Abstract

We theoretically investigate the above-threshold ionization of hydrogen atoms driven by few-cycle phase jump laser pulses. By numerically solving the three-dimensional time-dependent Schrödinger equation, we demonstrate that the phase jump plays an important role in the ionization process. The cutoff of the photoelectron energy spectrum can extend to a range of very high energy, and the yield of the photoelectrons can be dramatically enhanced by choosing proper phase jump times. Both the classical simulations and Fourier transform method are used to understand the spectra features found in our investigation.

© 2013 Optical Society of America

1. Introduction

Above-threshold ionization (ATI) [1] is one of the most well-known nonlinear phenomena in atom or molecular physics. It occurs when an atom or molecule absorbs more photons than the minimum number required to ionize, with the leftover energy being converted to the kinetic energy of the released electron (the photoelectron). Most of the early works [26] have concentrated on the low-energy part of the spectrum, and perturbation theory has been applied to the ATI process [7, 8]. Later, owing to the significant increase of the experimental precision in detecting electron spectra, high energy electron spectrum with an extend plateau as well as rings in the electron angular emission were observed [9, 10]. These new ATI features can be understood by the simple man’s theory [1114] which was firstly proposed to exploit a classical analysis for predicting the electron energy distribution. According to this theory, ATI could be understood as a combination of direct ionization process and indirect process (rescattering process), and the maximum electron kinetic energies of each processes are 2Up and 10Up (Up is the ponderomotive energy).

Up to now, a lot of studies both in theory and experiment have been done to exploit ATI process and its control through different ways [1533]. The ATI spectra exhibit a characteristic left-right asymmetry with the variation of the carrier-envelope phase of the few-cycle laser pulse [21]. Both the photoelectron energy spectra and photoelectron angular distributions are strongly dependent on the chirp rate of the linear chirped pulse since the presence of the intermediate bound states [22]. We have also found that the cutoff energy of the ATI spectrum could dramatically extend as the nonlinear chirp enhances [23]. Furthermore, an unexpected structure at the low energy spectra was revealed [24, 25], and attributed to the Coulomb field effects [2527]. Recently, one type of spatially inhomogeneous field is widely used to study the high-order harmonic generation (HHG) and the ATI process [2834]. On the other hand, some light-atom interactions have been studied by phase-jump pulses with different asymmetry degrees. For instance, complete population transfer was shown to occur for suitable jump phases [35, 37]. Qian et al. found that a phase-jump pulse may cause the breakdown of dipole blockade in strong Rydberg blockade regime [36]. Cleary et al. demonstrated that the center-of-mass motion of a Bose-Einstein condensate can be quenched by applying a carefully timed and sized jump in the phase of the rotating field [38]. And in our previous study of HHG process by phase-jump laser pulses [39], the HHG spectrum cutoff can have a dramatic extension, the intensity and the coherence of the continuum spectrum can be controlled by the phase jump time. Motivated by the above works, we will investigate the ATI process driven by phase jump pulses with different jump times in this paper.

2. Theoretical model and method

We use the three-dimensional time-dependent Schrödinger equation with dipole approximation to describe the interaction between the hydrogen atom and the laser field [The atomic units (a.u.) are used, unless otherwise mentioned].

iψ(r,t)t=[122+V(r)rE(t)]ψ(r,t),
where, r is the position vector of the electron, V(r) is the Coulomb potential, and E(t) = E(t) is the electric field vector of the laser pulse with polarization direction along z axis. For hydrogen atom, the Coulomb potential can be expressed as V(r) = 1/r, where r is the modulus of r.

The electric field of a laser pulse with a phase jump can be written as:

E(t)={Ff(t)cos(ωt+φ)ift<t0,Ff(t)cos(ωt+φ+ϕ)iftt0,
where, F, f (t), ω, and φ are the peak amplitude, field envelope, frequency and the carrier-envelope phase (CEP) of the laser pulse. ϕ is the jump phase introduced into the electric field at time t0. The phase jump in the laser field (Eq. (2)) can be realized by modern femtosecond pulse-shaping technology, such as described in [35]. In all of our calculations, the peak amplitude of the laser pulse F is 0.0377 a.u. (corresponds to an intensity of I = 5 × 1013W/cm2), the frequency ω is 0.057 a.u. (corresponds to a wavelength of λ = 800 nm), and the CEP φ = 0. We use a Gaussian shaped envelope f (t) = exp(−2ln2(t/τ)2) with τ = 5fs being full width at half maximum (FWHM) of the pulse.

We assume the target atom is in the ground state (1s) before we turn on the laser pulse and this state can be obtained by employing the image-time transformation. Then, we solve Eq. (1) by using a partial-wave decomposition of the wave function method [40], together with the Peaceman-Rachford scheme [41]. When the time-dependent wave function ψ(r, t) is obtained, the energy-resolved photoelectron spectra then can be calculated by using the window function technique developed by Schafer [42, 43].

3. Results and discussions

For the laser field expressed in Eq. (2), the symmetry of the electric field is broken by the phase jump, and the degree of the asymmetry is dependent on both the jump phase ϕ and jump time t0. As mentioned in our previous work [32], in order to obtain a larger asymmetry of the electric field, we consider the cases that the phase jump occurs at the zero points near the pulse center with a jump phase of π. In this paper two new cases are also considered which results in six phase jump cases, i.e., t0 = ±0.75T, ±0.50T and ±0.25T (where T is the optical period of the laser pulse). As a reference, the case without phase jump (ϕ = 0) is also considered.

Figure 1 displays the ATI spectra driven by laser pulses for the above mentioned six different phase jump times and the laser pulse without phase jump. It can be seen that the phase jump has significant effects on the ATI spectra. For the case without phase jump, the spectrum exhibits the typical ATI behavior, namely, two plateaus, 2Up and 10Up cutoffs. But for the cases of t0 = ±0.75T and t0 = ±0.25T, the cutoff energy of the whole spectrum extends very much, and some oscillations appear. For the cases of t0 = ±0.50T, the photoelectrons with higher energies far beyond the classical prediction 10Up energy are present in the spectrum. Moreover, the yield of the photoelectrons is enhanced for all the cases with phase jump, especially for the cases of t0 = ±0.50T in the low-energy regime.

 figure: Fig. 1

Fig. 1 ATI spectra driven by laser pulses with different jump times. The laser pulse parameters are λ = 800nm, I = 5 × 1013W/cm2, τ = 5fs.

Download Full Size | PPT Slide | PDF

Now we first concentrate on the cutoff extension of the whole photoelectron energy spectrum. As is stated in [44], electrons are born at time tb (ionization time, or born time) with zero velocity, and then they move under the influence of the laser field. For some ionization time, electrons may never return to the core (called the direct electrons). But for some other ionization time, electrons may return to the core at time tr and elastically backscatter (or rescatter) with the core, and subsequently they move in the laser field until the terminal time tf of the pulse (called the rescattered electrons). After the termination of the laser pulse, the kinetic energy of electron do not change anymore and the electron continues to fly to the detector. According to this theory, the final kinetic energy of electron can be calculated by solving the Newton equation of motion = −E (t), ignoring the effect of the ionization potential. For the direct process, the kinetic energy of an electron born at time tb is

Ed=[A(tb)A(tf)]2,
while for the rescattering process, the kinetic energy of an electron is:
Er=[A(tb)+A(tf)2A(tr)]22.
Where A is the vector potential of the laser field.

Figure 2 shows the classical results for the kinetic energy of the photoelectron. We use the same laser parameters as in Fig. 1. For the case without phase jump, we find that the maximum kinetic energies of the electron which undergoes the direct and rescattering processes are 2Up and 10Up, respectively. This is well consistent with the quantum simulation as shown in Fig. 1. For the phase jump cases, we can observe the strong modifications of the electron energy distribution caused by phase jump. In particular for the cases of t0 = −0.75T, t0 = −0.25T, t0 = 0.25T and t0 = 0.75T, the maximum kinetic energies of the rescattered electrons extend to about 15Up, 27Up, 34Up and 30Up, respectively. These energies are approximately consistent with the quantum simulations as shown in Fig. 1.

 figure: Fig. 2

Fig. 2 The classical results for the kinetic energy of photoelectron. The laser parameters are the same as in Fig. 1. The blue solid line is the laser field, the red triangles presents RE-ITDKE (the rescattered electron’s ionization-time-dependent kinetic energy), the purple stars, RE-BTDKE (the rescattered electron’s backscattering-time-dependent kinetic energy), the green circles, DE-ITDKE (the direct electron’s ionization-time-dependent kinetic energy).

Download Full Size | PPT Slide | PDF

As described in our previous study of HHG [45], once the electron is born, it will obtain an impulse to get away from the nucleus, and after a while it will obtain a reversed impulse to slow down and get back to the nucleus. Because of the symmetry break of the laser field caused by the static electric field or the chirp, the difference of these two impulses enlarges and thus the electron could obtain a larger kinetic energy when it returns to the nucleus. Therefore, the cutoff of the HHG spectrum could be extended. For the laser fields used in this paper, the symmetry of the laser field is broken by phase jump. For the cases of t0 = ±0.75T and t0 = ±0.25T, all the rescattered electrons which have the maximum kinetic energy (called the cutoff electrons) return to the core just at the time before half an optical period of the phase jump time t0. At this moment, the laser field value is zero, and it will change the sign, and then the electrons backscatter at the same time as shown in Figs. 2(b), 2(c), 2(f) and 2(g). This coincidence in time exactly gives a positive force to the electrons to accelerate from this moment. For the laser pulse with phase jump, this acceleration process can last a whole optical period at most, while it can only last half an optical period at most for the pulse without phase jump. As a result, the electron could obtain a larger impulse from the laser pulse with phase jump.

As to the cutoff electrons, from their backscattering time to the terminal time of the laser pulse, we mark the impulse whose direction deviates from the nucleus as A and the impulse with a reversed direction as B in Fig. 2. In order to quantitatively show the significant effect of the laser field asymmetry, we calculate the cutoff electrons’ velocity at their backscattering time, the impulse obtained from the backscattering time to the terminal time and their final velocity at the terminal time. The results are shown in Table 1. We can see that, for all the phase jump cases, their cutoff electrons have a larger final velocity than that of the case without phase jump. A further view of these results shows us that the impulse obtained from backscattering time to the terminal time have different degrees of increase compared to that of the case without phase jump. This is because of the different degrees of asymmetry caused by the different phase jump times. For the cases of t0 = ±0.75T and t0 = ±0.25T, the asymmetry changes so much that the impulse obtained is much larger than that of the case without phase jump. Thus the electron’s final velocity is much larger even though its velocity at the backscattering time is smaller. However, for the cases of t0 = ±0.50T, the symmetry doesn’t change so much and the impulse obtained is just a little bit larger than that of the case without phase jump. As a result, the final velocity is almost the same with that of the case without phase jump. In conclusion, the asymmetry of the laser field is the reason why the cutoff extends.

