Abstract

Here we investigate a physical implementation of the universal quantum controlled phase (CPHASE) gate operation on photonic qubits by using nitrogen vacancy (N-V) centers and microcavity resonators. The quantum CPHASE gate can be achieved by sending the photons through the microcavity and interacting with the N-V center. The proposed scheme can be further used for scalable quantum computation. We show that this technique provides us a deterministic source of cluster state generation on photonic qubits. In this scheme, only single photons and single N-V center are required and the proposed schemes are feasible with the current experimental technology.

© 2013 OSA

1. Introduction

Quantum information processing (QIP) based on solid state system is a dynamically developing research field. The key building block of a quantum processor is quantum gate, which is used to manipulate the quantum state with a high fidelity. During the past decades, optical quantum gates and light matter interfaces based quantum gates have been exploited with linear optics and atomic systems using cavity quantum eletrodynamics. The most attractive quantum gate operations are the controlled qubits operation which was widely implemented in various systems. In 2003, the controlled-not (CNot) gate based on ion traps has been experimentally realized [1]. Later, Li et al. realized an all-optical quantum gate using semiconductor quantum dots [2]. In 2005, Zhao et al. demonstrated a nondestructive CNot gate for two photonic qubits [3]. In 2010, Isenhower et al. presented a CNot gate between two individually addressed neutral atoms which uses Rydberg blockade interactions between neutral atoms held in optical traps [4]. In 2011, the controlled phase gate had been experimentally realized using linear optics [5] and continuous variables [6].

Recently, a promising candidate towards the goal of QIP is provided by using the nitrogen-vacancy (N-V) centers. Theoretically, Yang et al. [7] presented an entanglement generation protocol for W state and Bell states by using N-V centers coupled to a whispering-gallery modes (WGM) cavity. Later, they construct quantum memories for quantum computation using the same system [8]. Dayan et al. discussed the dynamics of a single atom coupled with a microcavity resonator [9] which indicates that the single atom within the resonator can dynamically control the cavity output. In 2011, Chen et al. [10] presented an entanglement generation protocol between distant N-V centers via the coupling to microcavity resonators. Togan et al. [11] experimentally realized the entanglement generation process based on N-V centers and microcavities. Stimulated by the advances on the solid state QIP, the idea of entanglement manipulation between the solid states and the photons had been developed [12, 13]. The motivation is to distribute the maximally entanglement between solid state qubits, and to facilitate the future realization of scalable quantum computation.

Quantum logic gates between flying qubits and stationary qubits hold great promise for QIP as flying qubits such as photon are the perfect candidates for fast and reliable long-distance communication while the stationary qubits are suitable for processor and local storage. Here in this study, we present a deterministic scheme to construct universal quantum controlled phase (CPHASE) gate between the flying photonic qubits assisted by N-V centers coupled with microtoroidal cavities. The control qubit and the target qubit of our gates are encoded on the polarization of the moving photons and the gate can be realized with a success probability of 100% in principle. Recent experimental efforts have reported on remarkable progress in the proposed solid-state system. Furthermore, considering the scalability of quantum computation, we provide a further method to implement cluster state generation for the photonic qubits.

2. Hybrid universal quantum phase gate based on nitrogen vacancy centers and micro-cavity system

The realization of the CPHASE gate consists of a single N-V center and microcavity coupled system. A fundamental task of the CPHASE gate can be described by the unitary operator Uj,kCP=eiπ|LL||LL|, while the assisted N-V center is restored in its initial state, here |L〉 represents the left circularly polarization of the photon. The interaction between a single N-V center and a cavity mode can be described by using the input-output process of the Jaynes-Cummings (JC) model [14]. The N-V center is assumed to be a three-level system as shown in the bubble of Fig. 1, with the excited state |A〉 and two ground states with the angular momentum |ms = ±1〉. The Hamiltonian describes the interaction between the N-V center and the electric cavity field and is given by H^=h¯ω0|AA|+h¯ωc,LaLaL+h¯ωc,RaRaR+ih¯g(aLσ+++aLσ++aRσ++aRσ), here g represents the light-matter interaction strength. σ± and σ±+ are the annihilation and creation operators for the N-V center and the subscripts ± denote the transition in correspondence with the levels ms = −1 or ms = +1, respectively. a and a+ are the corresponding annihilation and creation operators for the cavity field. The level transition between |A〉 and |±1〉 can only be excited by the single photon with the angular momentum which obeys the selection rules, for instance, the left circularly polarized photon can only couple with the N-V center in the level |−1〉 and the right circularly polarized one only couples with the N-V center in the level |+1〉.

