Abstract

The multielectron dynamics in nonsequential triple ionization (NSTI) of neon atoms driven by mid-infrared (MIR) laser pulses is investigated with the three-dimensional classical ensemble model. In consistent with the experimental result, our numerical result shows that in the MIR regime, the triply charged ion longitudinal momentum spectrum exhibits a pronounced double-hump structure at low laser intensity. Back analysis reveals that as the intensity increases, the responsible triple ionization channels transform from direct (e, 3e) channel to the various mixed channels. This transformation of the NSTI channels leads to the results that the shape of ion momentum spectra becomes narrow and the distinct maxima shift towards low momenta with the increase of the laser intensity. By tracing the triply ionized trajectories, the various ionization channels at different laser intensities are clearly identified and these results provide an insight into the complex dynamics of the correlated three electrons in NSTI.

© 2013 Optical Society of America

1. Introduction

Detailed understanding of the correlated multielectron dynamics driven by the strong laser field is essential to extend our knowledge on laser-matter interaction and the concepts of attosecond physics to many-body microscopic systems [1]. Due to the strongly correlated electron-electron behavior, nonsequential double or multiple ionization (NSDI, NSMI) of atoms by the intense laser pulse have attracted continuously increasing attention [216] since the observation of the dramatically enhanced double ionization (DI) yields [17]. The experiments on the ellipticity dependence of the DI yield [18, 19], especially the differential measurements of recoil ion and emitted electron momenta [1, 8, 20], provide strong evidences that the recollision mechanism is dominantly responsible for the NSDI and NSMI process [21]. According to this recollision scenario, an electron is ionized by the laser field, and then is driven back by the oscillating field and interacts with its parent ion, leading to the release of one or more electrons. Further analyses of the recoil ion momentum distributions [20,22], the photoelectron energy distributions [23,24] and the correlated electron spectra [1, 5, 8, 25] provide more detailed information about the ionization process.

For nonsequential triple ionization (NSTI), though intensity-dependent ion yields [26,27] as well as ion momentum distributions [2830] have been measured, the understanding of strong-field NSTI mechanisms remains restricted. For instance, a recent experiment [30] has measured the momentum distributions of Ne3+ by the 795-nm pulses at the intensity range from 1015 to 2 × 1016W/cm2. The various triple ionization (TI) channels at different laser intensities have been identified by tracing the intensity-dependent evolution of the recoil-ion momentum spectra. The authors speculated that the (0–3) and (0-1-3) processes are responsible for spectrum with the maxima at ±4Up and ±2Up, respectively. While, at the transitional intensities such as I = 3PW/cm2 and I = 6PW/cm2 [see Figs. 1(e) and 1(h) in [30]], the responsible processes for TI remains obscure. Theoretically, an accurate description of NSDI or NSMI needs full quantum theory. However, because of the enormous computational demand, full-dimensional solution of the time dependent schrödinger equation has only been performed on NSDI of helium by 400 nm laser pulses [31], and in the long-wavelength regime, it seems impossible to extend this quantum-mechanical calculation to NSTI that involves three correlated electrons in the foreseeable future. Thus, the efforts aimed to provide a detailed picture of NSTI have been recently concentrated on the development of classical approaches [15,3237]. However, due to the variety of the possible pathways, including different combinations of sequential (S) and nonsequential (NS) ionization steps [30, 33, 35, 38] as well as the possibility of recollision excitations in certain intensity regime, up to now, the understanding of strong-field TI mechanisms remains fragmentary.

 

Fig. 1 The two-dimensional (the left column) and the longitudinal (the right column) momentum distribution of Ne3+ ions. The laser intensities are (a) and (b) 0.5PW/cm2, (c) and (d) 1.0PW/cm2, (e) and (f) 2.0PW/cm2, respectively. The distributions are plotted in units of Up. The ensemble size are 15 million (0.5PW/cm2), 10 million (1.0PW/cm2) and 6 million (2.0PW/cm2). For the two-dimensional momentum distributions, the horizonal axis denotes the longitudinal momentum (alone z axis) and the vertical axis denotes the transverse momentum (alone x axis). Dashed vertical lines indicate 2Up, and 4Up.

Download Full Size | PPT Slide | PDF

The wavelength of the laser pulses in those previous studies are mainly in the near-infrared (NIR) region (λ ≤ 1 μm). With the advance of ultrafast laser technology, the mid-infrared (MIR) laser pulse (1 μm <λ ≤ 10 μm) have become available [39]. Recently, the interaction of atoms and molecules with MIR laser fields has drew much attentions and some new phenomena and applications have been observed and proposed [4043]. For example, an unexpected spike-like structure at the low energy region of the above-threshold-ionization (ATI) spectra in the MIR regime has been experimentally observed [40, 41]. In the study of high-harmonic generation (HHG), it has shown that the MIR laser pusle not only produces much more energetic harmonic photons but also reduces harmonic chirps [43], which is beneficial for attosecond pulse generation. The strong-field NSDI and NSTI of atoms and molecules by the MIR pulses has also attracted experimental attention [44,45]. In [45], the momentum distributions of Ne3+ and Ar3+ by the 1300-nm pulses at the intensity I = 0.4PW/cm2 have been measured. The authors reported that the shapes of longitudinal momentum distributions for the Ne3+ and Ar3+ all exhibit a clear double-hump structure that is different from those at NIR wavelength [29,30]. This result indicates that in the MIR regime, the responsible dynamics of correlated multielectron for TI process is different from that in the NIR regime.

In this paper, the correlated multielectron dynamics in strong-field NSTI of neon atoms driven by 1600-nm laser pulses is investigated with a three-dimensional (3D) full classical ensemble model [13, 15]. The numerical result shows that the triply charged ion momentum spectrum exhibits a pronounced double-hump structure at the low laser intensity, which is well consistent with the experimental result [45]. Back analysis reveals that at low laser intensity, the direct (e, 3e) ionization channel is dominantly responsible for NSTI, where one electron ionizes firstly, then it is driven back by the laser field to recollide with the parent nucleus and kicks out the other two electrons immediately. While for moderate intensity, besides the (e, 3e) channel, there is a mixed ionization channel where the first and second electrons are ionized through a recollision-induced (e, 2e) process and the third electron is excited after recollision and then released by laser field near the subsequent field maximum. Furthermore, the two TI channels are contribute significantly to NSTI at moderate intensity. For the high intensity, the combined sequential and nonsequential (S/NS) ionization channel where the two electrons are released sequentially and the third electron is ionized through a recollision with the second electron plays a dominant role in NSTI. Consequently, the shape of the ion momentum spectra becomes narrow and the distinct maxima shift to the low momenta as the intensity increases.

2. The full classical ensemble model

The full classical ensemble model has achieved success in understanding of NSDI and NSTI [1315, 35] and it has been described in detail in [13, 35]. The evolution of the three-electron system is determined by the classical equation of motion (Atomic units are used throughout the paper if not stated otherwise.)

d2ridt2=E(t)[Vne(ri)+ijVee(ri,rj)],
where the subscript i is the electron label which runs from 1 to 3. E(t)= ẑf(t)E0 sin(ωt) is the electric field, where the is the laser polarization direction and f(t) is the pulse shape which has two cycles turn-on, six cycles at full strength and two cycles turn-off. In our calculation, the wavelength is 1600nm. The nucleus-electron and electron-electron interaction are represented by a 3D soft-Coulomb potential Vne(ri)=3/(ri)2+a2 and Vee(ri,rj)=1/(rirj)+b2, respectively. The soft parameter a is employed to avoid autoionization, which sets the lower limit of a. There is also an upper limit for a, which is determined by the condition that there is a classically allowed region for the three electrons with the total energy of the ground-state energy of the target. For the targets investigated in this paper, the lower and the upper limits of a are about 0.945 and 1.06 a.u., respectively. Here, similar to [13,14], the screening parameter a is set to be 1.0 a.u. Note that a small change of the parameter a has little impact on the statistical results presented in our paper. The parameter b is included to avoid the coulomb singularity in our calculations. It could be set to equal any other small value (including zero). In our work, we set b=0.1 a.u. To obtain the initial value, the ensemble is populated starting from a classically allowed position for the neon atom with ground state energy of −4.63 a.u., i.e., the sum of the first, the second and the third ionization potential of neon. The available kinetic energy is distributed randomly between the three electrons randomly in momentum space. Then the electrons are allowed to evolve a sufficient long time in the absence of the laser field to obtain stable position and momentum distribution [13, 14]. After the laser pulse is turned off, if three electrons have positive energy, we define triple ionization.

3. Results and discussions

In Fig. 1, we present momentum distributions of the triply charged ions as a function of the laser intensity. The data in Fig. 1 are plotted in units of Up in order to account for the intensity dependence of the drift momentum received by the recoil ion [30], where the Up is the ponderomotive energy. Figures 1(a), 1(c) and 1(e) illustrate two-dimensional ion momentum distributions for 0.5PW/cm2, 1PW/cm2 and 2PW/cm2, respectively. Here, the horizontal axis shows the longitudinal (parallel to the laser polarization direction, i.e., z axis) ion momentum and the vertical axis corresponds to the transverse (along x axis) momentum. For all intensities, the transverse momenta are concentrated around zero. The longitudinal momenta, instead, exhibit two clear maxima at non-zero values, which indicates NSTI channels dominate TI at present intensities [22]. An important feature of these spectra is that the width of the spectra becomes narrow with the increase of the intensity. The longitudinal momentum distributions, i.e., the projections of data of two-dimensional ion momentum spectra onto the horizonal axes, could illustrate this feature more clearly [see the right column of Fig. 1].

For 0.5PW/cm2, Fig. 1(b) displays the longitudinal momentum distributions of triply charged ions. The Ne3+ spectrum is essentially identical to the distributions reported in [45] for TI of Ne at the intensity of 0.4PW/cm2 with the wavelength of 1300 nm. The spectrum exhibits a clear double-hump structure, with two-defined peaks at ±4Up and almost no ions produced with zero longitudinal momentum are observed. When the intensity increases to 1.0PW/cm2 and 2.0PW/cm2, the two peaks move to ±2Up [see Fig. 1(d)] and ±1.2Up [see Fig. 1(f)], respectively. This indicates that the peaks shift to the low momenta with the increase of the laser intensity. In addition, comparing Figs. 1(b), 1(d) and 1(f), one can find that the valley of the ion longitudinal momentum distributions becomes shallow as the intensity increases. These results indicate that in the MIR regime, the responsible microscopic electron dynamics for NSTI at different intensities are different and complex.

Tracing back the temporal evolution of TI trajectories allows us to unveil the microscopic multielectron dynamics of atomic TI, and thus provides an intuitive way to identify the different ionization channels. In present intensity regime, we find that there are three main NSTI channels. First, direct (e, 3e) ionization channel, i.e. one electron gets ionized firstly, and then it is driven back by the electric field to recollide with the parent nucleus, leading to the three electrons ionized immediately. This TI process is defined as (0–3) channel. Second, a combined S/NS ionization process where the first and the second electrons are released sequentially and the third electron is ionized through a recollision with the second electron which is driven back by the oscillating field. This TI process is defined as (0-1-3) channel. Third, a mixed TI process is called (0-2-3) channel. In this channel, one electron is ionized by the laser field, and then it is driven back by the electric field to recollide with the parent ion, leading to the second electron emitted immediately and the third electron excited after recollision and released by the laser field near the subsequent field maximum.

Three sample trajectories for (0–3) [the left column], (0-1-3) [the right column] and (0-2-3) [the middle column] TI channels are plotted separately in Fig. 2, presented in longitudinal coordinate z [the upper rows], energy [the middle rows], and longitudinal momentum [the bottom rows] versus the time for each electron, respectively. For the NSTI trajectory in the left column, it is clearly seen that the three electrons are set free immediately after recollision [see Figs. 2(a) and 2(b)] and accumulate almost the same high longitudinal drift momentum after the laser is over [see Fig. 2(c)]. While for the trajectory in the middle column, only two electrons are set free almost immediately after recollision and they acquire the similar high longitudinal drift momentum from the laser field [see the gray solid and red dotted curves in Fig. 2(f)]. The third electron is excited after recollision and released by the laser field [see the blue solid curve in Fig. 2(e)]. After the laser is over, it acquires a very small drift momentum [see the blue solid curve Fig. 2(f)]. For the NSTI trajectory in the right column, the first and the second electrons are emitted sequentially [see the gray solid and red dotted curves in Fig. 2(h)] and the third electron is released through a recollision with the second electron [see the blue solid and the red dotted curves in Fig. 2(h)].

 

Fig. 2 Three sample TI trajectories. The upper, middle, and bottom rows show the longitudinal coordinate z (parallel to the laser polarization), energy, and longitudinal momentum versus the time for each electron, respectively. The arrows indicate the time when recollision occurs.