Tables Icon

Table 1. The cutoff electrons’ velocity at backscattering time, the impulse obtained from the backscattering time to the laser pulse’s termination and their final velocity at the terminal time.

As we know, the photoelectrons with the same final kinetic energy may come from many electrons that are born at different times, namely, different trajectories. Interferences between these different trajectories will cause oscillations in the spectrum [46]. In our present study, we also observed obvious oscillations in the spectra shown in Fig. 1 for the cases of t0 = ±0.75T and t0 = ±0.25T. Take the case of t0 = −0.25T for an example, we see from Fig. 2(f) that there exist many trajectories between 5Up and 25Up, and hence oscillations occur between 5Up and 25Up in the spectrum shown as the thin blue dash-dotted line in Fig. 1.

Phase jump in the laser pulse could make the frequency spectrum of laser field be changed. We do Fast Fourier Transform (FFT) for all the laser fields, and obtain the frequency spectra shown in Fig. 3. It shows that, for the laser pulses with phase jump, the intensity of the center frequency ω is weakened substantially, while the intensities of the lower and higher frequencies with a broad bandwidth are enhanced. Just as discussed in [47], since the few-cycle pulse has a broader spectral bandwidth than many-cycle pulse, n-photon ionization becomes n′ (n′ < n)-photon ionization, and then the ionization efficiency by few-cycle pulses will be larger than that by many-cycle pulses. Now, for all the phase jump pulses we used here, they have a much broader spectral bandwidth than the pulse without phase jump. Therefore, they have a larger ionization efficiency than that of the case without phase jump. Furthermore, we can see from Fig. 3 that, two distinct peaks appear astride the center frequency in 0.8ω and 1.2ω. And for the cases of t0 = ±0.50T, the intensity of the high frequency peak 1.2ω is stronger than that of all the other four phase jump cases. Then, the multiphoton ionization can be easier to take place for them than the other four cases. Thus the yield of the photoelectrons is much higher in the low-energy regime for t0 = ±0.50T.

 figure: Fig. 3

Fig. 3 The frequency spectra of the laser fields with different phase jump time. The black solid line corresponds to the case without phase jump, and the red dashed line, t0 = ±0.75T, the green dotted line, t0 = ±0.50T, the blue dash-dotted line, t0 = 0.25T.

Download Full Size | PPT Slide | PDF

Moreover, we note that the high frequency extends to an infinite position with a considerable intensity for the cases of t0 = ±0.50T. This will make the multiphoton ionization be easier and even make the single-photon ionization take place. We consider that the photoelectrons with energy far beyond the classical prediction 10Up cutoff mainly come from the multiphoton ionization or single-photon ionization of the very high energy photons.

Maybe someone has noticed that, for the cutoff electrons of the cases t0 = −0.75T and t0 = −0.25T, the laser field value at the born time is smaller than 0.6F, which is shown in Figs. 2(b) and 2(f). According to [21], only the solutions whose ionization time corresponds to a reasonably high laser field (|E(t)| ≥ 0.6F) have considerable contribution to the electron spectrum. Based on this theory, the cutoffs of t0 = −0.75T and t0 = −0.25T are about 10Up and 15Up, which are obviously smaller than the quantum simulation values of 15Up and 27Up. In our calculations, since the Coulomb potential was used to characterize the level structure of hydrogen atom, there exists lots of excited bound states. As was reported by [44], the excited bound states could play important roles in the ionization process. During the rising time of the laser pulse, the excited states could be populated through multiphoton absorption, and as the pulse approaches the peak intensity, tunneling ionization takes places very easily from there. In order to make sure whether the excited bound states play some roles in the ionization process, we introduce a short-range potential V (r) = −Z ·exp(−αr) [48] instead of Coulomb potential. Here Z and α are chosen to be 2 and 1.1144, which results in only the existence of the ground state. Then we calculate the ionization probability by numerically solving three-dimensional time-dependent Schrödinger equation using Coulomb potential and the short-range potential. In Table 2 we list the ionization probabilities of the hydrogen atoms for t0 = −0.75 and t0 = −0.25T. Pcoul and Psr are the ionization probability calculated for the Coulomb and short-range potential. We may approximate the contribution of the excited bound states by PcoulPsr. For the cases of t0 = −0.75T and t0 = −0.25, we can see that Pcoul is much larger than Psr. This exactly demonstrates the important roles of the excited bound states in the ionization process. When the excited bound states are populated through multiphoton absorption, the ionization potential could be reduced that there does not need so strong laser field to tunneling ionize. Thus, tunneling process takes place even though the laser field is less than 0.6F. Therefore, the cutoff electrons have considerable yield for t0 = −0.75T and t0 = −0.25T, which results in the cutoffs reaching to the 15Up and 27Up.

Tables Icon

Table 2. Ionization probabilities calculated for t0 = −0.75T and t0 = −0.25T with the same laser intensity of I = 5×1013 W/cm2. Pcoul and Psr are the ionization probability calculated for the Coulomb and short-range potential we used.

4. Conclusions

In this paper, we have theoretically investigated the ATI process of hydrogen atoms driven by few-cycle laser pulses with a π-phase jump. We found that the photoelectron energy spectrum is strongly modified by the phase jump time t0. If proper t0 is selected, the cutoff of the spectrum could be dramatically extended, as well as the yield of the photoelectrons. We found that it is the asymmetry of the laser field that results in the cutoff extension. Since the phase jump makes the frequencies both lower and higher than center frequency ω with a broad bandwidth appear, the yield of the photoelectrons is enhanced for all the cases with phase jump, especially for the cases of t0 = ±0.50T in the low-energy regime. Moreover, we also demonstrated that the excited bound states play important roles in the ionization process.

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Grants No. 11074263, No. 60921004, and No. 61308029). We thank Dr. Li Zhang from Vienna University of Technology very much for her valuable comments and suggestions.

References and links

1. P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42, 1127–1130 (1979). [CrossRef]  

2. P. Kruit, J. Kimman, H. G. Muller, and M. J. Van der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983). [CrossRef]  

3. P. H. Bucksbaum, M. Bashkansky, R. R. Freeman, T. J. McIlrath, and L. F. DiMauro, “Suppression of multiphoton ionization with circularly polarized coherent light,” Phys. Rev. Lett. 56, 2590–2593 (1986). [CrossRef]   [PubMed]  

4. R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. Geusic, “Above-threshold ionization with subpicosecond laser pulses,” Phys. Rev. Lett. 59, 1092–1095 (1987). [CrossRef]   [PubMed]  

5. M. P. de Boer, L. D. Noordam, and H. G. Muller, “High-angular-momentum states as population traps in multi-photon ionization,” Phys. Rev. A 47, R45–R48 (1993). [CrossRef]  

6. E. Mevel, P. Breger, R. Trainham, G. Petite, P. Agostini, A. Migus, J. P. Chambaret, and A. Antonetti, “Atoms in strong optical fields: evolution from multiphoton to tunnel ionization,” Phys. Rev. Lett. 70, 406–409 (1993). [CrossRef]   [PubMed]  

7. F. Fabre, G. Petite, P. Agostini, and M. Clement, “Multiphoton above-threshold ionisation of xenon at 0.53 and 1.06μm,” J. Phys. B: At. Mol. Phys. 15, 1353–1369 (1982). [CrossRef]  

8. Y. Gontier and M. Trahin, “Energetic electron generation by multiphoton absorption,” J. Phys. B: At. Mol. Phys. 13, 4383–4390 (1980). [CrossRef]  

9. B. R. Yang, K. J. Schafer, B. Walker, K. C. Kulander, P. Agostini, and L. F. DiMauro, “Intensity-dependent scattering rings in high order above-threshold ionization,” Phys. Rev. Lett. 71, 3770–3773 (1993). [CrossRef]   [PubMed]  

10. G. G. Paulus, W. Nicklich, and H. Walther, “Investigation of above-threshold ionization with femtosecond pulses: connection between plateau and angular distribution of the photoelectrons,” Europhys. Lett 27, 267–272 (1994). [CrossRef]  

11. V. Linden, H. B. Heuvell, and H. G. Muller, Multiphoton Processes, (Cambridge University, 1988).

12. T. F. Gallagher, “Above-threshold ionization in low-frequency limit,” Phys. Rev. Lett. 61, 2304–2307 (1988). [CrossRef]   [PubMed]  

13. K. J. Schafer, B. R. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599–1602 (1993). [CrossRef]   [PubMed]  

14. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993). [CrossRef]   [PubMed]  

15. L. Guo, S. S. Han, and J. Chen, “Time-energy analysis of above-threshold ionization,” Opt. Express 18, 1240–1248 (2010). [CrossRef]   [PubMed]  

16. R. Panfili, “Low-frequency above-threshold ionization of a model two-electron atom,” Opt. Express 8, 425–430 (2001). [CrossRef]   [PubMed]  

17. M. Lewenstein, K. C. Kulander, K. J. Schafer, and P. H. Bucksbaum, “Rings in above-threshold ionization: a quasiclassical analysis,” Phys. Rev. A 51, 1495–1507 (1995). [CrossRef]   [PubMed]  

18. J. Javanainen, J. H. Eberly, and Q. C. Su, “Numerical simulations of multiphoton ionization and above-threshold electron spectra,” Phys. Rev. A 38, 3430–3446 (1988). [CrossRef]   [PubMed]  

19. M. J. Nandor, M. A. Walker, L. D. Van Woerkom, and H. G. Muller, “Detailed comparison of above-threshold-ionization spectra from accurate numerical integrations and high-resolution measurements,” Phys. Rev. A 60, R1771–R1774 (1999). [CrossRef]  

20. G. G. Paulus, W. Becker, W. Nicklich, and H. Walther, “Rescattering effects in above-threshold ionization: a classical model,” J. Phys. B 27L703–L708 (1994). [CrossRef]  

21. D. B. Miloševic, G. G. Paulus, and W. Becker, “High-order above-threshold ionization with few-cycle pulse: a meter of the absolute phase,” Opt. Express 11, 1418–1429 (2003). [CrossRef]  

22. T. Nakajima, “Above-threshold ionization by chirped laser pulses,” Phys. Rev. A 75, 053409 (2007). [CrossRef]  

23. Y. Xiang, Y. P. Niu, and S. Q. Gong, “Above-threshold ionization by few-cycle nonlinear chirped pulses,” Phys. Rev. A 80, 023423 (2009). [CrossRef]  

24. C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, ”Strong-field photoionization revisited,” Nat. Phys 5, 335 (2009). [CrossRef]  

25. W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009). [CrossRef]  

26. C. P. Liu and K. Z. Hatsagortsyan, “Origin of unexpected low energy structure in photoelectron spectra induced by midinfrared strong laser fields,” Phys. Rev. Lett. 105, 113003 (2010). [CrossRef]   [PubMed]  

27. C. P. Liu and K. Z. Hatsagortsyan, “Coulomb focusing in above-threshold ionization in elliptically polarized midinfrared strong laser fields,” Phys. Rev. A 85, 023413 (2012). [CrossRef]  

