Abstract

Knowledge of elementary relaxation processes in small molecules and proteins motivates the extension of two-dimensional photon echo (2DPE) spectroscopy further into the UV wavelength range. Here, we describe our development of a four-wave mixing spectrometer employing 200 nm laser pulses. Filamentation of laser beams in both air and argon yields 200 nm pulses with 60 fs durations. These 200 nm pulses are used to probe dynamics initiated at 267 nm in transient grating and 2DPE experiments conducted on adenosine. This study demonstrates that these femtosecond spectroscopies may indeed be carried out at the shortest wavelengths feasible in aqueous solutions.

© 2013 OSA

Connection Failure

References

  • View by:
  • |
  • |
  • |

  1. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
    [CrossRef] [PubMed]
  2. J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: An ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol. Opt. Phys.57, 249–321 (2009).
    [CrossRef]
  3. P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011).
  4. G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
    [CrossRef] [PubMed]
  5. M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem.60(1), 21–38 (2009).
    [CrossRef] [PubMed]
  6. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature463(7281), 644–647 (2010).
    [CrossRef] [PubMed]
  7. R. A. Nicodemus, K. Ramasesha, S. T. Roberts, and A. Tokmakoff, “Hydrogen bond rearrangements in water probed with temperature-dependent 2D IR,” J. Phys. Chem. Lett.1(7), 1068–1072 (2010).
    [CrossRef]
  8. J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: a 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
    [CrossRef] [PubMed]
  9. G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. U.S.A.107(29), 12766–12770 (2010).
    [CrossRef] [PubMed]
  10. G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.108(40), 16521–16526 (2011).
    [CrossRef] [PubMed]
  11. D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc.132(22), 7769–7775 (2010).
    [CrossRef] [PubMed]
  12. A. Cannizzo, “Ultrafast UV spectroscopy: from a local to a global view of dynamical processes in macromolecules,” Phys. Chem. Chem. Phys.14(32), 11205–11223 (2012).
    [CrossRef] [PubMed]
  13. C.-H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express17(21), 18788–18793 (2009).
    [CrossRef] [PubMed]
  14. U. Selig, C.-F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett.35(24), 4178–4180 (2010).
    [CrossRef] [PubMed]
  15. B. A. West, J. M. Womick, and A. M. Moran, “Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies,” J. Phys. Chem. A115(31), 8630–8637 (2011).
    [CrossRef] [PubMed]
  16. B. A. West and A. M. Moran, “Two-dimensional electronic spectroscopy in the ultraviolet wavelength range,” J. Phys. Chem. Lett.3(18), 2575–2581 (2012).
    [CrossRef]
  17. C.-H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
    [CrossRef] [PubMed]
  18. G. Auböck, C. Consani, F. van Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett.37(12), 2337–2339 (2012).
    [CrossRef] [PubMed]
  19. G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B15(6), 1791–1794 (1998).
    [CrossRef]
  20. C. G. Durfee, L. Misoguti, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Phase matching in cascaded third-order processes,” J. Opt. Soc. Am. B19(4), 822–831 (2002).
    [CrossRef]
  21. A. E. Jailaubekov and S. E. Bradforth, “Tunable 30-femtosecond pulses across the deep ultraviolet,” Appl. Phys. Lett.87(2), 021107 (2005).
    [CrossRef]
  22. T. Fuji, T. Horio, and T. Suzuki, “Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas,” Opt. Lett.32(17), 2481–2483 (2007).
    [CrossRef] [PubMed]
  23. T. Fuji, T. Suzuki, E. E. Serebryannikov, and A. Zheltikov, “Experimental and theoretical investigation of a multicolor filament,” Phys. Rev. A80(6), 063822 (2009).
    [CrossRef]
  24. A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, NM, http://www.as-photonics.com/snlo .
  25. N. Aközbek, A. Becker, and S. L. Chin, “Propagation and filamentation of femtosecond laser pulses in optical media,” Laser Phys.15, 607–615 (2005).
  26. R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett.12(7), 483–485 (1987).
    [CrossRef] [PubMed]
  27. M. J. Tauber, R. A. Mathies, X. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum.74(11), 4958–4960 (2003).
    [CrossRef]
  28. J.-M. L. Pecourt, J. Peon, and B. Kohler, “DNA excited-state dynamics: Ultrafast internal conversion and vibrational cooling in a series of nucleosides,” J. Am. Chem. Soc.123(42), 10370–10378 (2001).
    [CrossRef] [PubMed]
  29. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).
  30. S. A. Kovalenko, R. Schanz, H. Hennig, and N. P. Ernsting, “Cooling dynamics of an optically excited molecular probe in solution from femtosecond broadband transient absorption spectroscopy,” J. Chem. Phys.115(7), 3256–3273 (2001).
    [CrossRef]