Download Full Size | PPT Slide | PDF

Similar to [46], we further statistically analyze the percentage contributions of different TI channels to NSTI. As shown in table 1, the relative contribution of the (0–3), (0-2-3) and (0-1-3) channels changes with laser intensity. For I = 0.5PW/cm2, the statistic result reveals that about 76% of the TI occur through the (0–3) channel and it is the dominant channel for TI at low intensity. At I = 2.0PW/cm2, the contribution of the (0-1-3) channel to the total TI yield is over 70%, which indicates that the (0-1-3) channel is dominantly responsible ionization channel for TI at high intensity. For I = 1.0PW/cm2, the results show that both (0–3) and (0-2-3) channels contribute significantly to NSTI and the contributions of the (0–3) and (0-2-3) channels to the total TI yield are about 41% and 59%, respectively. Based on these results, we may draw the conclusion that in the MIR regime, the responsible triple ionization channels for NSTI are sensitively dependent on the laser intensity.

Tables Icon

Table 1. The contributions of the different ionization channels to the total TI yield for the three laser intensities.

According to the different TI channels, we have segregated the trajectories shown in Figs. 1(b), 1(d) and 1(f), respectively, and the ion momentum distributions for the various classes of trajectories are displayed separately in Figs. 3(a), 3(b) and 3(c). At I = 0.5PW/cm2, it is clearly seen that for (0–3) trajectories the two peaks of the spectrum are around ±4Up [see the red curve in Fig. 3(a)]. For the (0-2-3) trajectories, both I = 0.5PW/cm2 and I = 1.0PW/cm2, the peaks also locate near ±2Up [see the blue curves in Figs. 3(a) and 3(b)]. At I = 2.0PW/cm2, Fig. 3(c) shows that for the (0-1-3) trajectories, the peaks locate at ±1.2Up [see the dark green curve in Fig. 3(c)]. The above results reveal that in the MIR regime, the (0-2-3) channel is responsible for the double-hump spectrum with maxima at ±2Up. Furthermore, if the (0-1-3) ionization channel is dominantly responsible for NSTI in this regime, the locations of the ion momentum peaks are much less than the values of ±2Up. This is different from that at NIR regime [30], where the authors speculated that the (0-1-3) process is responsible for the spectrum with maxima at ±2Up. Additionally, Fig. 3 shows that the peaks of the ion momentum spectra for the (0–3) and (0-2-3) [see Figs. 3(a) and 3(b)] or the (0–3) and (0-1-3) [see Fig. 3(c)] trajectories are very close. Thus, the shape of the longitudinal ion momentum spectra all show two wider peaks [see Figs. 1(b), 1(d) and 1(f), respectively] and the predicted four-maximum structure in [33] is unobservable in the MIR regime.

 

Fig. 3 (a) The longitudinal ion momentum distributions of (0–3) (red curve) and (0-2-3)(blue curve) trajectories at 0.5PW/cm2. (b) The longitudinal ion momentum distributions of (0–3) (red curve) and (0-2-3) (blue curve) trajectories at 1.0PW/cm2. (c) The longitudinal ion momentum distributions of (0–3) (red curve) and (0-1-3) (dark green curve) trajectories at 2.0PW/cm2. The distributions are plotted in units of Up.

Download Full Size | PPT Slide | PDF

To give an overall understanding of intensity-dependent evolution of the ion momentum spectra for the various trajectories, we analyze the times of TI and recollision for different intensities. Back analysis of the TI trajectories also allows us easily to determine the recollision and ionization times, which can provide insight into the sub-cycle dynamics of NSTI. We define the recollision time tr to be the instant when one electron comes within the region r = 3 a.u. after its departure from the core, and the TI time tTI to be the instant when all of the three electrons achieve positive energies, where the energy contains the kinetic energy, the ion-electron interaction and half electron-electron interaction. Note that in the (0–3) and (0-2-3) channels, three electrons are involved in the recollision encounter, while only two electrons are involved for the (0-1-3) channel.

Figure 4(a) shows the triple ionization phase tTI versus recollision phase tr (both in cycle) for the intensity 0.5PW/cm2 [47]. It is clearly seen that the most of recollisions occur in the range 0.35T–0.40T (or 0.85T–0.90T, where the T is the laser cycle), just before the zero crossing of the laser field. It is consistent with the predication of the simple-man model [21]. As shown in the Fig. 4(a), the dominant part of the population are along the diagonal tTI = tr, which indicates that the TIs occur immediately after the three-electron recollision. As a consequence, for (0–3) trajectories, the three electrons from NSTI are more likely to set free with a small initial momentum close to the zero crossing of the field and accumulate the same high longitudinal drift momentum, which means that the three electrons are emitted predominantly to the same direction with similar longitudinal momenta [see Fig. 2(c)].

 

Fig. 4 The triple ionization phase tTI versus recollision phase tr (both in cycle) where the intensities are (a) 0.5PW/cm2, (b) 2.0PW/cm2, (c) and (d) 1.0PW/cm2, respectively. At 0.5PW/cm2 most of the TI trajectories are ionized through (0–3) channel and at 2.0PW/cm2 they are ionized through (0-1-3) channel. For 1.0PW/cm2 we have separated the TI trajectories base on whether they get ionized through (0–3) (c) or (0-2-3) (d) channels.

Download Full Size | PPT Slide | PDF

For I = 1.0PW/cm2, we have separated the TI trajectories according to whether they get ionized through the (0–3) or (0-2-3) channel. Figures 4(c) and 4(d) display the phase tTI at time of TI versus the phase tr at recollision for the (0–3) and (0-2-3) trajectories, respectively. For the (0–3) trajectories, similar to the case at 0.5PW/cm2, most of the population are along the diagonal tTI = tr [see Fig. 4(c)]. But, for this intensity, the most of recollisions occur in the range 0.30T–0.35T (or 0.80T–0.85T) [see Figs. 4(c) and 4(d)] and it is less than that at 0.5PW/cm2. Particularly, Fig. 4(d) shows that for the (0-2-3) trajectories, most of the TIs occur around the field maximum (0.25T and 0.75T), which is a reminder of impact excitation TI because there is a sub-cycle time delay between TI and recollision. Thus, for the (0-2-3) trajectories, only two electrons accumulate the same high longitudinal drift momentum and the third electron acquires a very small drift momentum from the laser field [see Fig. 2(f)].

For the intensity 2.0PW/cm2, Fig. 4(b) shows the most of recollisions occur in the range 0.28T–0.33T (or 0.78T–0.83T), just after the maximum of the laser field. As shown in the Fig. 4(b), the dominant part of the population are along the diagonal tTI = tr implies that TIs occur immediately after the two-electron recollision. From what has been discussed above, we may draw the conclusion that the contribution of the (0–3) channel to the total yield decreases gradually, and both the (0-2-3) and (0-1-3) channels (the partly sequential channel) make more and more contributions to NSTI. That is to say, the contribution of the partly sequential channel increases gradually as the intensity increases. As a result, the width of the ion momentum spectra becomes gradually narrow with the increase of the laser intensity.

Moreover, through careful examination of the Fig. 4 we find that the laser phase at recollision varies with the laser intensity: for the intensities 0.5PW/cm2, 1.0PW/cm2 and 2.0PW/cm2, recollision times tr are around 0.375T(or 0.875T), 0.33T(or 0.83T) and 0.30T(or 0.80T), respectively. According to the classical consideration, if an electron is set to an oscillating laser field of frequency ω and strength E(t) = E0(t)sin(ωt) at a time t0 (where the E0(t) is a pulse envelope function), it acquires the drift momentum Pze(t0)=2Upcos(ωt0) after the laser is over [28, 30, 33, 34]. For strong-field NSTI of atoms, the ion momentum vector is equal to the negative sum of the three emitted electrons momentum vectors. Note that in the (0–3) channel, the three electrons are emitted by recollision and escape with similar high drift momentum. As a consequence, for 0.5PW/cm2, the two-defined peaks of the ion momentum spectrum locate near Pzion=±3×Pze(tr)=±3×2Upcos(ω×0.375T)=±4.2Up. While for the (0-1-3) channel, an electron is ionized by the laser field and only acquires a very small longitudinal drift momentum from the laser field. The other two electrons are set free immediately after recollision and accumulate the similar high drift momentum. Thus, for 2.0PW/cm2, Pzion=±2×Pze(tr)=±2×2Upcos(ω×0.30T)=±1.2Up, respectively. At the intensity 1.0PW/cm2, the locations of the ion momentum peaks are slightly larger than the values of ±1.9Up since the (0-2-3) channel has considerable contributions to TI at this intensity where the third electron is ionized by the laser field near the field maximum. Therefore, the peaks shift to the low momenta with the increase of the laser intensity.

In addition, a recent study by Lötstedt and Midorikawa has demonstrated that inclusion of the laser magnetic field reduces significantly NSDI probability and this reduction is remarkably different for different targets [48]. To explore if the laser magnetic field significantly influences on the NSTI of neon atoms, we have performed a preliminary calculation with the magnetic field for the case of I = 2.0PW/cm2. Our calculation shows that when the magnetic field is taken into account the triple ionization yield is about 0.044%, which is a little lower than the yield of 0.047% without the magnetic field. For two-dimensional ion momentum distributions, the numerical results show that, regardless of considering the magnetic field or not, the transverse momenta are concentrated around zero and the longitudinal momenta distribute in the range of 3Up~+3Up. The main feature of the two-dimensional ion momentum distributions do not change with or without the magnetic field, i.e., the magnetic field has little impact on the momentum distribution. Furthermore, by back analysis of the classical trajectories, we find that including the magnetic field, the contribution of the (0-1-3) channels to the total triple ionization is about 73%, which is very close to 71% of the case without the magnetic field. By comparing these results with and without the magnetic field above, it can be found that the laser magnetic field has little impact on NSTI probability, the two-dimensional ion momentum spectrum and the dominant ionization channel contributing to NSTI.

4. Conclusion

In summary, the correlated three-electron dynamics in strong field NSTI of neon atoms by MIR laser pulses has been systematically investigated with the full 3D classical ensemble model. The various ionization channels at different laser intensities have been clearly identified by tracing TI trajectories. At low laser intensity, the triply charged ions momentum spectrum exhibits a pronounced double-hump structure and it is well consistent with the experimental result [45]. Back analysis reveals that the (0–3) ionization channel is dominantly responsible for NSTI process at low intensity. While for moderate intensity, both (0–3) and (0-2-3) channels contribute significantly to NSTI. At high intensity, the (0-1-3) channel play a dominant role in NSTI. As a result, the shape of ion momentum spectra becomes narrow and the distinct maxima shift towards the low momenta as the intensity increases. With the help of classical trajectory diagnosis, we achieve insight into the complex dynamics of the correlated three electrons in NSTI.

Acknowledgments

This work was supported by the National Science Fund for Distinguished Young Scholars under Grant No. 60925021, National Natural Science Foundation of China under Grant No. 11004070, and the 973 Program of China under Grant No. 2011CB808103.