28. S. Kim, J. Jin, Y.-J Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008). [CrossRef]  

29. S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011). [CrossRef]  

30. M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85, 033828 (2012). [CrossRef]  

31. M. F. Ciappina, J. A. Pérez-Hernández, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Above-threshold ionization by few-cycle spatially inhomogeneous fields,” Phys. Rev. A 86, 023413 (2012). [CrossRef]  

32. T. Shaaran, M. F. Ciappina, and M. Lewenstein, “Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement,” Phys. Rev. A 86, 023408 (2012). [CrossRef]  

33. T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, T. Siegel, A. Zaïr, and M. Lewenstein, “High-order-harmonic generation by enhanced plasmonic near-fields in metal nanoparticles,” Phys. Rev. A 87, 041402 (2013). [CrossRef]  

34. M. F. Ciappina, Srdjan S. Aćimović, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures,” Opt. Express 20, 26261–26274 (2012). [CrossRef]   [PubMed]  

35. B. T. Torosov and N. V. Vitanov, “Coherent control of a quantum transition by a phase jump,” Phys. Rev. A 76(5), 053404 (2007). [CrossRef]  

36. J. Qian, Y. Qian, M. Ke, X. L. Feng, C. H. Oh, and Y. Z. Wang, “Breakdown of the dipole blockade with a zero-area phase-jump pulse,” Phys. Rev. A 80, 053413 (2009). [CrossRef]  

37. P. K. Jha, H. Eleuch, and Y. V. Rostovtsev, “Coherent control of atomic excitation using off-resonant strong few-cycle pulses,” Phys. Rev. A 82, 045805 (2010). [CrossRef]  

38. P. W. Cleary, T. W. Hijmans, and J. T. M. Walraven, “Manipulation of a Bose-Einstein condensate by a time-averaged orbiting potential using phase jumps of the rotating field,” Phys. Rev. A 82, 063635 (2010). [CrossRef]  

39. Y. Xiang, Y. P. Niu, H. M. Feng, Y. H. Qi, and S. Q. Gong, “Coherent control of high-order harmonic generation by phase jump pulses,” Opt. Express 20(17),19289–19296 (2012). [CrossRef]   [PubMed]  

40. A. Sanpera, P. Jönsson, J. B. Watson, and K. Burnett, “Harmonic generation beyond the saturation intensity in helium,” Phys. Rev. A 51, 3148–3153 (1995). [CrossRef]   [PubMed]  

41. M. Gavrila, Atoms in Intense Laser Fields (Academic, 1992).

42. K. J. Schafer and K. C. Kulander, “Energy analysis of time-dependent wave functions: application to above-threshold ionization,” Phys. Rev. A 42, 5794–5797 (1990). [CrossRef]   [PubMed]  

43. K. J. Schafer, “The energy analysis of time-dependent numerical wave functions,” Comput. Phys. Commun 63, 427–434 (1991). [CrossRef]  

44. C. P. Liu, T. Nakajima, T. Sakka, and H. Ohgaki, “Above-threshold ionization and high-order harmonic generation by mid-infrared and far-infrared laser pulses,” Phys. Rev. A 77, 043411 (2008). [CrossRef]  

45. Y. Xiang, Y. P. Niu, and S. Q. Gong, “Control of the high-order harmonics cutoff through the combination of a chirped laser and static electric field,” Phys. Rev. A 79, 053419 (2009). [CrossRef]  

46. D. G. Arbó, E. Persson, and J. Burgdörfer, “Time double-slit interferences in strong-field tunneling ionization,” Phys. Rev. A 74, 063407 (2006). [CrossRef]  

47. C. P. Liu and T. Nakajima, “Anomalous ionization efficiency by few-cycle pulses in the multiphoton ionization regime,” Phys. Rev. A 76, 023416 (2007). [CrossRef]  

48. J. L. Krause, K. J. Schafer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A 45, 4998–5010 (1992). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42, 1127–1130 (1979).
    [Crossref]
  2. P. Kruit, J. Kimman, H. G. Muller, and M. J. Van der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983).
    [Crossref]
  3. P. H. Bucksbaum, M. Bashkansky, R. R. Freeman, T. J. McIlrath, and L. F. DiMauro, “Suppression of multiphoton ionization with circularly polarized coherent light,” Phys. Rev. Lett. 56, 2590–2593 (1986).
    [Crossref] [PubMed]
  4. R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. Geusic, “Above-threshold ionization with subpicosecond laser pulses,” Phys. Rev. Lett. 59, 1092–1095 (1987).
    [Crossref] [PubMed]
  5. M. P. de Boer, L. D. Noordam, and H. G. Muller, “High-angular-momentum states as population traps in multi-photon ionization,” Phys. Rev. A 47, R45–R48 (1993).
    [Crossref]
  6. E. Mevel, P. Breger, R. Trainham, G. Petite, P. Agostini, A. Migus, J. P. Chambaret, and A. Antonetti, “Atoms in strong optical fields: evolution from multiphoton to tunnel ionization,” Phys. Rev. Lett. 70, 406–409 (1993).
    [Crossref] [PubMed]
  7. F. Fabre, G. Petite, P. Agostini, and M. Clement, “Multiphoton above-threshold ionisation of xenon at 0.53 and 1.06μm,” J. Phys. B: At. Mol. Phys. 15, 1353–1369 (1982).
    [Crossref]
  8. Y. Gontier and M. Trahin, “Energetic electron generation by multiphoton absorption,” J. Phys. B: At. Mol. Phys. 13, 4383–4390 (1980).
    [Crossref]
  9. B. R. Yang, K. J. Schafer, B. Walker, K. C. Kulander, P. Agostini, and L. F. DiMauro, “Intensity-dependent scattering rings in high order above-threshold ionization,” Phys. Rev. Lett. 71, 3770–3773 (1993).
    [Crossref] [PubMed]
  10. G. G. Paulus, W. Nicklich, and H. Walther, “Investigation of above-threshold ionization with femtosecond pulses: connection between plateau and angular distribution of the photoelectrons,” Europhys. Lett 27, 267–272 (1994).
    [Crossref]
  11. V. Linden, H. B. Heuvell, and H. G. Muller, Multiphoton Processes, (Cambridge University, 1988).
  12. T. F. Gallagher, “Above-threshold ionization in low-frequency limit,” Phys. Rev. Lett. 61, 2304–2307 (1988).
    [Crossref] [PubMed]
  13. K. J. Schafer, B. R. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599–1602 (1993).
    [Crossref] [PubMed]
  14. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
    [Crossref] [PubMed]
  15. L. Guo, S. S. Han, and J. Chen, “Time-energy analysis of above-threshold ionization,” Opt. Express 18, 1240–1248 (2010).
    [Crossref] [PubMed]
  16. R. Panfili, “Low-frequency above-threshold ionization of a model two-electron atom,” Opt. Express 8, 425–430 (2001).
    [Crossref] [PubMed]
  17. M. Lewenstein, K. C. Kulander, K. J. Schafer, and P. H. Bucksbaum, “Rings in above-threshold ionization: a quasiclassical analysis,” Phys. Rev. A 51, 1495–1507 (1995).
    [Crossref] [PubMed]
  18. J. Javanainen, J. H. Eberly, and Q. C. Su, “Numerical simulations of multiphoton ionization and above-threshold electron spectra,” Phys. Rev. A 38, 3430–3446 (1988).
    [Crossref] [PubMed]
  19. M. J. Nandor, M. A. Walker, L. D. Van Woerkom, and H. G. Muller, “Detailed comparison of above-threshold-ionization spectra from accurate numerical integrations and high-resolution measurements,” Phys. Rev. A 60, R1771–R1774 (1999).
    [Crossref]
  20. G. G. Paulus, W. Becker, W. Nicklich, and H. Walther, “Rescattering effects in above-threshold ionization: a classical model,” J. Phys. B 27L703–L708 (1994).
    [Crossref]
  21. D. B. Miloševic, G. G. Paulus, and W. Becker, “High-order above-threshold ionization with few-cycle pulse: a meter of the absolute phase,” Opt. Express 11, 1418–1429 (2003).
    [Crossref]
  22. T. Nakajima, “Above-threshold ionization by chirped laser pulses,” Phys. Rev. A 75, 053409 (2007).
    [Crossref]
  23. Y. Xiang, Y. P. Niu, and S. Q. Gong, “Above-threshold ionization by few-cycle nonlinear chirped pulses,” Phys. Rev. A 80, 023423 (2009).
    [Crossref]
  24. C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, ”Strong-field photoionization revisited,” Nat. Phys 5, 335 (2009).
    [Crossref]
  25. W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
    [Crossref]
  26. C. P. Liu and K. Z. Hatsagortsyan, “Origin of unexpected low energy structure in photoelectron spectra induced by midinfrared strong laser fields,” Phys. Rev. Lett. 105, 113003 (2010).
    [Crossref] [PubMed]
  27. C. P. Liu and K. Z. Hatsagortsyan, “Coulomb focusing in above-threshold ionization in elliptically polarized midinfrared strong laser fields,” Phys. Rev. A 85, 023413 (2012).
    [Crossref]
  28. S. Kim, J. Jin, Y.-J Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
    [Crossref]
  29. S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
    [Crossref]
  30. M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85, 033828 (2012).
    [Crossref]
  31. M. F. Ciappina, J. A. Pérez-Hernández, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Above-threshold ionization by few-cycle spatially inhomogeneous fields,” Phys. Rev. A 86, 023413 (2012).
    [Crossref]
  32. T. Shaaran, M. F. Ciappina, and M. Lewenstein, “Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement,” Phys. Rev. A 86, 023408 (2012).
    [Crossref]
  33. T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, T. Siegel, A. Zaïr, and M. Lewenstein, “High-order-harmonic generation by enhanced plasmonic near-fields in metal nanoparticles,” Phys. Rev. A 87, 041402 (2013).
    [Crossref]
  34. M. F. Ciappina, Srdjan S. Aćimović, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures,” Opt. Express 20, 26261–26274 (2012).
    [Crossref] [PubMed]
  35. B. T. Torosov and N. V. Vitanov, “Coherent control of a quantum transition by a phase jump,” Phys. Rev. A 76(5), 053404 (2007).
    [Crossref]
  36. J. Qian, Y. Qian, M. Ke, X. L. Feng, C. H. Oh, and Y. Z. Wang, “Breakdown of the dipole blockade with a zero-area phase-jump pulse,” Phys. Rev. A 80, 053413 (2009).
    [Crossref]
  37. P. K. Jha, H. Eleuch, and Y. V. Rostovtsev, “Coherent control of atomic excitation using off-resonant strong few-cycle pulses,” Phys. Rev. A 82, 045805 (2010).
    [Crossref]
  38. P. W. Cleary, T. W. Hijmans, and J. T. M. Walraven, “Manipulation of a Bose-Einstein condensate by a time-averaged orbiting potential using phase jumps of the rotating field,” Phys. Rev. A 82, 063635 (2010).
    [Crossref]
  39. Y. Xiang, Y. P. Niu, H. M. Feng, Y. H. Qi, and S. Q. Gong, “Coherent control of high-order harmonic generation by phase jump pulses,” Opt. Express 20(17),19289–19296 (2012).
    [Crossref] [PubMed]
  40. A. Sanpera, P. Jönsson, J. B. Watson, and K. Burnett, “Harmonic generation beyond the saturation intensity in helium,” Phys. Rev. A 51, 3148–3153 (1995).
    [Crossref] [PubMed]
  41. M. Gavrila, Atoms in Intense Laser Fields (Academic, 1992).
  42. K. J. Schafer and K. C. Kulander, “Energy analysis of time-dependent wave functions: application to above-threshold ionization,” Phys. Rev. A 42, 5794–5797 (1990).
    [Crossref] [PubMed]
  43. K. J. Schafer, “The energy analysis of time-dependent numerical wave functions,” Comput. Phys. Commun 63, 427–434 (1991).
    [Crossref]
  44. C. P. Liu, T. Nakajima, T. Sakka, and H. Ohgaki, “Above-threshold ionization and high-order harmonic generation by mid-infrared and far-infrared laser pulses,” Phys. Rev. A 77, 043411 (2008).
    [Crossref]
  45. Y. Xiang, Y. P. Niu, and S. Q. Gong, “Control of the high-order harmonics cutoff through the combination of a chirped laser and static electric field,” Phys. Rev. A 79, 053419 (2009).
    [Crossref]
  46. D. G. Arbó, E. Persson, and J. Burgdörfer, “Time double-slit interferences in strong-field tunneling ionization,” Phys. Rev. A 74, 063407 (2006).
    [Crossref]
  47. C. P. Liu and T. Nakajima, “Anomalous ionization efficiency by few-cycle pulses in the multiphoton ionization regime,” Phys. Rev. A 76, 023416 (2007).
    [Crossref]
  48. J. L. Krause, K. J. Schafer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A 45, 4998–5010 (1992).
    [Crossref] [PubMed]