2012 (4)

A. Cannizzo, “Ultrafast UV spectroscopy: from a local to a global view of dynamical processes in macromolecules,” Phys. Chem. Chem. Phys.14(32), 11205–11223 (2012).
[CrossRef] [PubMed]

B. A. West and A. M. Moran, “Two-dimensional electronic spectroscopy in the ultraviolet wavelength range,” J. Phys. Chem. Lett.3(18), 2575–2581 (2012).
[CrossRef]

C.-H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
[CrossRef] [PubMed]

G. Auböck, C. Consani, F. van Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett.37(12), 2337–2339 (2012).
[CrossRef] [PubMed]

2011 (2)

B. A. West, J. M. Womick, and A. M. Moran, “Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies,” J. Phys. Chem. A115(31), 8630–8637 (2011).
[CrossRef] [PubMed]

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.108(40), 16521–16526 (2011).
[CrossRef] [PubMed]

2010 (6)

D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc.132(22), 7769–7775 (2010).
[CrossRef] [PubMed]

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature463(7281), 644–647 (2010).
[CrossRef] [PubMed]

R. A. Nicodemus, K. Ramasesha, S. T. Roberts, and A. Tokmakoff, “Hydrogen bond rearrangements in water probed with temperature-dependent 2D IR,” J. Phys. Chem. Lett.1(7), 1068–1072 (2010).
[CrossRef]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: a 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. U.S.A.107(29), 12766–12770 (2010).
[CrossRef] [PubMed]

U. Selig, C.-F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett.35(24), 4178–4180 (2010).
[CrossRef] [PubMed]

2009 (4)

C.-H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express17(21), 18788–18793 (2009).
[CrossRef] [PubMed]

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: An ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol. Opt. Phys.57, 249–321 (2009).
[CrossRef]

M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem.60(1), 21–38 (2009).
[CrossRef] [PubMed]

T. Fuji, T. Suzuki, E. E. Serebryannikov, and A. Zheltikov, “Experimental and theoretical investigation of a multicolor filament,” Phys. Rev. A80(6), 063822 (2009).
[CrossRef]

2007 (2)

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

T. Fuji, T. Horio, and T. Suzuki, “Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas,” Opt. Lett.32(17), 2481–2483 (2007).
[CrossRef] [PubMed]

2005 (2)

A. E. Jailaubekov and S. E. Bradforth, “Tunable 30-femtosecond pulses across the deep ultraviolet,” Appl. Phys. Lett.87(2), 021107 (2005).
[CrossRef]

N. Aközbek, A. Becker, and S. L. Chin, “Propagation and filamentation of femtosecond laser pulses in optical media,” Laser Phys.15, 607–615 (2005).

2003 (2)

M. J. Tauber, R. A. Mathies, X. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum.74(11), 4958–4960 (2003).
[CrossRef]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

J.-M. L. Pecourt, J. Peon, and B. Kohler, “DNA excited-state dynamics: Ultrafast internal conversion and vibrational cooling in a series of nucleosides,” J. Am. Chem. Soc.123(42), 10370–10378 (2001).
[CrossRef] [PubMed]

S. A. Kovalenko, R. Schanz, H. Hennig, and N. P. Ernsting, “Cooling dynamics of an optically excited molecular probe in solution from femtosecond broadband transient absorption spectroscopy,” J. Chem. Phys.115(7), 3256–3273 (2001).
[CrossRef]

1998 (1)

1987 (1)

Abramavicius, D.

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: a 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc.132(22), 7769–7775 (2010).
[CrossRef] [PubMed]

Ahn, T. K.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

Aközbek, N.

N. Aközbek, A. Becker, and S. L. Chin, “Propagation and filamentation of femtosecond laser pulses in optical media,” Laser Phys.15, 607–615 (2005).