References and links

1. Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature (London) 405, 658–661 (2000). [CrossRef]  

2. B. Walker, B. Sheehy, L. F. Dimauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionizaiton of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994). [CrossRef]   [PubMed]  

3. Y. Zhou, Q. Liao, and P. Lu, “Mechanism for high-energy electrons in nonsequential double ionization below the recollision-excitation threshold,” Phys. Rev. A 80, 023412 (2009). [CrossRef]  

4. D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, “Observation of nonsequential double ionization of helium with optical tunneling,” Phys. Rev. Lett. 69, 2642–2645 (1992). [CrossRef]   [PubMed]  

5. M. Lein, E. K. U. Gross, and V. Engel, “Intense-field double ionization of helium: identifying the mechanism,” Phys. Rev. Lett. 85, 4707–4710 (2000). [CrossRef]   [PubMed]  

6. Y. Zhou, C. Huang, Q. Liao, and P. Lu, “Classical simulations including electron correlations for sequential double ionization,” Phys. Rev. Lett. 109, 053004 (2012). [CrossRef]   [PubMed]  

7. C. Huang, Y. Zhou, A. H. Tong, Q. Liao, W. Hong, and P. Lu, “The effect of molecular alignment on correlated electron dynamics in nonsequential double ionization,” Opt. Express 19, 5627–5634 (2011). [CrossRef]   [PubMed]  

8. B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001). [CrossRef]  

9. Y. Zhou, Q. Liao, and P. Lu, “Asymmetric electron energy sharing in strong-field double ionization of helium,” Phys. Rev. A 82, 053402 (2010). [CrossRef]  

10. M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004). [CrossRef]   [PubMed]  

11. Q. Liao, P. X. Lu, Q. B. Zhang, W. Y. Hong, and Z. Y. Yang, “Phase-dependent nonsequential double ionization by few-cycle laser pulses,” J. Phys. B 41, 125601 (2008). [CrossRef]  

12. J. Chen, J. Liu, L. B. Fu, and W. M. Zheng, “Interpretation of momentum distribution of recoil ions from laserin-duced nonsequential double ionization by semiclassical rescattering model,” Phys. Rev. A 63,011404(R) (2000). [CrossRef]  

13. S. L. Haan, L. Breen, A. Karim, and J. H. Eberly, “Variable time lag and backward ejection in full-dimensional analysis of strong-field double ionization,” Phys. Rev. Lett. 97, 103008 (2006). [CrossRef]   [PubMed]  

14. Y. Zhou, C. Huang, A. H. Tong, Q. Liao, and P. Lu, “Correlated electron dynamics in nonsequential double ionization by orthogonal two-color laser pulses,” Opt. Express 19, 2301–2308 (2011). [CrossRef]   [PubMed]  

15. Phay J. Ho and J. H. Eberly, “In-plane theory of nonsequential triple ionization,” Phys. Rev. Lett. 97, 083001 (2006). [CrossRef]   [PubMed]  

16. Q. Liao, Y. Zhou, C. Huang, and P. Lu, “Multiphoton Rabi oscillations of correlated electrons in strong-field nonsequential double ionization,” New J. Phys. 14, 013001 (2012) [CrossRef]  

17. A. I’Huillier, L. A. Lompre, G. Mainfray, and C. Manus, “Multiply charged ions induced by multiphoton absorb in rare gases at 0.53 mm,” Phys. Rev. A 27, 2503–2512 (1983). [CrossRef]  

18. P. Dietrich, N. H. Burnett, M. Ivanov, and P. B. Corkum, “High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light,” Phys. Rev. A 50, R3585 (1994). [CrossRef]   [PubMed]  

19. H. Niikura, F. Légaré, R. Hasbani, A. D. Bandrauk, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Sublaser-cycle electron pulses for probing molecular dynamics,” Nature(London) 417, 917–922 (2002). [CrossRef]  

20. A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004). [CrossRef]  

21. P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993). [CrossRef]   [PubMed]  

22. R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. D. Schröter, and J. Ullrich, “Momentum distributions of Nen+ions created by an intense ultrashort laser pulse,” Phys. Rev. Lett. 84, 447–450 (2000). [CrossRef]   [PubMed]  

23. R. Lafon, J. L. Chaloupka, B. Sheehy, P. M. Paul, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Electron energy spectra from intense laser double ionization of helium,” Phys. Rev. Lett. 86, 2762–2765 (2001). [CrossRef]   [PubMed]  

24. J. L. Chaloupka, J. Rudati, R. Lafon, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Observation of a transition in the dynamics Of strong-field double ionization,” Phys. Rev. Lett. 90, 033002 (2003). [CrossRef]   [PubMed]  

25. C. Huang, Y. Zhou, Q. Zhang, and P. Lu, “Contribution of recollision ionization to the cross-shaped structure in nonsequential double ionization,” Opt. Express 21, 11382–11390 (2013). [CrossRef]   [PubMed]  

26. S. Palaniyappan, A. DiChiara, E. Chowdhury, A. Falkowski, G. Ongadi, E. L. Huskins, and B. C. Walker, “Ultrastrong field ionization of Nen+(n≤ 8): rescattering and the role of the magnetic field,” Phys. Rev. Lett. 94, 243003 (2005). [CrossRef]  

27. S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917 (1995). [CrossRef]   [PubMed]  

28. A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004). [CrossRef]  

29. K. Zrost, A. Rudenko, Th. Ergler, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Multiple ionization of Ne and Ar by intense 25 fs laser pulses: few-electron dynamics studied with ion momentum spectroscopy,” J. Phys. B 39, S371–S380 (2006). [CrossRef]  

30. A. Rudenko, Th. Ergler, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “From non-sequential to sequential strong-field multiple ionization: identification of pure and mixed reaction channels,” J. Phys. B 41, 081006 (2008). [CrossRef]  

31. J. S. Parker, B. J. S. Doherty, K. T. Taylor, K. D. Schultz, C. I. Blaga, and L. F. DiMauro, “High-energy cutoff in the spectrum of strong-field nonsequential double ionization,” Phys. Rev. Lett. 96, 133001 (2006). [CrossRef]   [PubMed]  

32. K. Sacha and B. Eckhardt, “Nonsequential triple ionization in strong fields,” Phys. Rev. Lett. 64, 053401 (2001).

33. B. Feuerstein, R. Moshammer, and J. Ullrich, “Nonsequential multiple ionization in intense laser pulses: interpretation of ion momentum distributions within the classical ‘rescattering’ model,” J. Phys. B 33, L823–L830 (2000). [CrossRef]  

34. X. Liu, C. Figueira de Morisson Faria, W. Becker, and P. B. Corkum, “Attosecond electron thermalization by laser-driven electron recollision in atoms,” J. Phys. B 39, L305–L311 (2006). [CrossRef]  

35. Y. Zhou, Q. Liao, and P. Lu, “Complex sub-laser-cycle electron dynamics in strong-field nonsequential triple ionizaion,” Opt. Express 18, 16025–16034 (2010). [CrossRef]   [PubMed]  

36. A. Emmanouilidou, “Recoil collisions as a portal to field-assisted ionization at near-uv frequencies in the strong-field double ionization of helium,” Phys. Rev. A 78, 023411 (2008). [CrossRef]  

37. A. Emmanouilidou and A. Staudte, “Intensity dependence of strong-field double-ionization mechanisms: from field-assisted recollision ionization to recollision-assisted field ionization,” Phys. Rev. A 80, 053415 (2009). [CrossRef]  

38. A. Becker and F. H. M. Faisal, “S-matrix analysis of ionization yields of noble gas atoms at the focus of Ti:sapphire laser pulses,” J. Phys. B 32, L335–L343 (1999). [CrossRef]  

39. P. Agostini and L. F. DiMauro, “Atoms in high intensity mid-infrared pulses,” Contemporary Physics 49, 179–197 (2008). [CrossRef]  

40. C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and F. Dimauro, “Srong-field photoionization revisited,” Nature Physics 5, 335–338 (2009). [CrossRef]  

41. W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009). [CrossRef]   [PubMed]  

42. P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008). [CrossRef]  

43. G. Doumy, J. Wheeler, C. Roedig, R. Chirla, P. Agostini, and L. F. DiMauro, “Attosecond synchronization of high-order harmonics from midinfrared drivers,” Phys. Rev. Lett. 102, 093002 (2009). [CrossRef]   [PubMed]  

44. A. D. DiChiara, E. Sistrunk, C. I. Blaga, U. B. Szafruga, P. Agostini, and L. F. DiMauro, “Inelastic scattering of broadband electron wave packets driven by an intense midinfrared laser field,” Phys. Rev. Lett. 108, 033002 (2012). [CrossRef]   [PubMed]  

45. O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008). [CrossRef]  

46. A. Emmamouilidou, J. S. Parker, L. R. Moore, and K. T. Taylor, “Direct versus delayed pathways in strong-field non-sequential double ionization,” New J. Phys. 13, 043001 (2011). [CrossRef]  

47. S. L. Haan, Z. S. Smith, K. N. Shomsky, and P. W. Plantinga, “Electron drift directions in strong-field double ionization of atoms,” J. Phys. B 42, 134009 (2009). [CrossRef]  

48. E. Lötstedt and K. Midorikawa, “Effect of the laser magnetic field on nonsequential double ionization of He, Li+, and Be2+,” Phys. Rev. A 87, 013426 (2013). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature (London) 405, 658–661 (2000).
    [Crossref]
  2. B. Walker, B. Sheehy, L. F. Dimauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionizaiton of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
    [Crossref] [PubMed]
  3. Y. Zhou, Q. Liao, and P. Lu, “Mechanism for high-energy electrons in nonsequential double ionization below the recollision-excitation threshold,” Phys. Rev. A 80, 023412 (2009).
    [Crossref]
  4. D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, “Observation of nonsequential double ionization of helium with optical tunneling,” Phys. Rev. Lett. 69, 2642–2645 (1992).
    [Crossref] [PubMed]
  5. M. Lein, E. K. U. Gross, and V. Engel, “Intense-field double ionization of helium: identifying the mechanism,” Phys. Rev. Lett. 85, 4707–4710 (2000).
    [Crossref] [PubMed]
  6. Y. Zhou, C. Huang, Q. Liao, and P. Lu, “Classical simulations including electron correlations for sequential double ionization,” Phys. Rev. Lett. 109, 053004 (2012).
    [Crossref] [PubMed]
  7. C. Huang, Y. Zhou, A. H. Tong, Q. Liao, W. Hong, and P. Lu, “The effect of molecular alignment on correlated electron dynamics in nonsequential double ionization,” Opt. Express 19, 5627–5634 (2011).
    [Crossref] [PubMed]
  8. B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
    [Crossref]
  9. Y. Zhou, Q. Liao, and P. Lu, “Asymmetric electron energy sharing in strong-field double ionization of helium,” Phys. Rev. A 82, 053402 (2010).
    [Crossref]
  10. M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
    [Crossref] [PubMed]
  11. Q. Liao, P. X. Lu, Q. B. Zhang, W. Y. Hong, and Z. Y. Yang, “Phase-dependent nonsequential double ionization by few-cycle laser pulses,” J. Phys. B 41, 125601 (2008).
    [Crossref]
  12. J. Chen, J. Liu, L. B. Fu, and W. M. Zheng, “Interpretation of momentum distribution of recoil ions from laserin-duced nonsequential double ionization by semiclassical rescattering model,” Phys. Rev. A 63,011404(R) (2000).
    [Crossref]
  13. S. L. Haan, L. Breen, A. Karim, and J. H. Eberly, “Variable time lag and backward ejection in full-dimensional analysis of strong-field double ionization,” Phys. Rev. Lett. 97, 103008 (2006).
    [Crossref] [PubMed]
  14. Y. Zhou, C. Huang, A. H. Tong, Q. Liao, and P. Lu, “Correlated electron dynamics in nonsequential double ionization by orthogonal two-color laser pulses,” Opt. Express 19, 2301–2308 (2011).
    [Crossref] [PubMed]
  15. Phay J. Ho and J. H. Eberly, “In-plane theory of nonsequential triple ionization,” Phys. Rev. Lett. 97, 083001 (2006).
    [Crossref] [PubMed]
  16. Q. Liao, Y. Zhou, C. Huang, and P. Lu, “Multiphoton Rabi oscillations of correlated electrons in strong-field nonsequential double ionization,” New J. Phys. 14, 013001 (2012)
    [Crossref]
  17. A. I’Huillier, L. A. Lompre, G. Mainfray, and C. Manus, “Multiply charged ions induced by multiphoton absorb in rare gases at 0.53 mm,” Phys. Rev. A 27, 2503–2512 (1983).
    [Crossref]
  18. P. Dietrich, N. H. Burnett, M. Ivanov, and P. B. Corkum, “High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light,” Phys. Rev. A 50, R3585 (1994).
    [Crossref] [PubMed]
  19. H. Niikura, F. Légaré, R. Hasbani, A. D. Bandrauk, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Sublaser-cycle electron pulses for probing molecular dynamics,” Nature(London) 417, 917–922 (2002).
    [Crossref]
  20. A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
    [Crossref]
  21. P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
    [Crossref] [PubMed]
  22. R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. D. Schröter, and J. Ullrich, “Momentum distributions of Nen+ions created by an intense ultrashort laser pulse,” Phys. Rev. Lett. 84, 447–450 (2000).
    [Crossref] [PubMed]
  23. R. Lafon, J. L. Chaloupka, B. Sheehy, P. M. Paul, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Electron energy spectra from intense laser double ionization of helium,” Phys. Rev. Lett. 86, 2762–2765 (2001).
    [Crossref] [PubMed]
  24. J. L. Chaloupka, J. Rudati, R. Lafon, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Observation of a transition in the dynamics Of strong-field double ionization,” Phys. Rev. Lett. 90, 033002 (2003).
    [Crossref] [PubMed]
  25. C. Huang, Y. Zhou, Q. Zhang, and P. Lu, “Contribution of recollision ionization to the cross-shaped structure in nonsequential double ionization,” Opt. Express 21, 11382–11390 (2013).
    [Crossref] [PubMed]
  26. S. Palaniyappan, A. DiChiara, E. Chowdhury, A. Falkowski, G. Ongadi, E. L. Huskins, and B. C. Walker, “Ultrastrong field ionization of Nen+(n≤ 8): rescattering and the role of the magnetic field,” Phys. Rev. Lett. 94, 243003 (2005).
    [Crossref]
  27. S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917 (1995).
    [Crossref] [PubMed]
  28. A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
    [Crossref]
  29. K. Zrost, A. Rudenko, Th. Ergler, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Multiple ionization of Ne and Ar by intense 25 fs laser pulses: few-electron dynamics studied with ion momentum spectroscopy,” J. Phys. B 39, S371–S380 (2006).
    [Crossref]
  30. A. Rudenko, Th. Ergler, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “From non-sequential to sequential strong-field multiple ionization: identification of pure and mixed reaction channels,” J. Phys. B 41, 081006 (2008).
    [Crossref]
  31. J. S. Parker, B. J. S. Doherty, K. T. Taylor, K. D. Schultz, C. I. Blaga, and L. F. DiMauro, “High-energy cutoff in the spectrum of strong-field nonsequential double ionization,” Phys. Rev. Lett. 96, 133001 (2006).
    [Crossref] [PubMed]
  32. K. Sacha and B. Eckhardt, “Nonsequential triple ionization in strong fields,” Phys. Rev. Lett. 64, 053401 (2001).
  33. B. Feuerstein, R. Moshammer, and J. Ullrich, “Nonsequential multiple ionization in intense laser pulses: interpretation of ion momentum distributions within the classical ‘rescattering’ model,” J. Phys. B 33, L823–L830 (2000).
    [Crossref]
  34. X. Liu, C. Figueira de Morisson Faria, W. Becker, and P. B. Corkum, “Attosecond electron thermalization by laser-driven electron recollision in atoms,” J. Phys. B 39, L305–L311 (2006).
    [Crossref]
  35. Y. Zhou, Q. Liao, and P. Lu, “Complex sub-laser-cycle electron dynamics in strong-field nonsequential triple ionizaion,” Opt. Express 18, 16025–16034 (2010).
    [Crossref] [PubMed]
  36. A. Emmanouilidou, “Recoil collisions as a portal to field-assisted ionization at near-uv frequencies in the strong-field double ionization of helium,” Phys. Rev. A 78, 023411 (2008).
    [Crossref]
  37. A. Emmanouilidou and A. Staudte, “Intensity dependence of strong-field double-ionization mechanisms: from field-assisted recollision ionization to recollision-assisted field ionization,” Phys. Rev. A 80, 053415 (2009).
    [Crossref]
  38. A. Becker and F. H. M. Faisal, “S-matrix analysis of ionization yields of noble gas atoms at the focus of Ti:sapphire laser pulses,” J. Phys. B 32, L335–L343 (1999).
    [Crossref]
  39. P. Agostini and L. F. DiMauro, “Atoms in high intensity mid-infrared pulses,” Contemporary Physics 49, 179–197 (2008).
    [Crossref]
  40. C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and F. Dimauro, “Srong-field photoionization revisited,” Nature Physics 5, 335–338 (2009).
    [Crossref]
  41. W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
    [Crossref] [PubMed]
  42. P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
    [Crossref]
  43. G. Doumy, J. Wheeler, C. Roedig, R. Chirla, P. Agostini, and L. F. DiMauro, “Attosecond synchronization of high-order harmonics from midinfrared drivers,” Phys. Rev. Lett. 102, 093002 (2009).
    [Crossref] [PubMed]
  44. A. D. DiChiara, E. Sistrunk, C. I. Blaga, U. B. Szafruga, P. Agostini, and L. F. DiMauro, “Inelastic scattering of broadband electron wave packets driven by an intense midinfrared laser field,” Phys. Rev. Lett. 108, 033002 (2012).
    [Crossref] [PubMed]
  45. O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
    [Crossref]
  46. A. Emmamouilidou, J. S. Parker, L. R. Moore, and K. T. Taylor, “Direct versus delayed pathways in strong-field non-sequential double ionization,” New J. Phys. 13, 043001 (2011).
    [Crossref]
  47. S. L. Haan, Z. S. Smith, K. N. Shomsky, and P. W. Plantinga, “Electron drift directions in strong-field double ionization of atoms,” J. Phys. B 42, 134009 (2009).
    [Crossref]
  48. E. Lötstedt and K. Midorikawa, “Effect of the laser magnetic field on nonsequential double ionization of He, Li+, and Be2+,” Phys. Rev. A 87, 013426 (2013).
    [Crossref]