2013 (1)

T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, T. Siegel, A. Zaïr, and M. Lewenstein, “High-order-harmonic generation by enhanced plasmonic near-fields in metal nanoparticles,” Phys. Rev. A 87, 041402 (2013).
[Crossref]

2012 (6)

M. F. Ciappina, Srdjan S. Aćimović, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures,” Opt. Express 20, 26261–26274 (2012).
[Crossref] [PubMed]

C. P. Liu and K. Z. Hatsagortsyan, “Coulomb focusing in above-threshold ionization in elliptically polarized midinfrared strong laser fields,” Phys. Rev. A 85, 023413 (2012).
[Crossref]

M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85, 033828 (2012).
[Crossref]

M. F. Ciappina, J. A. Pérez-Hernández, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Above-threshold ionization by few-cycle spatially inhomogeneous fields,” Phys. Rev. A 86, 023413 (2012).
[Crossref]

T. Shaaran, M. F. Ciappina, and M. Lewenstein, “Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement,” Phys. Rev. A 86, 023408 (2012).
[Crossref]

Y. Xiang, Y. P. Niu, H. M. Feng, Y. H. Qi, and S. Q. Gong, “Coherent control of high-order harmonic generation by phase jump pulses,” Opt. Express 20(17),19289–19296 (2012).
[Crossref] [PubMed]

2011 (1)

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

2010 (4)

C. P. Liu and K. Z. Hatsagortsyan, “Origin of unexpected low energy structure in photoelectron spectra induced by midinfrared strong laser fields,” Phys. Rev. Lett. 105, 113003 (2010).
[Crossref] [PubMed]

L. Guo, S. S. Han, and J. Chen, “Time-energy analysis of above-threshold ionization,” Opt. Express 18, 1240–1248 (2010).
[Crossref] [PubMed]

P. K. Jha, H. Eleuch, and Y. V. Rostovtsev, “Coherent control of atomic excitation using off-resonant strong few-cycle pulses,” Phys. Rev. A 82, 045805 (2010).
[Crossref]

P. W. Cleary, T. W. Hijmans, and J. T. M. Walraven, “Manipulation of a Bose-Einstein condensate by a time-averaged orbiting potential using phase jumps of the rotating field,” Phys. Rev. A 82, 063635 (2010).
[Crossref]

2009 (5)

Y. Xiang, Y. P. Niu, and S. Q. Gong, “Control of the high-order harmonics cutoff through the combination of a chirped laser and static electric field,” Phys. Rev. A 79, 053419 (2009).
[Crossref]

Y. Xiang, Y. P. Niu, and S. Q. Gong, “Above-threshold ionization by few-cycle nonlinear chirped pulses,” Phys. Rev. A 80, 023423 (2009).
[Crossref]

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, ”Strong-field photoionization revisited,” Nat. Phys 5, 335 (2009).
[Crossref]

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

J. Qian, Y. Qian, M. Ke, X. L. Feng, C. H. Oh, and Y. Z. Wang, “Breakdown of the dipole blockade with a zero-area phase-jump pulse,” Phys. Rev. A 80, 053413 (2009).
[Crossref]

2008 (2)

S. Kim, J. Jin, Y.-J Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

C. P. Liu, T. Nakajima, T. Sakka, and H. Ohgaki, “Above-threshold ionization and high-order harmonic generation by mid-infrared and far-infrared laser pulses,” Phys. Rev. A 77, 043411 (2008).
[Crossref]

2007 (3)

C. P. Liu and T. Nakajima, “Anomalous ionization efficiency by few-cycle pulses in the multiphoton ionization regime,” Phys. Rev. A 76, 023416 (2007).
[Crossref]

B. T. Torosov and N. V. Vitanov, “Coherent control of a quantum transition by a phase jump,” Phys. Rev. A 76(5), 053404 (2007).
[Crossref]

T. Nakajima, “Above-threshold ionization by chirped laser pulses,” Phys. Rev. A 75, 053409 (2007).
[Crossref]

2006 (1)

D. G. Arbó, E. Persson, and J. Burgdörfer, “Time double-slit interferences in strong-field tunneling ionization,” Phys. Rev. A 74, 063407 (2006).
[Crossref]

2003 (1)

2001 (1)

1999 (1)

M. J. Nandor, M. A. Walker, L. D. Van Woerkom, and H. G. Muller, “Detailed comparison of above-threshold-ionization spectra from accurate numerical integrations and high-resolution measurements,” Phys. Rev. A 60, R1771–R1774 (1999).
[Crossref]

1995 (2)

M. Lewenstein, K. C. Kulander, K. J. Schafer, and P. H. Bucksbaum, “Rings in above-threshold ionization: a quasiclassical analysis,” Phys. Rev. A 51, 1495–1507 (1995).
[Crossref] [PubMed]

A. Sanpera, P. Jönsson, J. B. Watson, and K. Burnett, “Harmonic generation beyond the saturation intensity in helium,” Phys. Rev. A 51, 3148–3153 (1995).
[Crossref] [PubMed]

1994 (2)

G. G. Paulus, W. Nicklich, and H. Walther, “Investigation of above-threshold ionization with femtosecond pulses: connection between plateau and angular distribution of the photoelectrons,” Europhys. Lett 27, 267–272 (1994).
[Crossref]

G. G. Paulus, W. Becker, W. Nicklich, and H. Walther, “Rescattering effects in above-threshold ionization: a classical model,” J. Phys. B 27L703–L708 (1994).
[Crossref]

1993 (5)

B. R. Yang, K. J. Schafer, B. Walker, K. C. Kulander, P. Agostini, and L. F. DiMauro, “Intensity-dependent scattering rings in high order above-threshold ionization,” Phys. Rev. Lett. 71, 3770–3773 (1993).
[Crossref] [PubMed]

K. J. Schafer, B. R. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599–1602 (1993).
[Crossref] [PubMed]

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref] [PubMed]

M. P. de Boer, L. D. Noordam, and H. G. Muller, “High-angular-momentum states as population traps in multi-photon ionization,” Phys. Rev. A 47, R45–R48 (1993).
[Crossref]

E. Mevel, P. Breger, R. Trainham, G. Petite, P. Agostini, A. Migus, J. P. Chambaret, and A. Antonetti, “Atoms in strong optical fields: evolution from multiphoton to tunnel ionization,” Phys. Rev. Lett. 70, 406–409 (1993).
[Crossref] [PubMed]

1992 (1)

J. L. Krause, K. J. Schafer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A 45, 4998–5010 (1992).
[Crossref] [PubMed]

1991 (1)

K. J. Schafer, “The energy analysis of time-dependent numerical wave functions,” Comput. Phys. Commun 63, 427–434 (1991).
[Crossref]

1990 (1)

K. J. Schafer and K. C. Kulander, “Energy analysis of time-dependent wave functions: application to above-threshold ionization,” Phys. Rev. A 42, 5794–5797 (1990).
[Crossref] [PubMed]

1988 (2)

T. F. Gallagher, “Above-threshold ionization in low-frequency limit,” Phys. Rev. Lett. 61, 2304–2307 (1988).
[Crossref] [PubMed]

J. Javanainen, J. H. Eberly, and Q. C. Su, “Numerical simulations of multiphoton ionization and above-threshold electron spectra,” Phys. Rev. A 38, 3430–3446 (1988).
[Crossref] [PubMed]

1987 (1)

R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. Geusic, “Above-threshold ionization with subpicosecond laser pulses,” Phys. Rev. Lett. 59, 1092–1095 (1987).
[Crossref] [PubMed]

1986 (1)

P. H. Bucksbaum, M. Bashkansky, R. R. Freeman, T. J. McIlrath, and L. F. DiMauro, “Suppression of multiphoton ionization with circularly polarized coherent light,” Phys. Rev. Lett. 56, 2590–2593 (1986).
[Crossref] [PubMed]

1983 (1)

P. Kruit, J. Kimman, H. G. Muller, and M. J. Van der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983).
[Crossref]

1982 (1)

F. Fabre, G. Petite, P. Agostini, and M. Clement, “Multiphoton above-threshold ionisation of xenon at 0.53 and 1.06μm,” J. Phys. B: At. Mol. Phys. 15, 1353–1369 (1982).
[Crossref]

1980 (1)

Y. Gontier and M. Trahin, “Energetic electron generation by multiphoton absorption,” J. Phys. B: At. Mol. Phys. 13, 4383–4390 (1980).
[Crossref]

1979 (1)

P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42, 1127–1130 (1979).
[Crossref]

Acimovic, Srdjan S.