Aspuru-Guzik, A.

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.108(40), 16521–16526 (2011).
[CrossRef] [PubMed]

Auböck, G.

Backus, S.

Becker, A.

N. Aközbek, A. Becker, and S. L. Chin, “Propagation and filamentation of femtosecond laser pulses in optical media,” Laser Phys.15, 607–615 (2005).

Becker, P. C.

Blankenship, R. E.

G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. U.S.A.107(29), 12766–12770 (2010).
[CrossRef] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

Bradforth, S. E.

A. E. Jailaubekov and S. E. Bradforth, “Tunable 30-femtosecond pulses across the deep ultraviolet,” Appl. Phys. Lett.87(2), 021107 (2005).
[CrossRef]

M. J. Tauber, R. A. Mathies, X. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum.74(11), 4958–4960 (2003).
[CrossRef]

Brixner, T.

Brumer, P.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature463(7281), 644–647 (2010).
[CrossRef] [PubMed]

Bulheller, B. M.

D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc.132(22), 7769–7775 (2010).
[CrossRef] [PubMed]

Calhoun, T. R.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

Cannizzo, A.

A. Cannizzo, “Ultrafast UV spectroscopy: from a local to a global view of dynamical processes in macromolecules,” Phys. Chem. Chem. Phys.14(32), 11205–11223 (2012).
[CrossRef] [PubMed]

Caram, J. R.

G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. U.S.A.107(29), 12766–12770 (2010).
[CrossRef] [PubMed]

Chen, X.

M. J. Tauber, R. A. Mathies, X. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum.74(11), 4958–4960 (2003).
[CrossRef]

Cheng, Y. C.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

Chergui, M.

Chin, S. L.

N. Aközbek, A. Becker, and S. L. Chin, “Propagation and filamentation of femtosecond laser pulses in optical media,” Laser Phys.15, 607–615 (2005).

Collini, E.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature463(7281), 644–647 (2010).
[CrossRef] [PubMed]

Consani, C.

Cruz, C. H. B.

Curmi, P. M. G.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature463(7281), 644–647 (2010).
[CrossRef] [PubMed]

Dadusc, G.

Durfee, C. G.

Engel, G. S.

G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. U.S.A.107(29), 12766–12770 (2010).
[CrossRef] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

Ernsting, N. P.

S. A. Kovalenko, R. Schanz, H. Hennig, and N. P. Ernsting, “Cooling dynamics of an optically excited molecular probe in solution from femtosecond broadband transient absorption spectroscopy,” J. Chem. Phys.115(7), 3256–3273 (2001).
[CrossRef]

Fayer, M. D.

M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem.60(1), 21–38 (2009).
[CrossRef] [PubMed]

Fleming, G. R.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

Foerster, M.

Fork, R. L.

Fransted, K. A.

G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. U.S.A.107(29), 12766–12770 (2010).
[CrossRef] [PubMed]

Fuji, T.

T. Fuji, T. Suzuki, E. E. Serebryannikov, and A. Zheltikov, “Experimental and theoretical investigation of a multicolor filament,” Phys. Rev. A80(6), 063822 (2009).
[CrossRef]

T. Fuji, T. Horio, and T. Suzuki, “Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas,” Opt. Lett.32(17), 2481–2483 (2007).
[CrossRef] [PubMed]

Goodno, G. D.

Harel, E.

G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. U.S.A.107(29), 12766–12770 (2010).
[CrossRef] [PubMed]

Hauer, J.

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: a 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

Hayes, D.

G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. U.S.A.107(29), 12766–12770 (2010).
[CrossRef] [PubMed]

Hennig, H.

S. A. Kovalenko, R. Schanz, H. Hennig, and N. P. Ernsting, “Cooling dynamics of an optically excited molecular probe in solution from femtosecond broadband transient absorption spectroscopy,” J. Chem. Phys.115(7), 3256–3273 (2001).
[CrossRef]

Hirst, J. D.

D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc.132(22), 7769–7775 (2010).
[CrossRef] [PubMed]

Horio, T.

Jailaubekov, A. E.

A. E. Jailaubekov and S. E. Bradforth, “Tunable 30-femtosecond pulses across the deep ultraviolet,” Appl. Phys. Lett.87(2), 021107 (2005).
[CrossRef]

Jiang, J.