 

Fig. 1 Schematic diagram of the setup for the construction of CPHASE gate between the photon and the N-V center. PBSs represent the polarization beam splitters which transmit horizontal polarized photons and reflect the vertical polarized photons; and QWPs denote the quarter-wave plates that achieve the polarization changes of the single-photon pulse as HL. In the bubble, the detailed energy configuration is described for N-V center in diamond nanocrystal.

Download Full Size | PPT Slide | PDF

From the above Hamiltonian, we can obtain the equations governing the dynamics of the system [15]

ddta^(t)=[i(ωcω)+κ+κs]a^(t)gσ^κa^in(t)
and
ddtσ^=[i(ω0ω)+κ]σ^gσ^za^(t).
And the cavity field input-output relation can be obtained as a^in(t)+a^out(t)=κa^(t). The output single photon state will be determined by the input-output relation which be solved as |ϕout〉 = exp()|ϕin〉, here the phase shift ϕ is represented by the reflection coefficient r(ω) = âoutin. And the coefficient r(ω) can be solved as
r(ω)=[i(ω0ωp)+γ2][i(ωcωp)κ2+κs2]+g2[i(ω0ωp)+γ2][i(ωcωp)+κ2+κs2]+g2.
Here κ and κs are the cavity decay rate and the cavity leaky rate, respectively, and γ/2 denotes the decay rate of the N-V center. ωp, ωc, and ω0 represent the frequencies of the input photon, cavity mode and the atomic energy level transitions, respectively. Here we set the resonant conditions with ωc = ω0 = ωp, the reflect coefficient r0(ω) under the uncoupling case with g = 0 approaches to −1. However, the coupled reflection coefficient r(ω) can be described as
r(ω)=γκ+4g2γκ+4g2.
As shown in the above equations, there is a phase shift on the output field with respect to the atomic state of the N-V center. If the N-V center is in the state |−〉, we can obtain the following evolution of atom-photon system: |ϕout〉 = r(ω)|L〉 = e|L〉 or |ϕout〉 = r0(ω)|R〉 = e0 |R〉, here the parameters ϕ and ϕ0 represent the phase shift determined by the input-output relation. It is obvious that the uncoupled condition will introduce a π phase shift on the input-output state.

In our implementation of the CPHASE gate, we first present a schematic diagram show the principle of CPHASE operation between the single photon and the N-V center in Fig. 1, the control qubits are encoded on the flying qubit (i.e., the two polarization states of a single photon, denoted by |V〉 and |H〉), while the target qubit is encoded on the N-V center inside an optical microcavity. Our goal is to realize the photon-solid qubits CPHASE gate UCP. This gate enables a controlled phase change process between the input-output single photon and an isolated spin qubit. Suppose the N-V center is initially prepared in the state η|+〉 +δ|−〉, here we denote |±〉 as the state of the N-V center in the level |ms = ±1〉. The input photon is prepared in the state α|H〉 + β|V〉, here |H〉 and |V〉 represent the horizontal and vertical polarization of the photon, respectively. The state of the composite system can be described as

|ψin=(α|H+β|V)(η|++δ|).

Exploiting the setups shown in Fig. 1, the horizontally polarized input photon will be transmitted by the PBS, otherwise the vertically polarized photon will be reflected by the PBS. Before the photon passes through the cavity, a QWP operation is performed on it which is used to complete the transformation: |H〉 → |L〉. Then the N-V center and microcavity system will interact with the photon and the composite system will evolve as:

|ψout=α|H(η|++δ|)+β|V(η|++δ|)αη|L,+αδ|L,+βη|V,++βδ|V,(α|HσzNV+β|V)(η|++δ|),
here σzNV is the Pauli-Z operator for the N-V centers. From Eq.(6), one can see that the spin is flipped when the photon is in the state |H〉, compared with the original state of the two-qubit hybrid system. That is, the quantum circuit shown in Fig. 1 can be used to construct the CPHASE gate by using the photon as the controlling qubit and the N-V center as the target qubit. Following the interaction between the input single photon pulse and the N-V center, the process can be described by the unitary operator UCP = eiπ(|H〉〈H|⊗|−〉〈−|).

3. Photonic quantum phase gate and cluster state generation

The framework of the CPHASE gate circuit on the photonic qubits is shown in Fig. 2. The input photon pulses, marked with j and k, are initially prepared in the state: α1|L〉 + β1|R〉 and α2|L〉 + β2|R〉, here |α1|2 + |β1|2 = |α2|2 + |β2|2 = 1. And the N-V center is prepared in the superposition state 12(|++|). The resonant transition |+〉 → |A〉 and |−〉 → |A〉 are coupled with the input photon with mode aR and aL respectively. Now we present the detailed theoretical model of the controlled phase operation on the photonic qubits. The process can be described by the following operations: UajCP×R(π2)×UakCP×R(π2)×UajCP. Here R(θ) is the single qubit rotation on the N-V center which can be realized by a microwave pulse. The transformation of the rotations obey R(θ)|+〉 = cos(θ/2)|+〉 + sin(θ/2)|−〉 and R(θ)|−〉 = −sin(θ/2)|+〉+cos(θ/2)|−〉. The initial state is denoted by |ψj ⊗ |ψk ⊗ |ϕNV, here the subscripts j and k represent the two input photons. The rotation operations R(π/2) and R(−π/2) denote the single particle rotation on the state of the N-V centers.