Agostini, P.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, ”Strong-field photoionization revisited,” Nat. Phys 5, 335 (2009).
[Crossref]

E. Mevel, P. Breger, R. Trainham, G. Petite, P. Agostini, A. Migus, J. P. Chambaret, and A. Antonetti, “Atoms in strong optical fields: evolution from multiphoton to tunnel ionization,” Phys. Rev. Lett. 70, 406–409 (1993).
[Crossref] [PubMed]

B. R. Yang, K. J. Schafer, B. Walker, K. C. Kulander, P. Agostini, and L. F. DiMauro, “Intensity-dependent scattering rings in high order above-threshold ionization,” Phys. Rev. Lett. 71, 3770–3773 (1993).
[Crossref] [PubMed]

F. Fabre, G. Petite, P. Agostini, and M. Clement, “Multiphoton above-threshold ionisation of xenon at 0.53 and 1.06μm,” J. Phys. B: At. Mol. Phys. 15, 1353–1369 (1982).
[Crossref]

P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42, 1127–1130 (1979).
[Crossref]

Ahmad, I.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Antonetti, A.

E. Mevel, P. Breger, R. Trainham, G. Petite, P. Agostini, A. Migus, J. P. Chambaret, and A. Antonetti, “Atoms in strong optical fields: evolution from multiphoton to tunnel ionization,” Phys. Rev. Lett. 70, 406–409 (1993).
[Crossref] [PubMed]

Antonsson, E.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Arbó, D. G.

D. G. Arbó, E. Persson, and J. Burgdörfer, “Time double-slit interferences in strong-field tunneling ionization,” Phys. Rev. A 74, 063407 (2006).
[Crossref]

Arnold, M.

T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, T. Siegel, A. Zaïr, and M. Lewenstein, “High-order-harmonic generation by enhanced plasmonic near-fields in metal nanoparticles,” Phys. Rev. A 87, 041402 (2013).
[Crossref]

Bashkansky, M.

P. H. Bucksbaum, M. Bashkansky, R. R. Freeman, T. J. McIlrath, and L. F. DiMauro, “Suppression of multiphoton ionization with circularly polarized coherent light,” Phys. Rev. Lett. 56, 2590–2593 (1986).
[Crossref] [PubMed]

Becker, W.

D. B. Miloševic, G. G. Paulus, and W. Becker, “High-order above-threshold ionization with few-cycle pulse: a meter of the absolute phase,” Opt. Express 11, 1418–1429 (2003).
[Crossref]

G. G. Paulus, W. Becker, W. Nicklich, and H. Walther, “Rescattering effects in above-threshold ionization: a classical model,” J. Phys. B 27L703–L708 (1994).
[Crossref]

Biegert, J.

M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85, 033828 (2012).
[Crossref]

M. F. Ciappina, J. A. Pérez-Hernández, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Above-threshold ionization by few-cycle spatially inhomogeneous fields,” Phys. Rev. A 86, 023413 (2012).
[Crossref]

M. F. Ciappina, Srdjan S. Aćimović, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures,” Opt. Express 20, 26261–26274 (2012).
[Crossref] [PubMed]

Blaga, C. I.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, ”Strong-field photoionization revisited,” Nat. Phys 5, 335 (2009).
[Crossref]

Breger, P.

E. Mevel, P. Breger, R. Trainham, G. Petite, P. Agostini, A. Migus, J. P. Chambaret, and A. Antonetti, “Atoms in strong optical fields: evolution from multiphoton to tunnel ionization,” Phys. Rev. Lett. 70, 406–409 (1993).
[Crossref] [PubMed]

Bucksbaum, P. H.

M. Lewenstein, K. C. Kulander, K. J. Schafer, and P. H. Bucksbaum, “Rings in above-threshold ionization: a quasiclassical analysis,” Phys. Rev. A 51, 1495–1507 (1995).
[Crossref] [PubMed]

R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. Geusic, “Above-threshold ionization with subpicosecond laser pulses,” Phys. Rev. Lett. 59, 1092–1095 (1987).
[Crossref] [PubMed]

P. H. Bucksbaum, M. Bashkansky, R. R. Freeman, T. J. McIlrath, and L. F. DiMauro, “Suppression of multiphoton ionization with circularly polarized coherent light,” Phys. Rev. Lett. 56, 2590–2593 (1986).
[Crossref] [PubMed]

Burgdörfer, J.

D. G. Arbó, E. Persson, and J. Burgdörfer, “Time double-slit interferences in strong-field tunneling ionization,” Phys. Rev. A 74, 063407 (2006).
[Crossref]

Burnett, K.

A. Sanpera, P. Jönsson, J. B. Watson, and K. Burnett, “Harmonic generation beyond the saturation intensity in helium,” Phys. Rev. A 51, 3148–3153 (1995).
[Crossref] [PubMed]

Catoire, F.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, ”Strong-field photoionization revisited,” Nat. Phys 5, 335 (2009).
[Crossref]

Chambaret, J. P.

E. Mevel, P. Breger, R. Trainham, G. Petite, P. Agostini, A. Migus, J. P. Chambaret, and A. Antonetti, “Atoms in strong optical fields: evolution from multiphoton to tunnel ionization,” Phys. Rev. Lett. 70, 406–409 (1993).
[Crossref] [PubMed]

Chen, J.

L. Guo, S. S. Han, and J. Chen, “Time-energy analysis of above-threshold ionization,” Opt. Express 18, 1240–1248 (2010).
[Crossref] [PubMed]

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Chen, S. G.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Cheng, Y.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Ciappina, M. F.

T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, T. Siegel, A. Zaïr, and M. Lewenstein, “High-order-harmonic generation by enhanced plasmonic near-fields in metal nanoparticles,” Phys. Rev. A 87, 041402 (2013).
[Crossref]

T. Shaaran, M. F. Ciappina, and M. Lewenstein, “Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement,” Phys. Rev. A 86, 023408 (2012).
[Crossref]

M. F. Ciappina, Srdjan S. Aćimović, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures,” Opt. Express 20, 26261–26274 (2012).
[Crossref] [PubMed]

M. F. Ciappina, J. A. Pérez-Hernández, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Above-threshold ionization by few-cycle spatially inhomogeneous fields,” Phys. Rev. A 86, 023413 (2012).
[Crossref]

M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85, 033828 (2012).
[Crossref]

Cleary, P. W.

P. W. Cleary, T. W. Hijmans, and J. T. M. Walraven, “Manipulation of a Bose-Einstein condensate by a time-averaged orbiting potential using phase jumps of the rotating field,” Phys. Rev. A 82, 063635 (2010).
[Crossref]

Clement, M.

F. Fabre, G. Petite, P. Agostini, and M. Clement, “Multiphoton above-threshold ionisation of xenon at 0.53 and 1.06μm,” J. Phys. B: At. Mol. Phys. 15, 1353–1369 (1982).
[Crossref]

Colosimo, P.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, ”Strong-field photoionization revisited,” Nat. Phys 5, 335 (2009).
[Crossref]

Corkum, P. B.

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref] [PubMed]

Darack, S.

R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. Geusic, “Above-threshold ionization with subpicosecond laser pulses,” Phys. Rev. Lett. 59, 1092–1095 (1987).
[Crossref] [PubMed]

de Boer, M. P.

M. P. de Boer, L. D. Noordam, and H. G. Muller, “High-angular-momentum states as population traps in multi-photon ionization,” Phys. Rev. A 47, R45–R48 (1993).
[Crossref]

DiMauro, L. F.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, ”Strong-field photoionization revisited,” Nat. Phys 5, 335 (2009).
[Crossref]

K. J. Schafer, B. R. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599–1602 (1993).
[Crossref] [PubMed]

B. R. Yang, K. J. Schafer, B. Walker, K. C. Kulander, P. Agostini, and L. F. DiMauro, “Intensity-dependent scattering rings in high order above-threshold ionization,” Phys. Rev. Lett. 71, 3770–3773 (1993).
[Crossref] [PubMed]

P. H. Bucksbaum, M. Bashkansky, R. R. Freeman, T. J. McIlrath, and L. F. DiMauro, “Suppression of multiphoton ionization with circularly polarized coherent light,” Phys. Rev. Lett. 56, 2590–2593 (1986).
[Crossref] [PubMed]

Eberly, J. H.

J. Javanainen, J. H. Eberly, and Q. C. Su, “Numerical simulations of multiphoton ionization and above-threshold electron spectra,” Phys. Rev. A 38, 3430–3446 (1988).
[Crossref] [PubMed]

Eleuch, H.

P. K. Jha, H. Eleuch, and Y. V. Rostovtsev, “Coherent control of atomic excitation using off-resonant strong few-cycle pulses,” Phys. Rev. A 82, 045805 (2010).
[Crossref]

Fabre, F.

F. Fabre, G. Petite, P. Agostini, and M. Clement, “Multiphoton above-threshold ionisation of xenon at 0.53 and 1.06μm,” J. Phys. B: At. Mol. Phys. 15, 1353–1369 (1982).
[Crossref]

P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42, 1127–1130 (1979).
[Crossref]

Feng, H. M.

Feng, X. L.

J. Qian, Y. Qian, M. Ke, X. L. Feng, C. H. Oh, and Y. Z. Wang, “Breakdown of the dipole blockade with a zero-area phase-jump pulse,” Phys. Rev. A 80, 053413 (2009).
[Crossref]

Fennel, T.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Freeman, R. R.

R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. Geusic, “Above-threshold ionization with subpicosecond laser pulses,” Phys. Rev. Lett. 59, 1092–1095 (1987).
[Crossref] [PubMed]

P. H. Bucksbaum, M. Bashkansky, R. R. Freeman, T. J. McIlrath, and L. F. DiMauro, “Suppression of multiphoton ionization with circularly polarized coherent light,” Phys. Rev. Lett. 56, 2590–2593 (1986).
[Crossref] [PubMed]

Fu, Y.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Gallagher, T. F.

T. F. Gallagher, “Above-threshold ionization in low-frequency limit,” Phys. Rev. Lett. 61, 2304–2307 (1988).
[Crossref] [PubMed]

Gavrila, M.

M. Gavrila, Atoms in Intense Laser Fields (Academic, 1992).

Geusic, M. E.

R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. Geusic, “Above-threshold ionization with subpicosecond laser pulses,” Phys. Rev. Lett. 59, 1092–1095 (1987).
[Crossref] [PubMed]

Gong, S. Q.

Y. Xiang, Y. P. Niu, H. M. Feng, Y. H. Qi, and S. Q. Gong, “Coherent control of high-order harmonic generation by phase jump pulses,” Opt. Express 20(17),19289–19296 (2012).
[Crossref] [PubMed]

Y. Xiang, Y. P. Niu, and S. Q. Gong, “Control of the high-order harmonics cutoff through the combination of a chirped laser and static electric field,” Phys. Rev. A 79, 053419 (2009).
[Crossref]

Y. Xiang, Y. P. Niu, and S. Q. Gong, “Above-threshold ionization by few-cycle nonlinear chirped pulses,” Phys. Rev. A 80, 023423 (2009).
[Crossref]

Gontier, Y.

Y. Gontier and M. Trahin, “Energetic electron generation by multiphoton absorption,” J. Phys. B: At. Mol. Phys. 13, 4383–4390 (1980).
[Crossref]

Graf, C.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Guichard, R.

T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, T. Siegel, A. Zaïr, and M. Lewenstein, “High-order-harmonic generation by enhanced plasmonic near-fields in metal nanoparticles,” Phys. Rev. A 87, 041402 (2013).
[Crossref]

Guo, L.