D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc.132(22), 7769–7775 (2010).
[CrossRef] [PubMed]

Jonas, D. M.

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
[CrossRef] [PubMed]

Kapteyn, H. C.

Kauffmann, H. F.

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: a 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

Kohler, B.

J.-M. L. Pecourt, J. Peon, and B. Kohler, “DNA excited-state dynamics: Ultrafast internal conversion and vibrational cooling in a series of nucleosides,” J. Am. Chem. Soc.123(42), 10370–10378 (2001).
[CrossRef] [PubMed]

Kotur, M.

C.-H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
[CrossRef] [PubMed]

Kovalenko, S. A.

S. A. Kovalenko, R. Schanz, H. Hennig, and N. P. Ernsting, “Cooling dynamics of an optically excited molecular probe in solution from femtosecond broadband transient absorption spectroscopy,” J. Chem. Phys.115(7), 3256–3273 (2001).
[CrossRef]

Kubarych, K. J.

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: An ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol. Opt. Phys.57, 249–321 (2009).
[CrossRef]

Langhojer, F.

Lott, G. A.

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.108(40), 16521–16526 (2011).
[CrossRef] [PubMed]

Mancal, T.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

Marcus, A. H.

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.108(40), 16521–16526 (2011).
[CrossRef] [PubMed]

Mathies, R. A.

M. J. Tauber, R. A. Mathies, X. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum.74(11), 4958–4960 (2003).
[CrossRef]

Matsika, S.

C.-H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
[CrossRef] [PubMed]

C.-H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express17(21), 18788–18793 (2009).
[CrossRef] [PubMed]

Miller, R. J. D.

Milota, F.

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: a 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

Misoguti, L.

Moran, A. M.

B. A. West and A. M. Moran, “Two-dimensional electronic spectroscopy in the ultraviolet wavelength range,” J. Phys. Chem. Lett.3(18), 2575–2581 (2012).
[CrossRef]

B. A. West, J. M. Womick, and A. M. Moran, “Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies,” J. Phys. Chem. A115(31), 8630–8637 (2011).
[CrossRef] [PubMed]

Mukamel, S.

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: a 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc.132(22), 7769–7775 (2010).
[CrossRef] [PubMed]

Murnane, M. M.

Nemeth, A.

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: a 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

Nicodemus, R. A.

R. A. Nicodemus, K. Ramasesha, S. T. Roberts, and A. Tokmakoff, “Hydrogen bond rearrangements in water probed with temperature-dependent 2D IR,” J. Phys. Chem. Lett.1(7), 1068–1072 (2010).
[CrossRef]

Nuernberger, P.

Ogilvie, J. P.

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: An ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol. Opt. Phys.57, 249–321 (2009).
[CrossRef]

Panitchayangkoon, G.

G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. U.S.A.107(29), 12766–12770 (2010).
[CrossRef] [PubMed]

Pecourt, J.-M. L.

J.-M. L. Pecourt, J. Peon, and B. Kohler, “DNA excited-state dynamics: Ultrafast internal conversion and vibrational cooling in a series of nucleosides,” J. Am. Chem. Soc.123(42), 10370–10378 (2001).
[CrossRef] [PubMed]

Peon, J.

J.-M. L. Pecourt, J. Peon, and B. Kohler, “DNA excited-state dynamics: Ultrafast internal conversion and vibrational cooling in a series of nucleosides,” J. Am. Chem. Soc.123(42), 10370–10378 (2001).
[CrossRef] [PubMed]

Perdomo-Ortiz, A.

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.108(40), 16521–16526 (2011).
[CrossRef] [PubMed]

Ramasesha, K.

R. A. Nicodemus, K. Ramasesha, S. T. Roberts, and A. Tokmakoff, “Hydrogen bond rearrangements in water probed with temperature-dependent 2D IR,” J. Phys. Chem. Lett.1(7), 1068–1072 (2010).
[CrossRef]

Read, E. L.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

Roberts, S. T.

R. A. Nicodemus, K. Ramasesha, S. T. Roberts, and A. Tokmakoff, “Hydrogen bond rearrangements in water probed with temperature-dependent 2D IR,” J. Phys. Chem. Lett.1(7), 1068–1072 (2010).
[CrossRef]

Sándor, P.