2013 (2)

C. Huang, Y. Zhou, Q. Zhang, and P. Lu, “Contribution of recollision ionization to the cross-shaped structure in nonsequential double ionization,” Opt. Express 21, 11382–11390 (2013).
[Crossref] [PubMed]

E. Lötstedt and K. Midorikawa, “Effect of the laser magnetic field on nonsequential double ionization of He, Li+, and Be2+,” Phys. Rev. A 87, 013426 (2013).
[Crossref]

2012 (3)

A. D. DiChiara, E. Sistrunk, C. I. Blaga, U. B. Szafruga, P. Agostini, and L. F. DiMauro, “Inelastic scattering of broadband electron wave packets driven by an intense midinfrared laser field,” Phys. Rev. Lett. 108, 033002 (2012).
[Crossref] [PubMed]

Y. Zhou, C. Huang, Q. Liao, and P. Lu, “Classical simulations including electron correlations for sequential double ionization,” Phys. Rev. Lett. 109, 053004 (2012).
[Crossref] [PubMed]

Q. Liao, Y. Zhou, C. Huang, and P. Lu, “Multiphoton Rabi oscillations of correlated electrons in strong-field nonsequential double ionization,” New J. Phys. 14, 013001 (2012)
[Crossref]

2011 (3)

2010 (2)

Y. Zhou, Q. Liao, and P. Lu, “Complex sub-laser-cycle electron dynamics in strong-field nonsequential triple ionizaion,” Opt. Express 18, 16025–16034 (2010).
[Crossref] [PubMed]

Y. Zhou, Q. Liao, and P. Lu, “Asymmetric electron energy sharing in strong-field double ionization of helium,” Phys. Rev. A 82, 053402 (2010).
[Crossref]

2009 (6)

Y. Zhou, Q. Liao, and P. Lu, “Mechanism for high-energy electrons in nonsequential double ionization below the recollision-excitation threshold,” Phys. Rev. A 80, 023412 (2009).
[Crossref]

A. Emmanouilidou and A. Staudte, “Intensity dependence of strong-field double-ionization mechanisms: from field-assisted recollision ionization to recollision-assisted field ionization,” Phys. Rev. A 80, 053415 (2009).
[Crossref]

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and F. Dimauro, “Srong-field photoionization revisited,” Nature Physics 5, 335–338 (2009).
[Crossref]

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

G. Doumy, J. Wheeler, C. Roedig, R. Chirla, P. Agostini, and L. F. DiMauro, “Attosecond synchronization of high-order harmonics from midinfrared drivers,” Phys. Rev. Lett. 102, 093002 (2009).
[Crossref] [PubMed]

S. L. Haan, Z. S. Smith, K. N. Shomsky, and P. W. Plantinga, “Electron drift directions in strong-field double ionization of atoms,” J. Phys. B 42, 134009 (2009).
[Crossref]

2008 (6)

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

P. Agostini and L. F. DiMauro, “Atoms in high intensity mid-infrared pulses,” Contemporary Physics 49, 179–197 (2008).
[Crossref]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

A. Emmanouilidou, “Recoil collisions as a portal to field-assisted ionization at near-uv frequencies in the strong-field double ionization of helium,” Phys. Rev. A 78, 023411 (2008).
[Crossref]

Q. Liao, P. X. Lu, Q. B. Zhang, W. Y. Hong, and Z. Y. Yang, “Phase-dependent nonsequential double ionization by few-cycle laser pulses,” J. Phys. B 41, 125601 (2008).
[Crossref]

A. Rudenko, Th. Ergler, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “From non-sequential to sequential strong-field multiple ionization: identification of pure and mixed reaction channels,” J. Phys. B 41, 081006 (2008).
[Crossref]

2006 (5)

J. S. Parker, B. J. S. Doherty, K. T. Taylor, K. D. Schultz, C. I. Blaga, and L. F. DiMauro, “High-energy cutoff in the spectrum of strong-field nonsequential double ionization,” Phys. Rev. Lett. 96, 133001 (2006).
[Crossref] [PubMed]

K. Zrost, A. Rudenko, Th. Ergler, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Multiple ionization of Ne and Ar by intense 25 fs laser pulses: few-electron dynamics studied with ion momentum spectroscopy,” J. Phys. B 39, S371–S380 (2006).
[Crossref]

X. Liu, C. Figueira de Morisson Faria, W. Becker, and P. B. Corkum, “Attosecond electron thermalization by laser-driven electron recollision in atoms,” J. Phys. B 39, L305–L311 (2006).
[Crossref]

S. L. Haan, L. Breen, A. Karim, and J. H. Eberly, “Variable time lag and backward ejection in full-dimensional analysis of strong-field double ionization,” Phys. Rev. Lett. 97, 103008 (2006).
[Crossref] [PubMed]

Phay J. Ho and J. H. Eberly, “In-plane theory of nonsequential triple ionization,” Phys. Rev. Lett. 97, 083001 (2006).
[Crossref] [PubMed]

2005 (1)

S. Palaniyappan, A. DiChiara, E. Chowdhury, A. Falkowski, G. Ongadi, E. L. Huskins, and B. C. Walker, “Ultrastrong field ionization of Nen+(n≤ 8): rescattering and the role of the magnetic field,” Phys. Rev. Lett. 94, 243003 (2005).
[Crossref]

2004 (3)

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

2003 (1)

J. L. Chaloupka, J. Rudati, R. Lafon, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Observation of a transition in the dynamics Of strong-field double ionization,” Phys. Rev. Lett. 90, 033002 (2003).
[Crossref] [PubMed]

2002 (1)

H. Niikura, F. Légaré, R. Hasbani, A. D. Bandrauk, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Sublaser-cycle electron pulses for probing molecular dynamics,” Nature(London) 417, 917–922 (2002).
[Crossref]

2001 (3)

R. Lafon, J. L. Chaloupka, B. Sheehy, P. M. Paul, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Electron energy spectra from intense laser double ionization of helium,” Phys. Rev. Lett. 86, 2762–2765 (2001).
[Crossref] [PubMed]

K. Sacha and B. Eckhardt, “Nonsequential triple ionization in strong fields,” Phys. Rev. Lett. 64, 053401 (2001).

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

2000 (5)

Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature (London) 405, 658–661 (2000).
[Crossref]

M. Lein, E. K. U. Gross, and V. Engel, “Intense-field double ionization of helium: identifying the mechanism,” Phys. Rev. Lett. 85, 4707–4710 (2000).
[Crossref] [PubMed]

J. Chen, J. Liu, L. B. Fu, and W. M. Zheng, “Interpretation of momentum distribution of recoil ions from laserin-duced nonsequential double ionization by semiclassical rescattering model,” Phys. Rev. A 63,011404(R) (2000).
[Crossref]

B. Feuerstein, R. Moshammer, and J. Ullrich, “Nonsequential multiple ionization in intense laser pulses: interpretation of ion momentum distributions within the classical ‘rescattering’ model,” J. Phys. B 33, L823–L830 (2000).
[Crossref]

R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. D. Schröter, and J. Ullrich, “Momentum distributions of Nen+ions created by an intense ultrashort laser pulse,” Phys. Rev. Lett. 84, 447–450 (2000).
[Crossref] [PubMed]

1999 (1)

A. Becker and F. H. M. Faisal, “S-matrix analysis of ionization yields of noble gas atoms at the focus of Ti:sapphire laser pulses,” J. Phys. B 32, L335–L343 (1999).
[Crossref]

1995 (1)

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917 (1995).
[Crossref] [PubMed]

1994 (2)

P. Dietrich, N. H. Burnett, M. Ivanov, and P. B. Corkum, “High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light,” Phys. Rev. A 50, R3585 (1994).
[Crossref] [PubMed]

B. Walker, B. Sheehy, L. F. Dimauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionizaiton of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[Crossref] [PubMed]

1993 (1)

P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref] [PubMed]

1992 (1)

D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, “Observation of nonsequential double ionization of helium with optical tunneling,” Phys. Rev. Lett. 69, 2642–2645 (1992).
[Crossref] [PubMed]

1983 (1)

A. I’Huillier, L. A. Lompre, G. Mainfray, and C. Manus, “Multiply charged ions induced by multiphoton absorb in rare gases at 0.53 mm,” Phys. Rev. A 27, 2503–2512 (1983).
[Crossref]

Achtelik, A.

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

Agostini, P.