L. Guo, S. S. Han, and J. Chen, “Time-energy analysis of above-threshold ionization,” Opt. Express 18, 1240–1248 (2010).
[Crossref] [PubMed]

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Han, S. S.

Hatsagortsyan, K. Z.

C. P. Liu and K. Z. Hatsagortsyan, “Coulomb focusing in above-threshold ionization in elliptically polarized midinfrared strong laser fields,” Phys. Rev. A 85, 023413 (2012).
[Crossref]

C. P. Liu and K. Z. Hatsagortsyan, “Origin of unexpected low energy structure in photoelectron spectra induced by midinfrared strong laser fields,” Phys. Rev. Lett. 105, 113003 (2010).
[Crossref] [PubMed]

He, X. T.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Herrwerth, O.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Heuvell, H. B.

V. Linden, H. B. Heuvell, and H. G. Muller, Multiphoton Processes, (Cambridge University, 1988).

Hijmans, T. W.

P. W. Cleary, T. W. Hijmans, and J. T. M. Walraven, “Manipulation of a Bose-Einstein condensate by a time-averaged orbiting potential using phase jumps of the rotating field,” Phys. Rev. A 82, 063635 (2010).
[Crossref]

Javanainen, J.

J. Javanainen, J. H. Eberly, and Q. C. Su, “Numerical simulations of multiphoton ionization and above-threshold electron spectra,” Phys. Rev. A 38, 3430–3446 (1988).
[Crossref] [PubMed]

Jha, P. K.

P. K. Jha, H. Eleuch, and Y. V. Rostovtsev, “Coherent control of atomic excitation using off-resonant strong few-cycle pulses,” Phys. Rev. A 82, 045805 (2010).
[Crossref]

Jin, J.

S. Kim, J. Jin, Y.-J Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

Jönsson, P.

A. Sanpera, P. Jönsson, J. B. Watson, and K. Burnett, “Harmonic generation beyond the saturation intensity in helium,” Phys. Rev. A 51, 3148–3153 (1995).
[Crossref] [PubMed]

Kang, H.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Karsch, Stefan

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Ke, M.

J. Qian, Y. Qian, M. Ke, X. L. Feng, C. H. Oh, and Y. Z. Wang, “Breakdown of the dipole blockade with a zero-area phase-jump pulse,” Phys. Rev. A 80, 053413 (2009).
[Crossref]

Kim, S.

S. Kim, J. Jin, Y.-J Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

Kim, S.-W.

S. Kim, J. Jin, Y.-J Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

Kim, Y.

S. Kim, J. Jin, Y.-J Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

Kim, Y.-J

S. Kim, J. Jin, Y.-J Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

Kimman, J.

P. Kruit, J. Kimman, H. G. Muller, and M. J. Van der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983).
[Crossref]

Kling, M. F.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Krause, J. L.

J. L. Krause, K. J. Schafer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A 45, 4998–5010 (1992).
[Crossref] [PubMed]

Krausz, F.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Kruit, P.

P. Kruit, J. Kimman, H. G. Muller, and M. J. Van der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983).
[Crossref]

Kulander, K. C.

M. Lewenstein, K. C. Kulander, K. J. Schafer, and P. H. Bucksbaum, “Rings in above-threshold ionization: a quasiclassical analysis,” Phys. Rev. A 51, 1495–1507 (1995).
[Crossref] [PubMed]

K. J. Schafer, B. R. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599–1602 (1993).
[Crossref] [PubMed]

B. R. Yang, K. J. Schafer, B. Walker, K. C. Kulander, P. Agostini, and L. F. DiMauro, “Intensity-dependent scattering rings in high order above-threshold ionization,” Phys. Rev. Lett. 71, 3770–3773 (1993).
[Crossref] [PubMed]

J. L. Krause, K. J. Schafer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A 45, 4998–5010 (1992).
[Crossref] [PubMed]

K. J. Schafer and K. C. Kulander, “Energy analysis of time-dependent wave functions: application to above-threshold ionization,” Phys. Rev. A 42, 5794–5797 (1990).
[Crossref] [PubMed]

Langer, B.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Lewenstein, M.

T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, T. Siegel, A. Zaïr, and M. Lewenstein, “High-order-harmonic generation by enhanced plasmonic near-fields in metal nanoparticles,” Phys. Rev. A 87, 041402 (2013).
[Crossref]

M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85, 033828 (2012).
[Crossref]

T. Shaaran, M. F. Ciappina, and M. Lewenstein, “Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement,” Phys. Rev. A 86, 023408 (2012).
[Crossref]

M. F. Ciappina, J. A. Pérez-Hernández, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Above-threshold ionization by few-cycle spatially inhomogeneous fields,” Phys. Rev. A 86, 023413 (2012).
[Crossref]

M. F. Ciappina, Srdjan S. Aćimović, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures,” Opt. Express 20, 26261–26274 (2012).
[Crossref] [PubMed]

M. Lewenstein, K. C. Kulander, K. J. Schafer, and P. H. Bucksbaum, “Rings in above-threshold ionization: a quasiclassical analysis,” Phys. Rev. A 51, 1495–1507 (1995).
[Crossref] [PubMed]

Lin, Z.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Linden, V.

V. Linden, H. B. Heuvell, and H. G. Muller, Multiphoton Processes, (Cambridge University, 1988).

Liu, C. P.

C. P. Liu and K. Z. Hatsagortsyan, “Coulomb focusing in above-threshold ionization in elliptically polarized midinfrared strong laser fields,” Phys. Rev. A 85, 023413 (2012).
[Crossref]

C. P. Liu and K. Z. Hatsagortsyan, “Origin of unexpected low energy structure in photoelectron spectra induced by midinfrared strong laser fields,” Phys. Rev. Lett. 105, 113003 (2010).
[Crossref] [PubMed]

C. P. Liu, T. Nakajima, T. Sakka, and H. Ohgaki, “Above-threshold ionization and high-order harmonic generation by mid-infrared and far-infrared laser pulses,” Phys. Rev. A 77, 043411 (2008).
[Crossref]

C. P. Liu and T. Nakajima, “Anomalous ionization efficiency by few-cycle pulses in the multiphoton ionization regime,” Phys. Rev. A 76, 023416 (2007).
[Crossref]

Liu, H.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Liu, J.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Liu, X.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Mainfray, G.

P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42, 1127–1130 (1979).
[Crossref]

McIlrath, T. J.

P. H. Bucksbaum, M. Bashkansky, R. R. Freeman, T. J. McIlrath, and L. F. DiMauro, “Suppression of multiphoton ionization with circularly polarized coherent light,” Phys. Rev. Lett. 56, 2590–2593 (1986).
[Crossref] [PubMed]

Mevel, E.

E. Mevel, P. Breger, R. Trainham, G. Petite, P. Agostini, A. Migus, J. P. Chambaret, and A. Antonetti, “Atoms in strong optical fields: evolution from multiphoton to tunnel ionization,” Phys. Rev. Lett. 70, 406–409 (1993).
[Crossref] [PubMed]

Migus, A.

E. Mevel, P. Breger, R. Trainham, G. Petite, P. Agostini, A. Migus, J. P. Chambaret, and A. Antonetti, “Atoms in strong optical fields: evolution from multiphoton to tunnel ionization,” Phys. Rev. Lett. 70, 406–409 (1993).
[Crossref] [PubMed]

Milchberg, H.

R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. Geusic, “Above-threshold ionization with subpicosecond laser pulses,” Phys. Rev. Lett. 59, 1092–1095 (1987).
[Crossref] [PubMed]

Miloševic, D. B.

Muller, H. G.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, ”Strong-field photoionization revisited,” Nat. Phys 5, 335 (2009).
[Crossref]

M. J. Nandor, M. A. Walker, L. D. Van Woerkom, and H. G. Muller, “Detailed comparison of above-threshold-ionization spectra from accurate numerical integrations and high-resolution measurements,” Phys. Rev. A 60, R1771–R1774 (1999).
[Crossref]

M. P. de Boer, L. D. Noordam, and H. G. Muller, “High-angular-momentum states as population traps in multi-photon ionization,” Phys. Rev. A 47, R45–R48 (1993).
[Crossref]

P. Kruit, J. Kimman, H. G. Muller, and M. J. Van der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983).
[Crossref]

V. Linden, H. B. Heuvell, and H. G. Muller, Multiphoton Processes, (Cambridge University, 1988).

Nakajima, T.

C. P. Liu, T. Nakajima, T. Sakka, and H. Ohgaki, “Above-threshold ionization and high-order harmonic generation by mid-infrared and far-infrared laser pulses,” Phys. Rev. A 77, 043411 (2008).
[Crossref]

C. P. Liu and T. Nakajima, “Anomalous ionization efficiency by few-cycle pulses in the multiphoton ionization regime,” Phys. Rev. A 76, 023416 (2007).
[Crossref]

T. Nakajima, “Above-threshold ionization by chirped laser pulses,” Phys. Rev. A 75, 053409 (2007).
[Crossref]

Nandor, M. J.

M. J. Nandor, M. A. Walker, L. D. Van Woerkom, and H. G. Muller, “Detailed comparison of above-threshold-ionization spectra from accurate numerical integrations and high-resolution measurements,” Phys. Rev. A 60, R1771–R1774 (1999).
[Crossref]

Nicklich, W.

G. G. Paulus, W. Becker, W. Nicklich, and H. Walther, “Rescattering effects in above-threshold ionization: a classical model,” J. Phys. B 27L703–L708 (1994).
[Crossref]

G. G. Paulus, W. Nicklich, and H. Walther, “Investigation of above-threshold ionization with femtosecond pulses: connection between plateau and angular distribution of the photoelectrons,” Europhys. Lett 27, 267–272 (1994).
[Crossref]

Niu, Y. P.

Y. Xiang, Y. P. Niu, H. M. Feng, Y. H. Qi, and S. Q. Gong, “Coherent control of high-order harmonic generation by phase jump pulses,” Opt. Express 20(17),19289–19296 (2012).
[Crossref] [PubMed]

Y. Xiang, Y. P. Niu, and S. Q. Gong, “Control of the high-order harmonics cutoff through the combination of a chirped laser and static electric field,” Phys. Rev. A 79, 053419 (2009).
[Crossref]

Y. Xiang, Y. P. Niu, and S. Q. Gong, “Above-threshold ionization by few-cycle nonlinear chirped pulses,” Phys. Rev. A 80, 023423 (2009).
[Crossref]

Noordam, L. D.

M. P. de Boer, L. D. Noordam, and H. G. Muller, “High-angular-momentum states as population traps in multi-photon ionization,” Phys. Rev. A 47, R45–R48 (1993).
[Crossref]

Oh, C. H.

J. Qian, Y. Qian, M. Ke, X. L. Feng, C. H. Oh, and Y. Z. Wang, “Breakdown of the dipole blockade with a zero-area phase-jump pulse,” Phys. Rev. A 80, 053413 (2009).
[Crossref]

Ohgaki, H.