C.-H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
[CrossRef] [PubMed]

Schanz, R.

S. A. Kovalenko, R. Schanz, H. Hennig, and N. P. Ernsting, “Cooling dynamics of an optically excited molecular probe in solution from femtosecond broadband transient absorption spectroscopy,” J. Chem. Phys.115(7), 3256–3273 (2001).
[CrossRef]

Schleussner, C.-F.

Scholes, G. D.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature463(7281), 644–647 (2010).
[CrossRef] [PubMed]

Selig, U.

Serebryannikov, E. E.

T. Fuji, T. Suzuki, E. E. Serebryannikov, and A. Zheltikov, “Experimental and theoretical investigation of a multicolor filament,” Phys. Rev. A80(6), 063822 (2009).
[CrossRef]

Shank, C. V.

Sperling, J.

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: a 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

Suzuki, T.

T. Fuji, T. Suzuki, E. E. Serebryannikov, and A. Zheltikov, “Experimental and theoretical investigation of a multicolor filament,” Phys. Rev. A80(6), 063822 (2009).
[CrossRef]

T. Fuji, T. Horio, and T. Suzuki, “Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas,” Opt. Lett.32(17), 2481–2483 (2007).
[CrossRef] [PubMed]

Tauber, M. J.

M. J. Tauber, R. A. Mathies, X. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum.74(11), 4958–4960 (2003).
[CrossRef]

Tokmakoff, A.

R. A. Nicodemus, K. Ramasesha, S. T. Roberts, and A. Tokmakoff, “Hydrogen bond rearrangements in water probed with temperature-dependent 2D IR,” J. Phys. Chem. Lett.1(7), 1068–1072 (2010).
[CrossRef]

Tseng, C.-H.

C.-H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
[CrossRef] [PubMed]

C.-H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express17(21), 18788–18793 (2009).
[CrossRef] [PubMed]

Utterback, J. K.

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.108(40), 16521–16526 (2011).
[CrossRef] [PubMed]

van Mourik, F.

Weinacht, T. C.

C.-H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
[CrossRef] [PubMed]

C.-H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express17(21), 18788–18793 (2009).
[CrossRef] [PubMed]

Wen, J.

G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. U.S.A.107(29), 12766–12770 (2010).
[CrossRef] [PubMed]

West, B. A.

B. A. West and A. M. Moran, “Two-dimensional electronic spectroscopy in the ultraviolet wavelength range,” J. Phys. Chem. Lett.3(18), 2575–2581 (2012).
[CrossRef]

B. A. West, J. M. Womick, and A. M. Moran, “Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies,” J. Phys. Chem. A115(31), 8630–8637 (2011).
[CrossRef] [PubMed]

Widom, J. R.

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.108(40), 16521–16526 (2011).
[CrossRef] [PubMed]

Wilk, K. E.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature463(7281), 644–647 (2010).
[CrossRef] [PubMed]

Womick, J. M.

B. A. West, J. M. Womick, and A. M. Moran, “Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies,” J. Phys. Chem. A115(31), 8630–8637 (2011).
[CrossRef] [PubMed]

Wong, C. Y.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature463(7281), 644–647 (2010).
[CrossRef] [PubMed]

Zheltikov, A.

T. Fuji, T. Suzuki, E. E. Serebryannikov, and A. Zheltikov, “Experimental and theoretical investigation of a multicolor filament,” Phys. Rev. A80(6), 063822 (2009).
[CrossRef]

Adv. At. Mol. Opt. Phys. (1)

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: An ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol. Opt. Phys.57, 249–321 (2009).
[CrossRef]

Annu. Rev. Phys. Chem. (2)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
[CrossRef] [PubMed]

M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem.60(1), 21–38 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. E. Jailaubekov and S. E. Bradforth, “Tunable 30-femtosecond pulses across the deep ultraviolet,” Appl. Phys. Lett.87(2), 021107 (2005).
[CrossRef]

J. Am. Chem. Soc. (2)

J.-M. L. Pecourt, J. Peon, and B. Kohler, “DNA excited-state dynamics: Ultrafast internal conversion and vibrational cooling in a series of nucleosides,” J. Am. Chem. Soc.123(42), 10370–10378 (2001).
[CrossRef] [PubMed]