A. D. DiChiara, E. Sistrunk, C. I. Blaga, U. B. Szafruga, P. Agostini, and L. F. DiMauro, “Inelastic scattering of broadband electron wave packets driven by an intense midinfrared laser field,” Phys. Rev. Lett. 108, 033002 (2012).
[Crossref] [PubMed]

G. Doumy, J. Wheeler, C. Roedig, R. Chirla, P. Agostini, and L. F. DiMauro, “Attosecond synchronization of high-order harmonics from midinfrared drivers,” Phys. Rev. Lett. 102, 093002 (2009).
[Crossref] [PubMed]

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and F. Dimauro, “Srong-field photoionization revisited,” Nature Physics 5, 335–338 (2009).
[Crossref]

P. Agostini and L. F. DiMauro, “Atoms in high intensity mid-infrared pulses,” Contemporary Physics 49, 179–197 (2008).
[Crossref]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

J. L. Chaloupka, J. Rudati, R. Lafon, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Observation of a transition in the dynamics Of strong-field double ionization,” Phys. Rev. Lett. 90, 033002 (2003).
[Crossref] [PubMed]

R. Lafon, J. L. Chaloupka, B. Sheehy, P. M. Paul, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Electron energy spectra from intense laser double ionization of helium,” Phys. Rev. Lett. 86, 2762–2765 (2001).
[Crossref] [PubMed]

B. Walker, B. Sheehy, L. F. Dimauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionizaiton of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[Crossref] [PubMed]

Augst, S.

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917 (1995).
[Crossref] [PubMed]

Bandrauk, A. D.

H. Niikura, F. Légaré, R. Hasbani, A. D. Bandrauk, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Sublaser-cycle electron pulses for probing molecular dynamics,” Nature(London) 417, 917–922 (2002).
[Crossref]

Beaudoin, Y.

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917 (1995).
[Crossref] [PubMed]

Becker, A.

A. Becker and F. H. M. Faisal, “S-matrix analysis of ionization yields of noble gas atoms at the focus of Ti:sapphire laser pulses,” J. Phys. B 32, L335–L343 (1999).
[Crossref]

Becker, W.

X. Liu, C. Figueira de Morisson Faria, W. Becker, and P. B. Corkum, “Attosecond electron thermalization by laser-driven electron recollision in atoms,” J. Phys. B 39, L305–L311 (2006).
[Crossref]

Bhardwaj, V. R.

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

Blaga, C. I.

A. D. DiChiara, E. Sistrunk, C. I. Blaga, U. B. Szafruga, P. Agostini, and L. F. DiMauro, “Inelastic scattering of broadband electron wave packets driven by an intense midinfrared laser field,” Phys. Rev. Lett. 108, 033002 (2012).
[Crossref] [PubMed]

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and F. Dimauro, “Srong-field photoionization revisited,” Nature Physics 5, 335–338 (2009).
[Crossref]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

J. S. Parker, B. J. S. Doherty, K. T. Taylor, K. D. Schultz, C. I. Blaga, and L. F. DiMauro, “High-energy cutoff in the spectrum of strong-field nonsequential double ionization,” Phys. Rev. Lett. 96, 133001 (2006).
[Crossref] [PubMed]

Bolton, P. R.

D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, “Observation of nonsequential double ionization of helium with optical tunneling,” Phys. Rev. Lett. 69, 2642–2645 (1992).
[Crossref] [PubMed]

Breen, L.

S. L. Haan, L. Breen, A. Karim, and J. H. Eberly, “Variable time lag and backward ejection in full-dimensional analysis of strong-field double ionization,” Phys. Rev. Lett. 97, 103008 (2006).
[Crossref] [PubMed]

Burnett, N. H.

P. Dietrich, N. H. Burnett, M. Ivanov, and P. B. Corkum, “High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light,” Phys. Rev. A 50, R3585 (1994).
[Crossref] [PubMed]

Catoire, F.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and F. Dimauro, “Srong-field photoionization revisited,” Nature Physics 5, 335–338 (2009).
[Crossref]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

Chaker, M.

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917 (1995).
[Crossref] [PubMed]

Chaloupka, J. L.

J. L. Chaloupka, J. Rudati, R. Lafon, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Observation of a transition in the dynamics Of strong-field double ionization,” Phys. Rev. Lett. 90, 033002 (2003).
[Crossref] [PubMed]

R. Lafon, J. L. Chaloupka, B. Sheehy, P. M. Paul, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Electron energy spectra from intense laser double ionization of helium,” Phys. Rev. Lett. 86, 2762–2765 (2001).
[Crossref] [PubMed]

Chang, B.

D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, “Observation of nonsequential double ionization of helium with optical tunneling,” Phys. Rev. Lett. 69, 2642–2645 (1992).
[Crossref] [PubMed]

Chen, J.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

J. Chen, J. Liu, L. B. Fu, and W. M. Zheng, “Interpretation of momentum distribution of recoil ions from laserin-duced nonsequential double ionization by semiclassical rescattering model,” Phys. Rev. A 63,011404(R) (2000).
[Crossref]

Chen, S. G.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

Cheng, Y.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

Chin, S. L.

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917 (1995).
[Crossref] [PubMed]

Chirla, R.

G. Doumy, J. Wheeler, C. Roedig, R. Chirla, P. Agostini, and L. F. DiMauro, “Attosecond synchronization of high-order harmonics from midinfrared drivers,” Phys. Rev. Lett. 102, 093002 (2009).
[Crossref] [PubMed]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

Chowdhury, E.

S. Palaniyappan, A. DiChiara, E. Chowdhury, A. Falkowski, G. Ongadi, E. L. Huskins, and B. C. Walker, “Ultrastrong field ionization of Nen+(n≤ 8): rescattering and the role of the magnetic field,” Phys. Rev. Lett. 94, 243003 (2005).
[Crossref]

Colosimo, P.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and F. Dimauro, “Srong-field photoionization revisited,” Nature Physics 5, 335–338 (2009).
[Crossref]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

Corkum, P. B.

X. Liu, C. Figueira de Morisson Faria, W. Becker, and P. B. Corkum, “Attosecond electron thermalization by laser-driven electron recollision in atoms,” J. Phys. B 39, L305–L311 (2006).
[Crossref]

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

H. Niikura, F. Légaré, R. Hasbani, A. D. Bandrauk, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Sublaser-cycle electron pulses for probing molecular dynamics,” Nature(London) 417, 917–922 (2002).
[Crossref]

P. Dietrich, N. H. Burnett, M. Ivanov, and P. B. Corkum, “High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light,” Phys. Rev. A 50, R3585 (1994).
[Crossref] [PubMed]

P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref] [PubMed]

Crespo Lopez-Urrutia, J. R.

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

de Jesus, V. L. B.

A. Rudenko, Th. Ergler, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “From non-sequential to sequential strong-field multiple ionization: identification of pure and mixed reaction channels,” J. Phys. B 41, 081006 (2008).
[Crossref]

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

K. Zrost, A. Rudenko, Th. Ergler, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Multiple ionization of Ne and Ar by intense 25 fs laser pulses: few-electron dynamics studied with ion momentum spectroscopy,” J. Phys. B 39, S371–S380 (2006).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

Deipenwisch, J.

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

DiChiara, A.

S. Palaniyappan, A. DiChiara, E. Chowdhury, A. Falkowski, G. Ongadi, E. L. Huskins, and B. C. Walker, “Ultrastrong field ionization of Nen+(n≤ 8): rescattering and the role of the magnetic field,” Phys. Rev. Lett. 94, 243003 (2005).
[Crossref]

DiChiara, A. D.

A. D. DiChiara, E. Sistrunk, C. I. Blaga, U. B. Szafruga, P. Agostini, and L. F. DiMauro, “Inelastic scattering of broadband electron wave packets driven by an intense midinfrared laser field,” Phys. Rev. Lett. 108, 033002 (2012).
[Crossref] [PubMed]

Dietrich, P.

P. Dietrich, N. H. Burnett, M. Ivanov, and P. B. Corkum, “High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light,” Phys. Rev. A 50, R3585 (1994).
[Crossref] [PubMed]

Dimauro, F.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and F. Dimauro, “Srong-field photoionization revisited,” Nature Physics 5, 335–338 (2009).
[Crossref]

DiMauro, L. F.

A. D. DiChiara, E. Sistrunk, C. I. Blaga, U. B. Szafruga, P. Agostini, and L. F. DiMauro, “Inelastic scattering of broadband electron wave packets driven by an intense midinfrared laser field,” Phys. Rev. Lett. 108, 033002 (2012).
[Crossref] [PubMed]

G. Doumy, J. Wheeler, C. Roedig, R. Chirla, P. Agostini, and L. F. DiMauro, “Attosecond synchronization of high-order harmonics from midinfrared drivers,” Phys. Rev. Lett. 102, 093002 (2009).
[Crossref] [PubMed]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

P. Agostini and L. F. DiMauro, “Atoms in high intensity mid-infrared pulses,” Contemporary Physics 49, 179–197 (2008).
[Crossref]

J. S. Parker, B. J. S. Doherty, K. T. Taylor, K. D. Schultz, C. I. Blaga, and L. F. DiMauro, “High-energy cutoff in the spectrum of strong-field nonsequential double ionization,” Phys. Rev. Lett. 96, 133001 (2006).
[Crossref] [PubMed]

J. L. Chaloupka, J. Rudati, R. Lafon, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Observation of a transition in the dynamics Of strong-field double ionization,” Phys. Rev. Lett. 90, 033002 (2003).
[Crossref] [PubMed]

R. Lafon, J. L. Chaloupka, B. Sheehy, P. M. Paul, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Electron energy spectra from intense laser double ionization of helium,” Phys. Rev. Lett. 86, 2762–2765 (2001).
[Crossref] [PubMed]

B. Walker, B. Sheehy, L. F. Dimauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionizaiton of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[Crossref] [PubMed]

Doherty, B. J. S.

J. S. Parker, B. J. S. Doherty, K. T. Taylor, K. D. Schultz, C. I. Blaga, and L. F. DiMauro, “High-energy cutoff in the spectrum of strong-field nonsequential double ionization,” Phys. Rev. Lett. 96, 133001 (2006).
[Crossref] [PubMed]

Dorn, A.

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. D. Schröter, and J. Ullrich, “Momentum distributions of Nen+ions created by an intense ultrashort laser pulse,” Phys. Rev. Lett. 84, 447–450 (2000).
[Crossref] [PubMed]

Dörner, R.

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature (London) 405, 658–661 (2000).
[Crossref]

Doumy, G.

G. Doumy, J. Wheeler, C. Roedig, R. Chirla, P. Agostini, and L. F. DiMauro, “Attosecond synchronization of high-order harmonics from midinfrared drivers,” Phys. Rev. Lett. 102, 093002 (2009).
[Crossref] [PubMed]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

Eberly, J. H.

Phay J. Ho and J. H. Eberly, “In-plane theory of nonsequential triple ionization,” Phys. Rev. Lett. 97, 083001 (2006).
[Crossref] [PubMed]

S. L. Haan, L. Breen, A. Karim, and J. H. Eberly, “Variable time lag and backward ejection in full-dimensional analysis of strong-field double ionization,” Phys. Rev. Lett. 97, 103008 (2006).
[Crossref] [PubMed]

Eckhardt, B.

K. Sacha and B. Eckhardt, “Nonsequential triple ionization in strong fields,” Phys. Rev. Lett. 64, 053401 (2001).

Emmamouilidou, A.

A. Emmamouilidou, J. S. Parker, L. R. Moore, and K. T. Taylor, “Direct versus delayed pathways in strong-field non-sequential double ionization,” New J. Phys. 13, 043001 (2011).
[Crossref]

Emmanouilidou, A.

A. Emmanouilidou and A. Staudte, “Intensity dependence of strong-field double-ionization mechanisms: from field-assisted recollision ionization to recollision-assisted field ionization,” Phys. Rev. A 80, 053415 (2009).
[Crossref]

A. Emmanouilidou, “Recoil collisions as a portal to field-assisted ionization at near-uv frequencies in the strong-field double ionization of helium,” Phys. Rev. A 78, 023411 (2008).
[Crossref]

Engel, V.

M. Lein, E. K. U. Gross, and V. Engel, “Intense-field double ionization of helium: identifying the mechanism,” Phys. Rev. Lett. 85, 4707–4710 (2000).
[Crossref] [PubMed]

Ergler, Th.

A. Rudenko, Th. Ergler, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “From non-sequential to sequential strong-field multiple ionization: identification of pure and mixed reaction channels,” J. Phys. B 41, 081006 (2008).
[Crossref]

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

K. Zrost, A. Rudenko, Th. Ergler, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Multiple ionization of Ne and Ar by intense 25 fs laser pulses: few-electron dynamics studied with ion momentum spectroscopy,” J. Phys. B 39, S371–S380 (2006).
[Crossref]

Faisal, F. H. M.

A. Becker and F. H. M. Faisal, “S-matrix analysis of ionization yields of noble gas atoms at the focus of Ti:sapphire laser pulses,” J. Phys. B 32, L335–L343 (1999).
[Crossref]

Falkowski, A.