C. P. Liu, T. Nakajima, T. Sakka, and H. Ohgaki, “Above-threshold ionization and high-order harmonic generation by mid-infrared and far-infrared laser pulses,” Phys. Rev. A 77, 043411 (2008).
[Crossref]

Panfili, R.

Park, I.-Y.

S. Kim, J. Jin, Y.-J Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

Paulus, G. G.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, ”Strong-field photoionization revisited,” Nat. Phys 5, 335 (2009).
[Crossref]

D. B. Miloševic, G. G. Paulus, and W. Becker, “High-order above-threshold ionization with few-cycle pulse: a meter of the absolute phase,” Opt. Express 11, 1418–1429 (2003).
[Crossref]

G. G. Paulus, W. Becker, W. Nicklich, and H. Walther, “Rescattering effects in above-threshold ionization: a classical model,” J. Phys. B 27L703–L708 (1994).
[Crossref]

G. G. Paulus, W. Nicklich, and H. Walther, “Investigation of above-threshold ionization with femtosecond pulses: connection between plateau and angular distribution of the photoelectrons,” Europhys. Lett 27, 267–272 (1994).
[Crossref]

Peltz, C.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Pérez-Hernández, J. A.

T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, T. Siegel, A. Zaïr, and M. Lewenstein, “High-order-harmonic generation by enhanced plasmonic near-fields in metal nanoparticles,” Phys. Rev. A 87, 041402 (2013).
[Crossref]

M. F. Ciappina, J. A. Pérez-Hernández, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Above-threshold ionization by few-cycle spatially inhomogeneous fields,” Phys. Rev. A 86, 023413 (2012).
[Crossref]

Persson, E.

D. G. Arbó, E. Persson, and J. Burgdörfer, “Time double-slit interferences in strong-field tunneling ionization,” Phys. Rev. A 74, 063407 (2006).
[Crossref]

Pervak, V.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Petite, G.

E. Mevel, P. Breger, R. Trainham, G. Petite, P. Agostini, A. Migus, J. P. Chambaret, and A. Antonetti, “Atoms in strong optical fields: evolution from multiphoton to tunnel ionization,” Phys. Rev. Lett. 70, 406–409 (1993).
[Crossref] [PubMed]

F. Fabre, G. Petite, P. Agostini, and M. Clement, “Multiphoton above-threshold ionisation of xenon at 0.53 and 1.06μm,” J. Phys. B: At. Mol. Phys. 15, 1353–1369 (1982).
[Crossref]

P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42, 1127–1130 (1979).
[Crossref]

Plenge, J.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Qi, Y. H.

Qian, J.

J. Qian, Y. Qian, M. Ke, X. L. Feng, C. H. Oh, and Y. Z. Wang, “Breakdown of the dipole blockade with a zero-area phase-jump pulse,” Phys. Rev. A 80, 053413 (2009).
[Crossref]

Qian, Y.

J. Qian, Y. Qian, M. Ke, X. L. Feng, C. H. Oh, and Y. Z. Wang, “Breakdown of the dipole blockade with a zero-area phase-jump pulse,” Phys. Rev. A 80, 053413 (2009).
[Crossref]

Quan, W.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Quidant, R.

M. F. Ciappina, J. A. Pérez-Hernández, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Above-threshold ionization by few-cycle spatially inhomogeneous fields,” Phys. Rev. A 86, 023413 (2012).
[Crossref]

M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85, 033828 (2012).
[Crossref]

M. F. Ciappina, Srdjan S. Aćimović, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures,” Opt. Express 20, 26261–26274 (2012).
[Crossref] [PubMed]

Rahman, N. K.

P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42, 1127–1130 (1979).
[Crossref]

Roso, L.

T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, T. Siegel, A. Zaïr, and M. Lewenstein, “High-order-harmonic generation by enhanced plasmonic near-fields in metal nanoparticles,” Phys. Rev. A 87, 041402 (2013).
[Crossref]

Rostovtsev, Y. V.

P. K. Jha, H. Eleuch, and Y. V. Rostovtsev, “Coherent control of atomic excitation using off-resonant strong few-cycle pulses,” Phys. Rev. A 82, 045805 (2010).
[Crossref]

Rühl, E.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Sakka, T.

C. P. Liu, T. Nakajima, T. Sakka, and H. Ohgaki, “Above-threshold ionization and high-order harmonic generation by mid-infrared and far-infrared laser pulses,” Phys. Rev. A 77, 043411 (2008).
[Crossref]

Sanpera, A.

A. Sanpera, P. Jönsson, J. B. Watson, and K. Burnett, “Harmonic generation beyond the saturation intensity in helium,” Phys. Rev. A 51, 3148–3153 (1995).
[Crossref] [PubMed]

Schafer, K. J.

M. Lewenstein, K. C. Kulander, K. J. Schafer, and P. H. Bucksbaum, “Rings in above-threshold ionization: a quasiclassical analysis,” Phys. Rev. A 51, 1495–1507 (1995).
[Crossref] [PubMed]

B. R. Yang, K. J. Schafer, B. Walker, K. C. Kulander, P. Agostini, and L. F. DiMauro, “Intensity-dependent scattering rings in high order above-threshold ionization,” Phys. Rev. Lett. 71, 3770–3773 (1993).
[Crossref] [PubMed]

K. J. Schafer, B. R. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599–1602 (1993).
[Crossref] [PubMed]

J. L. Krause, K. J. Schafer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A 45, 4998–5010 (1992).
[Crossref] [PubMed]

K. J. Schafer, “The energy analysis of time-dependent numerical wave functions,” Comput. Phys. Commun 63, 427–434 (1991).
[Crossref]

K. J. Schafer and K. C. Kulander, “Energy analysis of time-dependent wave functions: application to above-threshold ionization,” Phys. Rev. A 42, 5794–5797 (1990).
[Crossref] [PubMed]

Schumacher, D.

R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. Geusic, “Above-threshold ionization with subpicosecond laser pulses,” Phys. Rev. Lett. 59, 1092–1095 (1987).
[Crossref] [PubMed]

Shaaran, T.

T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, T. Siegel, A. Zaïr, and M. Lewenstein, “High-order-harmonic generation by enhanced plasmonic near-fields in metal nanoparticles,” Phys. Rev. A 87, 041402 (2013).
[Crossref]

T. Shaaran, M. F. Ciappina, and M. Lewenstein, “Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement,” Phys. Rev. A 86, 023408 (2012).
[Crossref]

M. F. Ciappina, Srdjan S. Aćimović, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures,” Opt. Express 20, 26261–26274 (2012).
[Crossref] [PubMed]

M. F. Ciappina, J. A. Pérez-Hernández, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Above-threshold ionization by few-cycle spatially inhomogeneous fields,” Phys. Rev. A 86, 023413 (2012).
[Crossref]

Siegel, T.

T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, T. Siegel, A. Zaïr, and M. Lewenstein, “High-order-harmonic generation by enhanced plasmonic near-fields in metal nanoparticles,” Phys. Rev. A 87, 041402 (2013).
[Crossref]

Stockman, M. I.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Su, Q. C.

J. Javanainen, J. H. Eberly, and Q. C. Su, “Numerical simulations of multiphoton ionization and above-threshold electron spectra,” Phys. Rev. A 38, 3430–3446 (1988).
[Crossref] [PubMed]

Sümann, F.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Torosov, B. T.

B. T. Torosov and N. V. Vitanov, “Coherent control of a quantum transition by a phase jump,” Phys. Rev. A 76(5), 053404 (2007).
[Crossref]

Trahin, M.

Y. Gontier and M. Trahin, “Energetic electron generation by multiphoton absorption,” J. Phys. B: At. Mol. Phys. 13, 4383–4390 (1980).
[Crossref]

Trainham, R.

E. Mevel, P. Breger, R. Trainham, G. Petite, P. Agostini, A. Migus, J. P. Chambaret, and A. Antonetti, “Atoms in strong optical fields: evolution from multiphoton to tunnel ionization,” Phys. Rev. Lett. 70, 406–409 (1993).
[Crossref] [PubMed]

Trushin, S. A.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Van der Wiel, M. J.

P. Kruit, J. Kimman, H. G. Muller, and M. J. Van der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983).
[Crossref]

Van Woerkom, L. D.

M. J. Nandor, M. A. Walker, L. D. Van Woerkom, and H. G. Muller, “Detailed comparison of above-threshold-ionization spectra from accurate numerical integrations and high-resolution measurements,” Phys. Rev. A 60, R1771–R1774 (1999).
[Crossref]

Vitanov, N. V.

B. T. Torosov and N. V. Vitanov, “Coherent control of a quantum transition by a phase jump,” Phys. Rev. A 76(5), 053404 (2007).
[Crossref]

Vrakking, M. J. J.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Walker, B.

B. R. Yang, K. J. Schafer, B. Walker, K. C. Kulander, P. Agostini, and L. F. DiMauro, “Intensity-dependent scattering rings in high order above-threshold ionization,” Phys. Rev. Lett. 71, 3770–3773 (1993).
[Crossref] [PubMed]

Walker, M. A.

M. J. Nandor, M. A. Walker, L. D. Van Woerkom, and H. G. Muller, “Detailed comparison of above-threshold-ionization spectra from accurate numerical integrations and high-resolution measurements,” Phys. Rev. A 60, R1771–R1774 (1999).
[Crossref]

Walraven, J. T. M.

P. W. Cleary, T. W. Hijmans, and J. T. M. Walraven, “Manipulation of a Bose-Einstein condensate by a time-averaged orbiting potential using phase jumps of the rotating field,” Phys. Rev. A 82, 063635 (2010).
[Crossref]

Walther, H.

G. G. Paulus, W. Becker, W. Nicklich, and H. Walther, “Rescattering effects in above-threshold ionization: a classical model,” J. Phys. B 27L703–L708 (1994).
[Crossref]

G. G. Paulus, W. Nicklich, and H. Walther, “Investigation of above-threshold ionization with femtosecond pulses: connection between plateau and angular distribution of the photoelectrons,” Europhys. Lett 27, 267–272 (1994).
[Crossref]

Wang, Y. Z.

J. Qian, Y. Qian, M. Ke, X. L. Feng, C. H. Oh, and Y. Z. Wang, “Breakdown of the dipole blockade with a zero-area phase-jump pulse,” Phys. Rev. A 80, 053413 (2009).
[Crossref]

Watson, J. B.

A. Sanpera, P. Jönsson, J. B. Watson, and K. Burnett, “Harmonic generation beyond the saturation intensity in helium,” Phys. Rev. A 51, 3148–3153 (1995).
[Crossref] [PubMed]

Wirth, A.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Wu, M.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Xiang, Y.

