ^
ρ t = J
E ( r )= 1 4π ε ¯ ρ ( r ' ) r r ' | r r ' | 3 dV
Δ n z = 1 2 n e 3 r 33 E z
n soliton = n substrate +δnsech( z z 0 σ )

Metrics