S. Palaniyappan, A. DiChiara, E. Chowdhury, A. Falkowski, G. Ongadi, E. L. Huskins, and B. C. Walker, “Ultrastrong field ionization of Nen+(n≤ 8): rescattering and the role of the magnetic field,” Phys. Rev. Lett. 94, 243003 (2005).
[Crossref]

Feuerstein, B.

A. Rudenko, Th. Ergler, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “From non-sequential to sequential strong-field multiple ionization: identification of pure and mixed reaction channels,” J. Phys. B 41, 081006 (2008).
[Crossref]

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

K. Zrost, A. Rudenko, Th. Ergler, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Multiple ionization of Ne and Ar by intense 25 fs laser pulses: few-electron dynamics studied with ion momentum spectroscopy,” J. Phys. B 39, S371–S380 (2006).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. D. Schröter, and J. Ullrich, “Momentum distributions of Nen+ions created by an intense ultrashort laser pulse,” Phys. Rev. Lett. 84, 447–450 (2000).
[Crossref] [PubMed]

B. Feuerstein, R. Moshammer, and J. Ullrich, “Nonsequential multiple ionization in intense laser pulses: interpretation of ion momentum distributions within the classical ‘rescattering’ model,” J. Phys. B 33, L823–L830 (2000).
[Crossref]

Figueira de Morisson Faria, C.

X. Liu, C. Figueira de Morisson Faria, W. Becker, and P. B. Corkum, “Attosecond electron thermalization by laser-driven electron recollision in atoms,” J. Phys. B 39, L305–L311 (2006).
[Crossref]

Fischer, B.

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

Fischer, D.

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

Fittinghoff, D. N.

D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, “Observation of nonsequential double ionization of helium with optical tunneling,” Phys. Rev. Lett. 69, 2642–2645 (1992).
[Crossref] [PubMed]

Fu, L. B.

J. Chen, J. Liu, L. B. Fu, and W. M. Zheng, “Interpretation of momentum distribution of recoil ions from laserin-duced nonsequential double ionization by semiclassical rescattering model,” Phys. Rev. A 63,011404(R) (2000).
[Crossref]

Fu, Y.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

Gademann, G.

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

Giessen, H.

Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature (London) 405, 658–661 (2000).
[Crossref]

Gross, E. K. U.

M. Lein, E. K. U. Gross, and V. Engel, “Intense-field double ionization of helium: identifying the mechanism,” Phys. Rev. Lett. 85, 4707–4710 (2000).
[Crossref] [PubMed]

Guo, L.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

Haan, S. L.

S. L. Haan, Z. S. Smith, K. N. Shomsky, and P. W. Plantinga, “Electron drift directions in strong-field double ionization of atoms,” J. Phys. B 42, 134009 (2009).
[Crossref]

S. L. Haan, L. Breen, A. Karim, and J. H. Eberly, “Variable time lag and backward ejection in full-dimensional analysis of strong-field double ionization,” Phys. Rev. Lett. 97, 103008 (2006).
[Crossref] [PubMed]

Hasbani, R.

H. Niikura, F. Légaré, R. Hasbani, A. D. Bandrauk, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Sublaser-cycle electron pulses for probing molecular dynamics,” Nature(London) 417, 917–922 (2002).
[Crossref]

Hauri, C.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

He, X. T.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

Herrwerth, O.

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

Ho, Phay J.

Phay J. Ho and J. H. Eberly, “In-plane theory of nonsequential triple ionization,” Phys. Rev. Lett. 97, 083001 (2006).
[Crossref] [PubMed]

Höhr, C.

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

Hong, W.

Hong, W. Y.

Q. Liao, P. X. Lu, Q. B. Zhang, W. Y. Hong, and Z. Y. Yang, “Phase-dependent nonsequential double ionization by few-cycle laser pulses,” J. Phys. B 41, 125601 (2008).
[Crossref]

Huang, C.

Huskins, E. L.

S. Palaniyappan, A. DiChiara, E. Chowdhury, A. Falkowski, G. Ongadi, E. L. Huskins, and B. C. Walker, “Ultrastrong field ionization of Nen+(n≤ 8): rescattering and the role of the magnetic field,” Phys. Rev. Lett. 94, 243003 (2005).
[Crossref]

I’Huillier, A.

A. I’Huillier, L. A. Lompre, G. Mainfray, and C. Manus, “Multiply charged ions induced by multiphoton absorb in rare gases at 0.53 mm,” Phys. Rev. A 27, 2503–2512 (1983).
[Crossref]

Ivanov, M.

P. Dietrich, N. H. Burnett, M. Ivanov, and P. B. Corkum, “High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light,” Phys. Rev. A 50, R3585 (1994).
[Crossref] [PubMed]

Jagutzki, O.

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature (London) 405, 658–661 (2000).
[Crossref]

Kammer, S.

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

Kang, H.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

Karim, A.

S. L. Haan, L. Breen, A. Karim, and J. H. Eberly, “Variable time lag and backward ejection in full-dimensional analysis of strong-field double ionization,” Phys. Rev. Lett. 97, 103008 (2006).
[Crossref] [PubMed]

Korn, G.

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

Kremer, M.

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

Kulander, K. C.

J. L. Chaloupka, J. Rudati, R. Lafon, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Observation of a transition in the dynamics Of strong-field double ionization,” Phys. Rev. Lett. 90, 033002 (2003).
[Crossref] [PubMed]

R. Lafon, J. L. Chaloupka, B. Sheehy, P. M. Paul, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Electron energy spectra from intense laser double ionization of helium,” Phys. Rev. Lett. 86, 2762–2765 (2001).
[Crossref] [PubMed]

B. Walker, B. Sheehy, L. F. Dimauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionizaiton of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[Crossref] [PubMed]

D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, “Observation of nonsequential double ionization of helium with optical tunneling,” Phys. Rev. Lett. 69, 2642–2645 (1992).
[Crossref] [PubMed]

Lafon, R.

J. L. Chaloupka, J. Rudati, R. Lafon, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Observation of a transition in the dynamics Of strong-field double ionization,” Phys. Rev. Lett. 90, 033002 (2003).
[Crossref] [PubMed]

R. Lafon, J. L. Chaloupka, B. Sheehy, P. M. Paul, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Electron energy spectra from intense laser double ionization of helium,” Phys. Rev. Lett. 86, 2762–2765 (2001).
[Crossref] [PubMed]

Légaré, F.

H. Niikura, F. Légaré, R. Hasbani, A. D. Bandrauk, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Sublaser-cycle electron pulses for probing molecular dynamics,” Nature(London) 417, 917–922 (2002).
[Crossref]

Lein, M.

M. Lein, E. K. U. Gross, and V. Engel, “Intense-field double ionization of helium: identifying the mechanism,” Phys. Rev. Lett. 85, 4707–4710 (2000).
[Crossref] [PubMed]

Liao, Q.

Y. Zhou, C. Huang, Q. Liao, and P. Lu, “Classical simulations including electron correlations for sequential double ionization,” Phys. Rev. Lett. 109, 053004 (2012).
[Crossref] [PubMed]

Q. Liao, Y. Zhou, C. Huang, and P. Lu, “Multiphoton Rabi oscillations of correlated electrons in strong-field nonsequential double ionization,” New J. Phys. 14, 013001 (2012)
[Crossref]

Y. Zhou, C. Huang, A. H. Tong, Q. Liao, and P. Lu, “Correlated electron dynamics in nonsequential double ionization by orthogonal two-color laser pulses,” Opt. Express 19, 2301–2308 (2011).
[Crossref] [PubMed]

C. Huang, Y. Zhou, A. H. Tong, Q. Liao, W. Hong, and P. Lu, “The effect of molecular alignment on correlated electron dynamics in nonsequential double ionization,” Opt. Express 19, 5627–5634 (2011).
[Crossref] [PubMed]

Y. Zhou, Q. Liao, and P. Lu, “Asymmetric electron energy sharing in strong-field double ionization of helium,” Phys. Rev. A 82, 053402 (2010).
[Crossref]

Y. Zhou, Q. Liao, and P. Lu, “Complex sub-laser-cycle electron dynamics in strong-field nonsequential triple ionizaion,” Opt. Express 18, 16025–16034 (2010).
[Crossref] [PubMed]

Y. Zhou, Q. Liao, and P. Lu, “Mechanism for high-energy electrons in nonsequential double ionization below the recollision-excitation threshold,” Phys. Rev. A 80, 023412 (2009).
[Crossref]

Q. Liao, P. X. Lu, Q. B. Zhang, W. Y. Hong, and Z. Y. Yang, “Phase-dependent nonsequential double ionization by few-cycle laser pulses,” J. Phys. B 41, 125601 (2008).
[Crossref]

Lin, Z.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

Liu, H.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

Liu, J.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

J. Chen, J. Liu, L. B. Fu, and W. M. Zheng, “Interpretation of momentum distribution of recoil ions from laserin-duced nonsequential double ionization by semiclassical rescattering model,” Phys. Rev. A 63,011404(R) (2000).
[Crossref]

Liu, X.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

X. Liu, C. Figueira de Morisson Faria, W. Becker, and P. B. Corkum, “Attosecond electron thermalization by laser-driven electron recollision in atoms,” J. Phys. B 39, L305–L311 (2006).
[Crossref]

Lompre, L. A.

A. I’Huillier, L. A. Lompre, G. Mainfray, and C. Manus, “Multiply charged ions induced by multiphoton absorb in rare gases at 0.53 mm,” Phys. Rev. A 27, 2503–2512 (1983).
[Crossref]

Lötstedt, E.

E. Lötstedt and K. Midorikawa, “Effect of the laser magnetic field on nonsequential double ionization of He, Li+, and Be2+,” Phys. Rev. A 87, 013426 (2013).
[Crossref]

Lu, P.

C. Huang, Y. Zhou, Q. Zhang, and P. Lu, “Contribution of recollision ionization to the cross-shaped structure in nonsequential double ionization,” Opt. Express 21, 11382–11390 (2013).
[Crossref] [PubMed]

Q. Liao, Y. Zhou, C. Huang, and P. Lu, “Multiphoton Rabi oscillations of correlated electrons in strong-field nonsequential double ionization,” New J. Phys. 14, 013001 (2012)
[Crossref]

Y. Zhou, C. Huang, Q. Liao, and P. Lu, “Classical simulations including electron correlations for sequential double ionization,” Phys. Rev. Lett. 109, 053004 (2012).
[Crossref] [PubMed]

C. Huang, Y. Zhou, A. H. Tong, Q. Liao, W. Hong, and P. Lu, “The effect of molecular alignment on correlated electron dynamics in nonsequential double ionization,” Opt. Express 19, 5627–5634 (2011).
[Crossref] [PubMed]

Y. Zhou, C. Huang, A. H. Tong, Q. Liao, and P. Lu, “Correlated electron dynamics in nonsequential double ionization by orthogonal two-color laser pulses,” Opt. Express 19, 2301–2308 (2011).
[Crossref] [PubMed]

Y. Zhou, Q. Liao, and P. Lu, “Asymmetric electron energy sharing in strong-field double ionization of helium,” Phys. Rev. A 82, 053402 (2010).
[Crossref]

Y. Zhou, Q. Liao, and P. Lu, “Complex sub-laser-cycle electron dynamics in strong-field nonsequential triple ionizaion,” Opt. Express 18, 16025–16034 (2010).
[Crossref] [PubMed]

Y. Zhou, Q. Liao, and P. Lu, “Mechanism for high-energy electrons in nonsequential double ionization below the recollision-excitation threshold,” Phys. Rev. A 80, 023412 (2009).
[Crossref]

Lu, P. X.

Q. Liao, P. X. Lu, Q. B. Zhang, W. Y. Hong, and Z. Y. Yang, “Phase-dependent nonsequential double ionization by few-cycle laser pulses,” J. Phys. B 41, 125601 (2008).
[Crossref]

Mainfray, G.

A. I’Huillier, L. A. Lompre, G. Mainfray, and C. Manus, “Multiply charged ions induced by multiphoton absorb in rare gases at 0.53 mm,” Phys. Rev. A 27, 2503–2512 (1983).
[Crossref]

Manus, C.

A. I’Huillier, L. A. Lompre, G. Mainfray, and C. Manus, “Multiply charged ions induced by multiphoton absorb in rare gases at 0.53 mm,” Phys. Rev. A 27, 2503–2512 (1983).
[Crossref]

March, A. M.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

Meckel, M.

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

Mergel, V.

Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature (London) 405, 658–661 (2000).
[Crossref]

Midorikawa, K.

E. Lötstedt and K. Midorikawa, “Effect of the laser magnetic field on nonsequential double ionization of He, Li+, and Be2+,” Phys. Rev. A 87, 013426 (2013).
[Crossref]

Moore, L. R.

A. Emmamouilidou, J. S. Parker, L. R. Moore, and K. T. Taylor, “Direct versus delayed pathways in strong-field non-sequential double ionization,” New J. Phys. 13, 043001 (2011).
[Crossref]

Moshammer, R.