Y. Xiang, Y. P. Niu, H. M. Feng, Y. H. Qi, and S. Q. Gong, “Coherent control of high-order harmonic generation by phase jump pulses,” Opt. Express 20(17),19289–19296 (2012).
[Crossref] [PubMed]

Y. Xiang, Y. P. Niu, and S. Q. Gong, “Control of the high-order harmonics cutoff through the combination of a chirped laser and static electric field,” Phys. Rev. A 79, 053419 (2009).
[Crossref]

Y. Xiang, Y. P. Niu, and S. Q. Gong, “Above-threshold ionization by few-cycle nonlinear chirped pulses,” Phys. Rev. A 80, 023423 (2009).
[Crossref]

Xiong, H.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Xu, H.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Xu, Z. Z.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

Yang, B. R.

K. J. Schafer, B. R. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599–1602 (1993).
[Crossref] [PubMed]

B. R. Yang, K. J. Schafer, B. Walker, K. C. Kulander, P. Agostini, and L. F. DiMauro, “Intensity-dependent scattering rings in high order above-threshold ionization,” Phys. Rev. Lett. 71, 3770–3773 (1993).
[Crossref] [PubMed]

Zaïr, A.

T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, T. Siegel, A. Zaïr, and M. Lewenstein, “High-order-harmonic generation by enhanced plasmonic near-fields in metal nanoparticles,” Phys. Rev. A 87, 041402 (2013).
[Crossref]

Zherebtsov, S.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Znakovskaya, I.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Comput. Phys. Commun (1)

K. J. Schafer, “The energy analysis of time-dependent numerical wave functions,” Comput. Phys. Commun 63, 427–434 (1991).
[Crossref]

Europhys. Lett (1)

G. G. Paulus, W. Nicklich, and H. Walther, “Investigation of above-threshold ionization with femtosecond pulses: connection between plateau and angular distribution of the photoelectrons,” Europhys. Lett 27, 267–272 (1994).
[Crossref]

J. Phys. B (1)

G. G. Paulus, W. Becker, W. Nicklich, and H. Walther, “Rescattering effects in above-threshold ionization: a classical model,” J. Phys. B 27L703–L708 (1994).
[Crossref]

J. Phys. B: At. Mol. Phys. (2)

F. Fabre, G. Petite, P. Agostini, and M. Clement, “Multiphoton above-threshold ionisation of xenon at 0.53 and 1.06μm,” J. Phys. B: At. Mol. Phys. 15, 1353–1369 (1982).
[Crossref]

Y. Gontier and M. Trahin, “Energetic electron generation by multiphoton absorption,” J. Phys. B: At. Mol. Phys. 13, 4383–4390 (1980).
[Crossref]

Nat. Phys (2)

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, ”Strong-field photoionization revisited,” Nat. Phys 5, 335 (2009).
[Crossref]

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Sümann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, Stefan Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys 7, 656 (2011).
[Crossref]

Nature (London) (1)

S. Kim, J. Jin, Y.-J Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

Opt. Express (5)

Phys. Rev. A (23)

M. Lewenstein, K. C. Kulander, K. J. Schafer, and P. H. Bucksbaum, “Rings in above-threshold ionization: a quasiclassical analysis,” Phys. Rev. A 51, 1495–1507 (1995).
[Crossref] [PubMed]

J. Javanainen, J. H. Eberly, and Q. C. Su, “Numerical simulations of multiphoton ionization and above-threshold electron spectra,” Phys. Rev. A 38, 3430–3446 (1988).
[Crossref] [PubMed]

M. J. Nandor, M. A. Walker, L. D. Van Woerkom, and H. G. Muller, “Detailed comparison of above-threshold-ionization spectra from accurate numerical integrations and high-resolution measurements,” Phys. Rev. A 60, R1771–R1774 (1999).
[Crossref]

T. Nakajima, “Above-threshold ionization by chirped laser pulses,” Phys. Rev. A 75, 053409 (2007).
[Crossref]

Y. Xiang, Y. P. Niu, and S. Q. Gong, “Above-threshold ionization by few-cycle nonlinear chirped pulses,” Phys. Rev. A 80, 023423 (2009).
[Crossref]

P. Kruit, J. Kimman, H. G. Muller, and M. J. Van der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983).
[Crossref]

M. P. de Boer, L. D. Noordam, and H. G. Muller, “High-angular-momentum states as population traps in multi-photon ionization,” Phys. Rev. A 47, R45–R48 (1993).
[Crossref]

A. Sanpera, P. Jönsson, J. B. Watson, and K. Burnett, “Harmonic generation beyond the saturation intensity in helium,” Phys. Rev. A 51, 3148–3153 (1995).
[Crossref] [PubMed]

C. P. Liu and K. Z. Hatsagortsyan, “Coulomb focusing in above-threshold ionization in elliptically polarized midinfrared strong laser fields,” Phys. Rev. A 85, 023413 (2012).
[Crossref]

B. T. Torosov and N. V. Vitanov, “Coherent control of a quantum transition by a phase jump,” Phys. Rev. A 76(5), 053404 (2007).
[Crossref]

J. Qian, Y. Qian, M. Ke, X. L. Feng, C. H. Oh, and Y. Z. Wang, “Breakdown of the dipole blockade with a zero-area phase-jump pulse,” Phys. Rev. A 80, 053413 (2009).
[Crossref]

P. K. Jha, H. Eleuch, and Y. V. Rostovtsev, “Coherent control of atomic excitation using off-resonant strong few-cycle pulses,” Phys. Rev. A 82, 045805 (2010).
[Crossref]

P. W. Cleary, T. W. Hijmans, and J. T. M. Walraven, “Manipulation of a Bose-Einstein condensate by a time-averaged orbiting potential using phase jumps of the rotating field,” Phys. Rev. A 82, 063635 (2010).
[Crossref]

M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85, 033828 (2012).
[Crossref]

M. F. Ciappina, J. A. Pérez-Hernández, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, “Above-threshold ionization by few-cycle spatially inhomogeneous fields,” Phys. Rev. A 86, 023413 (2012).
[Crossref]

T. Shaaran, M. F. Ciappina, and M. Lewenstein, “Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement,” Phys. Rev. A 86, 023408 (2012).
[Crossref]

T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, T. Siegel, A. Zaïr, and M. Lewenstein, “High-order-harmonic generation by enhanced plasmonic near-fields in metal nanoparticles,” Phys. Rev. A 87, 041402 (2013).
[Crossref]

K. J. Schafer and K. C. Kulander, “Energy analysis of time-dependent wave functions: application to above-threshold ionization,” Phys. Rev. A 42, 5794–5797 (1990).
[Crossref] [PubMed]

C. P. Liu, T. Nakajima, T. Sakka, and H. Ohgaki, “Above-threshold ionization and high-order harmonic generation by mid-infrared and far-infrared laser pulses,” Phys. Rev. A 77, 043411 (2008).
[Crossref]

Y. Xiang, Y. P. Niu, and S. Q. Gong, “Control of the high-order harmonics cutoff through the combination of a chirped laser and static electric field,” Phys. Rev. A 79, 053419 (2009).
[Crossref]

D. G. Arbó, E. Persson, and J. Burgdörfer, “Time double-slit interferences in strong-field tunneling ionization,” Phys. Rev. A 74, 063407 (2006).
[Crossref]

C. P. Liu and T. Nakajima, “Anomalous ionization efficiency by few-cycle pulses in the multiphoton ionization regime,” Phys. Rev. A 76, 023416 (2007).
[Crossref]

J. L. Krause, K. J. Schafer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A 45, 4998–5010 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (10)

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical sspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref]

C. P. Liu and K. Z. Hatsagortsyan, “Origin of unexpected low energy structure in photoelectron spectra induced by midinfrared strong laser fields,” Phys. Rev. Lett. 105, 113003 (2010).
[Crossref] [PubMed]

T. F. Gallagher, “Above-threshold ionization in low-frequency limit,” Phys. Rev. Lett. 61, 2304–2307 (1988).
[Crossref] [PubMed]

K. J. Schafer, B. R. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599–1602 (1993).
[Crossref] [PubMed]

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref] [PubMed]

P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42, 1127–1130 (1979).
[Crossref]

E. Mevel, P. Breger, R. Trainham, G. Petite, P. Agostini, A. Migus, J. P. Chambaret, and A. Antonetti, “Atoms in strong optical fields: evolution from multiphoton to tunnel ionization,” Phys. Rev. Lett. 70, 406–409 (1993).
[Crossref] [PubMed]

P. H. Bucksbaum, M. Bashkansky, R. R. Freeman, T. J. McIlrath, and L. F. DiMauro, “Suppression of multiphoton ionization with circularly polarized coherent light,” Phys. Rev. Lett. 56, 2590–2593 (1986).
[Crossref] [PubMed]

R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. Geusic, “Above-threshold ionization with subpicosecond laser pulses,” Phys. Rev. Lett. 59, 1092–1095 (1987).
[Crossref] [PubMed]

B. R. Yang, K. J. Schafer, B. Walker, K. C. Kulander, P. Agostini, and L. F. DiMauro, “Intensity-dependent scattering rings in high order above-threshold ionization,” Phys. Rev. Lett. 71, 3770–3773 (1993).
[Crossref] [PubMed]

Other (2)

V. Linden, H. B. Heuvell, and H. G. Muller, Multiphoton Processes, (Cambridge University, 1988).

M. Gavrila, Atoms in Intense Laser Fields (Academic, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 ATI spectra driven by laser pulses with different jump times. The laser pulse parameters are λ = 800nm, I = 5 × 1013W/cm2, τ = 5fs.
Fig. 2
Fig. 2 The classical results for the kinetic energy of photoelectron. The laser parameters are the same as in Fig. 1. The blue solid line is the laser field, the red triangles presents RE-ITDKE (the rescattered electron’s ionization-time-dependent kinetic energy), the purple stars, RE-BTDKE (the rescattered electron’s backscattering-time-dependent kinetic energy), the green circles, DE-ITDKE (the direct electron’s ionization-time-dependent kinetic energy).
Fig. 3
Fig. 3 The frequency spectra of the laser fields with different phase jump time. The black solid line corresponds to the case without phase jump, and the red dashed line, t0 = ±0.75T, the green dotted line, t0 = ±0.50T, the blue dash-dotted line, t0 = 0.25T.

Tables (2)

Tables Icon

Table 1 The cutoff electrons’ velocity at backscattering time, the impulse obtained from the backscattering time to the laser pulse’s termination and their final velocity at the terminal time.

Tables Icon

Table 2 Ionization probabilities calculated for t0 = −0.75T and t0 = −0.25T with the same laser intensity of I = 5×1013 W/cm2. Pcoul and Psr are the ionization probability calculated for the Coulomb and short-range potential we used.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i ψ ( r , t ) t = [ 1 2 2 + V ( r ) r E ( t ) ] ψ ( r , t ) ,
E ( t ) = { F f ( t ) cos ( ω t + φ ) if t < t 0 , F f ( t ) cos ( ω t + φ + ϕ ) if t t 0 ,
E d = [ A ( t b ) A ( t f ) ] 2 ,
E r = [ A ( t b ) + A ( t f ) 2 A ( t r ) ] 2 2 .

Metrics