D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc.132(22), 7769–7775 (2010).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

S. A. Kovalenko, R. Schanz, H. Hennig, and N. P. Ernsting, “Cooling dynamics of an optically excited molecular probe in solution from femtosecond broadband transient absorption spectroscopy,” J. Chem. Phys.115(7), 3256–3273 (2001).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (3)

B. A. West, J. M. Womick, and A. M. Moran, “Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies,” J. Phys. Chem. A115(31), 8630–8637 (2011).
[CrossRef] [PubMed]

C.-H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
[CrossRef] [PubMed]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: a 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

J. Phys. Chem. Lett. (2)

B. A. West and A. M. Moran, “Two-dimensional electronic spectroscopy in the ultraviolet wavelength range,” J. Phys. Chem. Lett.3(18), 2575–2581 (2012).
[CrossRef]

R. A. Nicodemus, K. Ramasesha, S. T. Roberts, and A. Tokmakoff, “Hydrogen bond rearrangements in water probed with temperature-dependent 2D IR,” J. Phys. Chem. Lett.1(7), 1068–1072 (2010).
[CrossRef]

Laser Phys. (1)

N. Aközbek, A. Becker, and S. L. Chin, “Propagation and filamentation of femtosecond laser pulses in optical media,” Laser Phys.15, 607–615 (2005).

Nature (2)

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature463(7281), 644–647 (2010).
[CrossRef] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Chem. Chem. Phys. (1)

A. Cannizzo, “Ultrafast UV spectroscopy: from a local to a global view of dynamical processes in macromolecules,” Phys. Chem. Chem. Phys.14(32), 11205–11223 (2012).
[CrossRef] [PubMed]

Phys. Rev. A (1)

T. Fuji, T. Suzuki, E. E. Serebryannikov, and A. Zheltikov, “Experimental and theoretical investigation of a multicolor filament,” Phys. Rev. A80(6), 063822 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. U.S.A.107(29), 12766–12770 (2010).
[CrossRef] [PubMed]

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.108(40), 16521–16526 (2011).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. J. Tauber, R. A. Mathies, X. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum.74(11), 4958–4960 (2003).
[CrossRef]

Other (3)

A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, NM, http://www.as-photonics.com/snlo .

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).

P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Setup used for 200 nm pulse generation and compression. (b) Diffractive optic-based interferometer used for TG and 2DPE measurements. The 200 nm laser pulse probes the holographic grating induced in the sample by the pair of 20 fs, 267 nm pulses.

Fig. 2
Fig. 2

(a) Spectra of 200 nm light generated in air and (b) argon at the pressures indicated in the figure legends. (c) Pulse energies measured at 200 nm in air and argon. (d) Spatial profile of 200 nm laser beam derived by processing a photograph with the image utility in Matlab. (e) Photographs of filaments generated with individual 800 nm and 400 nm laser beams are shown below the filament obtained when both beams are overlapped. These filaments were produced in air at atmospheric pressure.

Fig. 3
Fig. 3

(Top Row) TG spectrograms acquired with 20 fs, 267 nm gate pulses in a 250 μm thick fused silica window. Fused silica prisms are separated by (a) 10 cm and (b) 6.3 cm. (c) Calcium fluoride prisms are separated by 10 cm. These 200 nm pulses are generated in air at atmospheric pressure. (Bottom Row) TG spectrograms acquired with 20 fs, 267 nm gate pulses in a 50 μm thick BBO crystal. (d) Measurements conducted with 200 nm pulses generated in (d) air and (e) argon. (f) Pulse durations at 200 nm derived from wavelength-integrated TG signals obtained with a 50 μm thick BBO crystal.

Fig. 4
Fig. 4

Experiments conducted on adenosine in aqueous solution at pH = 7. (a) Spectra of laser pulses overlaid on absorbance spectrum of adenosine. (b) Real (absorptive) parts of TG signals acquired with 267 nm pump pulses and either 267 nm (red) or 200 nm (blue) probe pulses. (c) Signal detected at 200 nm plotted with respect to the coherence time, τ . Absolute value of rephasing 2DPE signals acquired at (d) T = 250 fs, (e) T = 500 fs, and (f) T = 1000 fs.

Metrics