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

A. Rudenko, Th. Ergler, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “From non-sequential to sequential strong-field multiple ionization: identification of pure and mixed reaction channels,” J. Phys. B 41, 081006 (2008).
[Crossref]

K. Zrost, A. Rudenko, Th. Ergler, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Multiple ionization of Ne and Ar by intense 25 fs laser pulses: few-electron dynamics studied with ion momentum spectroscopy,” J. Phys. B 39, S371–S380 (2006).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. D. Schröter, and J. Ullrich, “Momentum distributions of Nen+ions created by an intense ultrashort laser pulse,” Phys. Rev. Lett. 84, 447–450 (2000).
[Crossref] [PubMed]

B. Feuerstein, R. Moshammer, and J. Ullrich, “Nonsequential multiple ionization in intense laser pulses: interpretation of ion momentum distributions within the classical ‘rescattering’ model,” J. Phys. B 33, L823–L830 (2000).
[Crossref]

Muller, H. G.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and F. Dimauro, “Srong-field photoionization revisited,” Nature Physics 5, 335–338 (2009).
[Crossref]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

Neumayer, P.

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

Niikura, H.

H. Niikura, F. Légaré, R. Hasbani, A. D. Bandrauk, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Sublaser-cycle electron pulses for probing molecular dynamics,” Nature(London) 417, 917–922 (2002).
[Crossref]

Ongadi, G.

S. Palaniyappan, A. DiChiara, E. Chowdhury, A. Falkowski, G. Ongadi, E. L. Huskins, and B. C. Walker, “Ultrastrong field ionization of Nen+(n≤ 8): rescattering and the role of the magnetic field,” Phys. Rev. Lett. 94, 243003 (2005).
[Crossref]

Palaniyappan, S.

S. Palaniyappan, A. DiChiara, E. Chowdhury, A. Falkowski, G. Ongadi, E. L. Huskins, and B. C. Walker, “Ultrastrong field ionization of Nen+(n≤ 8): rescattering and the role of the magnetic field,” Phys. Rev. Lett. 94, 243003 (2005).
[Crossref]

Parker, J. S.

A. Emmamouilidou, J. S. Parker, L. R. Moore, and K. T. Taylor, “Direct versus delayed pathways in strong-field non-sequential double ionization,” New J. Phys. 13, 043001 (2011).
[Crossref]

J. S. Parker, B. J. S. Doherty, K. T. Taylor, K. D. Schultz, C. I. Blaga, and L. F. DiMauro, “High-energy cutoff in the spectrum of strong-field nonsequential double ionization,” Phys. Rev. Lett. 96, 133001 (2006).
[Crossref] [PubMed]

Paul, P. M.

R. Lafon, J. L. Chaloupka, B. Sheehy, P. M. Paul, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Electron energy spectra from intense laser double ionization of helium,” Phys. Rev. Lett. 86, 2762–2765 (2001).
[Crossref] [PubMed]

Paulus, G. G.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and F. Dimauro, “Srong-field photoionization revisited,” Nature Physics 5, 335–338 (2009).
[Crossref]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

Plantinga, P. W.

S. L. Haan, Z. S. Smith, K. N. Shomsky, and P. W. Plantinga, “Electron drift directions in strong-field double ionization of atoms,” J. Phys. B 42, 134009 (2009).
[Crossref]

Quan, W.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

Rayner, D.M.

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

Roedig, C.

G. Doumy, J. Wheeler, C. Roedig, R. Chirla, P. Agostini, and L. F. DiMauro, “Attosecond synchronization of high-order harmonics from midinfrared drivers,” Phys. Rev. Lett. 102, 093002 (2009).
[Crossref] [PubMed]

Rottke, H.

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

Rudati, J.

J. L. Chaloupka, J. Rudati, R. Lafon, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Observation of a transition in the dynamics Of strong-field double ionization,” Phys. Rev. Lett. 90, 033002 (2003).
[Crossref] [PubMed]

Rudenko, A.

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

A. Rudenko, Th. Ergler, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “From non-sequential to sequential strong-field multiple ionization: identification of pure and mixed reaction channels,” J. Phys. B 41, 081006 (2008).
[Crossref]

K. Zrost, A. Rudenko, Th. Ergler, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Multiple ionization of Ne and Ar by intense 25 fs laser pulses: few-electron dynamics studied with ion momentum spectroscopy,” J. Phys. B 39, S371–S380 (2006).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

Sacha, K.

K. Sacha and B. Eckhardt, “Nonsequential triple ionization in strong fields,” Phys. Rev. Lett. 64, 053401 (2001).

Sandner, W.

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

Schafer, K. J.

B. Walker, B. Sheehy, L. F. Dimauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionizaiton of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[Crossref] [PubMed]

Schmitt, W.

R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. D. Schröter, and J. Ullrich, “Momentum distributions of Nen+ions created by an intense ultrashort laser pulse,” Phys. Rev. Lett. 84, 447–450 (2000).
[Crossref] [PubMed]

Schöffler, M.

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

Schröter, C. D.

A. Rudenko, Th. Ergler, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “From non-sequential to sequential strong-field multiple ionization: identification of pure and mixed reaction channels,” J. Phys. B 41, 081006 (2008).
[Crossref]

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

K. Zrost, A. Rudenko, Th. Ergler, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Multiple ionization of Ne and Ar by intense 25 fs laser pulses: few-electron dynamics studied with ion momentum spectroscopy,” J. Phys. B 39, S371–S380 (2006).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. D. Schröter, and J. Ullrich, “Momentum distributions of Nen+ions created by an intense ultrashort laser pulse,” Phys. Rev. Lett. 84, 447–450 (2000).
[Crossref] [PubMed]

Schultz, K. D.

J. S. Parker, B. J. S. Doherty, K. T. Taylor, K. D. Schultz, C. I. Blaga, and L. F. DiMauro, “High-energy cutoff in the spectrum of strong-field nonsequential double ionization,” Phys. Rev. Lett. 96, 133001 (2006).
[Crossref] [PubMed]

Sheehy, B.

R. Lafon, J. L. Chaloupka, B. Sheehy, P. M. Paul, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Electron energy spectra from intense laser double ionization of helium,” Phys. Rev. Lett. 86, 2762–2765 (2001).
[Crossref] [PubMed]

B. Walker, B. Sheehy, L. F. Dimauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionizaiton of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[Crossref] [PubMed]

Shomsky, K. N.

S. L. Haan, Z. S. Smith, K. N. Shomsky, and P. W. Plantinga, “Electron drift directions in strong-field double ionization of atoms,” J. Phys. B 42, 134009 (2009).
[Crossref]

Simeonidis, K.

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

Sistrunk, E.

A. D. DiChiara, E. Sistrunk, C. I. Blaga, U. B. Szafruga, P. Agostini, and L. F. DiMauro, “Inelastic scattering of broadband electron wave packets driven by an intense midinfrared laser field,” Phys. Rev. Lett. 108, 033002 (2012).
[Crossref] [PubMed]

Smith, Z. S.

S. L. Haan, Z. S. Smith, K. N. Shomsky, and P. W. Plantinga, “Electron drift directions in strong-field double ionization of atoms,” J. Phys. B 42, 134009 (2009).
[Crossref]

Smolarski, M.

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

Spielberger, L.

Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature (London) 405, 658–661 (2000).
[Crossref]

Staudte, A.

A. Emmanouilidou and A. Staudte, “Intensity dependence of strong-field double-ionization mechanisms: from field-assisted recollision ionization to recollision-assisted field ionization,” Phys. Rev. A 80, 053415 (2009).
[Crossref]

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature (London) 405, 658–661 (2000).
[Crossref]

Szafruga, U. B.

A. D. DiChiara, E. Sistrunk, C. I. Blaga, U. B. Szafruga, P. Agostini, and L. F. DiMauro, “Inelastic scattering of broadband electron wave packets driven by an intense midinfrared laser field,” Phys. Rev. Lett. 108, 033002 (2012).
[Crossref] [PubMed]

Talebpour, A.

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917 (1995).
[Crossref] [PubMed]

Tate, J.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

Taylor, K. T.

A. Emmamouilidou, J. S. Parker, L. R. Moore, and K. T. Taylor, “Direct versus delayed pathways in strong-field non-sequential double ionization,” New J. Phys. 13, 043001 (2011).
[Crossref]

J. S. Parker, B. J. S. Doherty, K. T. Taylor, K. D. Schultz, C. I. Blaga, and L. F. DiMauro, “High-energy cutoff in the spectrum of strong-field nonsequential double ionization,” Phys. Rev. Lett. 96, 133001 (2006).
[Crossref] [PubMed]

Tong, A. H.

Trump, C.

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

Ullrich, J.

A. Rudenko, Th. Ergler, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “From non-sequential to sequential strong-field multiple ionization: identification of pure and mixed reaction channels,” J. Phys. B 41, 081006 (2008).
[Crossref]

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

K. Zrost, A. Rudenko, Th. Ergler, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Multiple ionization of Ne and Ar by intense 25 fs laser pulses: few-electron dynamics studied with ion momentum spectroscopy,” J. Phys. B 39, S371–S380 (2006).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. D. Schröter, and J. Ullrich, “Momentum distributions of Nen+ions created by an intense ultrashort laser pulse,” Phys. Rev. Lett. 84, 447–450 (2000).
[Crossref] [PubMed]

B. Feuerstein, R. Moshammer, and J. Ullrich, “Nonsequential multiple ionization in intense laser pulses: interpretation of ion momentum distributions within the classical ‘rescattering’ model,” J. Phys. B 33, L823–L830 (2000).
[Crossref]

Urbasch, G.

Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature (London) 405, 658–661 (2000).
[Crossref]

Villeneuve, D. M.

H. Niikura, F. Légaré, R. Hasbani, A. D. Bandrauk, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Sublaser-cycle electron pulses for probing molecular dynamics,” Nature(London) 417, 917–922 (2002).
[Crossref]

Villeneuve, D.M.

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

Vollmer, M.

Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature (London) 405, 658–661 (2000).
[Crossref]

Walker, B.

B. Walker, B. Sheehy, L. F. Dimauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionizaiton of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[Crossref] [PubMed]

Walker, B. C.

S. Palaniyappan, A. DiChiara, E. Chowdhury, A. Falkowski, G. Ongadi, E. L. Huskins, and B. C. Walker, “Ultrastrong field ionization of Nen+(n≤ 8): rescattering and the role of the magnetic field,” Phys. Rev. Lett. 94, 243003 (2005).
[Crossref]

Weber, Th.

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature (London) 405, 658–661 (2000).
[Crossref]

Weckenbrock, M.

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature (London) 405, 658–661 (2000).
[Crossref]

Wheeler, J.

G. Doumy, J. Wheeler, C. Roedig, R. Chirla, P. Agostini, and L. F. DiMauro, “Attosecond synchronization of high-order harmonics from midinfrared drivers,” Phys. Rev. Lett. 102, 093002 (2009).
[Crossref] [PubMed]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

Wittmann, M.

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

Wu, M.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

Xiong, H.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

Xu, H.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

Xu, Z. Z.

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

Yang, Z. Y.

Q. Liao, P. X. Lu, Q. B. Zhang, W. Y. Hong, and Z. Y. Yang, “Phase-dependent nonsequential double ionization by few-cycle laser pulses,” J. Phys. B 41, 125601 (2008).
[Crossref]

Yu. Ivanov, M.

H. Niikura, F. Légaré, R. Hasbani, A. D. Bandrauk, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Sublaser-cycle electron pulses for probing molecular dynamics,” Nature(London) 417, 917–922 (2002).
[Crossref]

Zeidler, D.

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

Zhang, Q.

Zhang, Q. B.

Q. Liao, P. X. Lu, Q. B. Zhang, W. Y. Hong, and Z. Y. Yang, “Phase-dependent nonsequential double ionization by few-cycle laser pulses,” J. Phys. B 41, 125601 (2008).
[Crossref]

Zheng, W. M.

J. Chen, J. Liu, L. B. Fu, and W. M. Zheng, “Interpretation of momentum distribution of recoil ions from laserin-duced nonsequential double ionization by semiclassical rescattering model,” Phys. Rev. A 63,011404(R) (2000).
[Crossref]

Zhou, Y.

C. Huang, Y. Zhou, Q. Zhang, and P. Lu, “Contribution of recollision ionization to the cross-shaped structure in nonsequential double ionization,” Opt. Express 21, 11382–11390 (2013).
[Crossref] [PubMed]

Q. Liao, Y. Zhou, C. Huang, and P. Lu, “Multiphoton Rabi oscillations of correlated electrons in strong-field nonsequential double ionization,” New J. Phys. 14, 013001 (2012)
[Crossref]

Y. Zhou, C. Huang, Q. Liao, and P. Lu, “Classical simulations including electron correlations for sequential double ionization,” Phys. Rev. Lett. 109, 053004 (2012).
[Crossref] [PubMed]

C. Huang, Y. Zhou, A. H. Tong, Q. Liao, W. Hong, and P. Lu, “The effect of molecular alignment on correlated electron dynamics in nonsequential double ionization,” Opt. Express 19, 5627–5634 (2011).
[Crossref] [PubMed]

Y. Zhou, C. Huang, A. H. Tong, Q. Liao, and P. Lu, “Correlated electron dynamics in nonsequential double ionization by orthogonal two-color laser pulses,” Opt. Express 19, 2301–2308 (2011).
[Crossref] [PubMed]

Y. Zhou, Q. Liao, and P. Lu, “Asymmetric electron energy sharing in strong-field double ionization of helium,” Phys. Rev. A 82, 053402 (2010).
[Crossref]

Y. Zhou, Q. Liao, and P. Lu, “Complex sub-laser-cycle electron dynamics in strong-field nonsequential triple ionizaion,” Opt. Express 18, 16025–16034 (2010).
[Crossref] [PubMed]

Y. Zhou, Q. Liao, and P. Lu, “Mechanism for high-energy electrons in nonsequential double ionization below the recollision-excitation threshold,” Phys. Rev. A 80, 023412 (2009).
[Crossref]

Zrost, K.

A. Rudenko, Th. Ergler, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “From non-sequential to sequential strong-field multiple ionization: identification of pure and mixed reaction channels,” J. Phys. B 41, 081006 (2008).
[Crossref]

K. Zrost, A. Rudenko, Th. Ergler, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Multiple ionization of Ne and Ar by intense 25 fs laser pulses: few-electron dynamics studied with ion momentum spectroscopy,” J. Phys. B 39, S371–S380 (2006).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

Contemporary Physics (1)

P. Agostini and L. F. DiMauro, “Atoms in high intensity mid-infrared pulses,” Contemporary Physics 49, 179–197 (2008).
[Crossref]

J. Phys. B (7)

S. L. Haan, Z. S. Smith, K. N. Shomsky, and P. W. Plantinga, “Electron drift directions in strong-field double ionization of atoms,” J. Phys. B 42, 134009 (2009).
[Crossref]

A. Becker and F. H. M. Faisal, “S-matrix analysis of ionization yields of noble gas atoms at the focus of Ti:sapphire laser pulses,” J. Phys. B 32, L335–L343 (1999).
[Crossref]

Q. Liao, P. X. Lu, Q. B. Zhang, W. Y. Hong, and Z. Y. Yang, “Phase-dependent nonsequential double ionization by few-cycle laser pulses,” J. Phys. B 41, 125601 (2008).
[Crossref]

K. Zrost, A. Rudenko, Th. Ergler, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Multiple ionization of Ne and Ar by intense 25 fs laser pulses: few-electron dynamics studied with ion momentum spectroscopy,” J. Phys. B 39, S371–S380 (2006).
[Crossref]

A. Rudenko, Th. Ergler, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “From non-sequential to sequential strong-field multiple ionization: identification of pure and mixed reaction channels,” J. Phys. B 41, 081006 (2008).
[Crossref]

B. Feuerstein, R. Moshammer, and J. Ullrich, “Nonsequential multiple ionization in intense laser pulses: interpretation of ion momentum distributions within the classical ‘rescattering’ model,” J. Phys. B 33, L823–L830 (2000).
[Crossref]

X. Liu, C. Figueira de Morisson Faria, W. Becker, and P. B. Corkum, “Attosecond electron thermalization by laser-driven electron recollision in atoms,” J. Phys. B 39, L305–L311 (2006).
[Crossref]

Nature (London) (1)

Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature (London) 405, 658–661 (2000).
[Crossref]

Nature Physics (2)

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and F. Dimauro, “Srong-field photoionization revisited,” Nature Physics 5, 335–338 (2009).
[Crossref]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Dimauro, “Scaling strong-field interactions towards the classical limit,” Nature Physics 4386–389 (2008).
[Crossref]

Nature(London) (1)

H. Niikura, F. Légaré, R. Hasbani, A. D. Bandrauk, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Sublaser-cycle electron pulses for probing molecular dynamics,” Nature(London) 417, 917–922 (2002).
[Crossref]

New J. Phys. (3)

Q. Liao, Y. Zhou, C. Huang, and P. Lu, “Multiphoton Rabi oscillations of correlated electrons in strong-field nonsequential double ionization,” New J. Phys. 14, 013001 (2012)
[Crossref]

O. Herrwerth, A. Rudenko, M. Kremer, V. L. B. de Jesus, B. Fischer, G. Gademann, K. Simeonidis, A. Achtelik, Th. Ergler, B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Wavelength dependence of sublasercycle few-electron dynamics in strong-field multiple ionization,” New J. Phys. 10, 025007 (2008).
[Crossref]

A. Emmamouilidou, J. S. Parker, L. R. Moore, and K. T. Taylor, “Direct versus delayed pathways in strong-field non-sequential double ionization,” New J. Phys. 13, 043001 (2011).
[Crossref]

Opt. Express (4)

Phys. Rev. A (9)

A. Emmanouilidou, “Recoil collisions as a portal to field-assisted ionization at near-uv frequencies in the strong-field double ionization of helium,” Phys. Rev. A 78, 023411 (2008).
[Crossref]

A. Emmanouilidou and A. Staudte, “Intensity dependence of strong-field double-ionization mechanisms: from field-assisted recollision ionization to recollision-assisted field ionization,” Phys. Rev. A 80, 053415 (2009).
[Crossref]

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917 (1995).
[Crossref] [PubMed]

Y. Zhou, Q. Liao, and P. Lu, “Mechanism for high-energy electrons in nonsequential double ionization below the recollision-excitation threshold,” Phys. Rev. A 80, 023412 (2009).
[Crossref]

A. I’Huillier, L. A. Lompre, G. Mainfray, and C. Manus, “Multiply charged ions induced by multiphoton absorb in rare gases at 0.53 mm,” Phys. Rev. A 27, 2503–2512 (1983).
[Crossref]

P. Dietrich, N. H. Burnett, M. Ivanov, and P. B. Corkum, “High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light,” Phys. Rev. A 50, R3585 (1994).
[Crossref] [PubMed]

J. Chen, J. Liu, L. B. Fu, and W. M. Zheng, “Interpretation of momentum distribution of recoil ions from laserin-duced nonsequential double ionization by semiclassical rescattering model,” Phys. Rev. A 63,011404(R) (2000).
[Crossref]

Y. Zhou, Q. Liao, and P. Lu, “Asymmetric electron energy sharing in strong-field double ionization of helium,” Phys. Rev. A 82, 053402 (2010).
[Crossref]

E. Lötstedt and K. Midorikawa, “Effect of the laser magnetic field on nonsequential double ionization of He, Li+, and Be2+,” Phys. Rev. A 87, 013426 (2013).
[Crossref]

Phys. Rev. Lett. (20)

G. Doumy, J. Wheeler, C. Roedig, R. Chirla, P. Agostini, and L. F. DiMauro, “Attosecond synchronization of high-order harmonics from midinfrared drivers,” Phys. Rev. Lett. 102, 093002 (2009).
[Crossref] [PubMed]

A. D. DiChiara, E. Sistrunk, C. I. Blaga, U. B. Szafruga, P. Agostini, and L. F. DiMauro, “Inelastic scattering of broadband electron wave packets driven by an intense midinfrared laser field,” Phys. Rev. Lett. 108, 033002 (2012).
[Crossref] [PubMed]

W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical aspects in above-threshold ionization with a midinfrared strong laser field,” Phys. Rev. Lett. 103, 093001 (2009).
[Crossref] [PubMed]

M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett. 92, 213002 (2004).
[Crossref] [PubMed]

S. L. Haan, L. Breen, A. Karim, and J. H. Eberly, “Variable time lag and backward ejection in full-dimensional analysis of strong-field double ionization,” Phys. Rev. Lett. 97, 103008 (2006).
[Crossref] [PubMed]

Phay J. Ho and J. H. Eberly, “In-plane theory of nonsequential triple ionization,” Phys. Rev. Lett. 97, 083001 (2006).
[Crossref] [PubMed]

D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, “Observation of nonsequential double ionization of helium with optical tunneling,” Phys. Rev. Lett. 69, 2642–2645 (1992).
[Crossref] [PubMed]

M. Lein, E. K. U. Gross, and V. Engel, “Intense-field double ionization of helium: identifying the mechanism,” Phys. Rev. Lett. 85, 4707–4710 (2000).
[Crossref] [PubMed]

Y. Zhou, C. Huang, Q. Liao, and P. Lu, “Classical simulations including electron correlations for sequential double ionization,” Phys. Rev. Lett. 109, 053004 (2012).
[Crossref] [PubMed]

B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref]

B. Walker, B. Sheehy, L. F. Dimauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionizaiton of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[Crossref] [PubMed]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

S. Palaniyappan, A. DiChiara, E. Chowdhury, A. Falkowski, G. Ongadi, E. L. Huskins, and B. C. Walker, “Ultrastrong field ionization of Nen+(n≤ 8): rescattering and the role of the magnetic field,” Phys. Rev. Lett. 94, 243003 (2005).
[Crossref]

A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett. 93, 253001 (2004).
[Crossref]

P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref] [PubMed]

R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. D. Schröter, and J. Ullrich, “Momentum distributions of Nen+ions created by an intense ultrashort laser pulse,” Phys. Rev. Lett. 84, 447–450 (2000).
[Crossref] [PubMed]

R. Lafon, J. L. Chaloupka, B. Sheehy, P. M. Paul, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Electron energy spectra from intense laser double ionization of helium,” Phys. Rev. Lett. 86, 2762–2765 (2001).
[Crossref] [PubMed]

J. L. Chaloupka, J. Rudati, R. Lafon, P. Agostini, K. C. Kulander, and L. F. DiMauro, “Observation of a transition in the dynamics Of strong-field double ionization,” Phys. Rev. Lett. 90, 033002 (2003).
[Crossref] [PubMed]

J. S. Parker, B. J. S. Doherty, K. T. Taylor, K. D. Schultz, C. I. Blaga, and L. F. DiMauro, “High-energy cutoff in the spectrum of strong-field nonsequential double ionization,” Phys. Rev. Lett. 96, 133001 (2006).
[Crossref] [PubMed]

K. Sacha and B. Eckhardt, “Nonsequential triple ionization in strong fields,” Phys. Rev. Lett. 64, 053401 (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The two-dimensional (the left column) and the longitudinal (the right column) momentum distribution of Ne3+ ions. The laser intensities are (a) and (b) 0.5PW/cm2, (c) and (d) 1.0PW/cm2, (e) and (f) 2.0PW/cm2, respectively. The distributions are plotted in units of U p. The ensemble size are 15 million (0.5PW/cm2), 10 million (1.0PW/cm2) and 6 million (2.0PW/cm2). For the two-dimensional momentum distributions, the horizonal axis denotes the longitudinal momentum (alone z axis) and the vertical axis denotes the transverse momentum (alone x axis). Dashed vertical lines indicate 2 U p, and 4 U p.
Fig. 2
Fig. 2 Three sample TI trajectories. The upper, middle, and bottom rows show the longitudinal coordinate z (parallel to the laser polarization), energy, and longitudinal momentum versus the time for each electron, respectively. The arrows indicate the time when recollision occurs.
Fig. 3
Fig. 3 (a) The longitudinal ion momentum distributions of (0–3) (red curve) and (0-2-3)(blue curve) trajectories at 0.5PW/cm2. (b) The longitudinal ion momentum distributions of (0–3) (red curve) and (0-2-3) (blue curve) trajectories at 1.0PW/cm2. (c) The longitudinal ion momentum distributions of (0–3) (red curve) and (0-1-3) (dark green curve) trajectories at 2.0PW/cm2. The distributions are plotted in units of U p.
Fig. 4
Fig. 4 The triple ionization phase tTI versus recollision phase tr (both in cycle) where the intensities are (a) 0.5PW/cm2, (b) 2.0PW/cm2, (c) and (d) 1.0PW/cm2, respectively. At 0.5PW/cm2 most of the TI trajectories are ionized through (0–3) channel and at 2.0PW/cm2 they are ionized through (0-1-3) channel. For 1.0PW/cm2 we have separated the TI trajectories base on whether they get ionized through (0–3) (c) or (0-2-3) (d) channels.

Tables (1)

Tables Icon

Table 1 The contributions of the different ionization channels to the total TI yield for the three laser intensities.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d 2 r i d t 2 = E ( t ) [ V ne ( r i ) + i j V e e ( r i , r j ) ] ,

Metrics