 

Fig. 2 Schematic diagram of the setup for the construction of controlled phase gate based on photonic qubits. CPF represents the controlled phase flip operation between the single photon and the N-V centers.

Download Full Size | PPT Slide | PDF

The detailed description of the CPHASE gate operation is as follows: at first the j pulse is sent to the CPHASE gate and interacted with the N-V center a and evolve the composite state as

UajCP|ψj|ϕNV|ψk=[α12(|L|+|L|)+β12(|R|++|R|)](α2|L+β2|R).
Then a π/2 microwave pulse is performed on the N-V center which made a Hadamard operation on the state, the system can be described as
R(π/2):α12[|L(|++|)|L(|+|)]+β12[|R(|++|)+|R(|+|)](α2|L+β2|R).
The k pulse is sent to the CPF gate and interacted with the N-V center as:
UakCP:α1α22[|L,L(|+|)|L,L(|++|)]+β1α22[|R,L(|+|)+|R,L(|++|)]+α1β22[|L,R(|++|)|L,R(|+|)]+β1β22[|R,R(|++|)+|R,R(|+|)]
After a −π/2 pulse is performed on the N-V center, the system can be described as:
R(π/2):α1α22|L,L(|+|)β1α22|R,L(|+|)+α1β22|L,R(|++|)+β1β22|R,R(|+|).
Following the circuits shown in Fig. 2, the j pulse is recycled and interacted with the N-V center again, then the state of the system evolves as:
UajCP:α1α22|L,L(||+)+β1α22|R,L(|+|)+α1β22|L,R(|+|)+β1β22(|R,R|+|).
Then the remaining two photons are in the state: −α1α2|L,L〉 + β1α2|R,L〉 + α1β2|L,R〉 + β1β2|R,R〉.

In our proposed scheme, the N-V center is not required to be measured. The important parameter of the CPHASE gate is the phase shift ϕ that the gate imposes on the logical state of the signal qubit according to the state of the controlled qubit. Here we set the phase shift ϕ = π. In the realistic implementations, the fidelity of the gate operation relies on the key parameters of the system, including the coupling strength, the cavity decay and the decoherence time. Here we numerically simulated the success probability of the gate operation based on realistic experimental results. The relations between the success probability of our CPHASE gate is shown in Fig. 3. As the value of g/γκ is increased to 2, the success probability of the CPHASE gate is larger than 90%. If there is no cavity leakage, the success probability approaches to 98% if g/γκ5.

 

Fig. 3 The success probabilities of the CPHASE gate versus g/γκ. Here g represents the coupling strength between the N-V center and the microcavity. κ and γ denote the decay rates of the cavity and the N-V centers, respectively. The left figure represents the success probability of the photon and N-V center CPHASE gate, and the right figure illustrates the success probability of the photonic CPHASE gate operation.

Download Full Size | PPT Slide | PDF

In 2001, Raussendorf and Briegel proposed a scheme for quantum computation using one-qubit measurements and cluster states, called one-way quantum computing (QC) [16]. The key ingredients of one-way QC are the construction of CPHASE gate and the preparation of cluster state. In 2005, Walther et al. [17] implemented the one-way QC by experimentally realized four-qubit cluster states encoded in the polarization four photons. Recently, much effort has been devoted to achievement of the CPHASE operations theoretically using linear optics [18, 19], Kerr media [20], atomic cavity system [21], and so on. The CPHASE gate is useful in cluster state generation. In 2004, Nielsen proposed a controlled-Z gate to generate the cluster state using linear optics [22]. In 2007, Louis et al. [23] proposed an approach for generating cluster states with weak nonlinearities. In 2010, Lin and He [24] proposed the efficient two-dimensional cluster state generation protocol using cross-Kerr nonlinearities and linear optical elements hybrid system. Also there are many related works on the cluster state generation in various systems, such as quantum dots [25], superconducting qubits [26, 27] and so on.

Exploiting the photonic CPHASE gate, we prepare a single N-V center in the state 12(|+|) which is coupled to a microcavity. And the photons are prepared in the state 12(|L+|R) and are sent to the input port of the CPF. After the first two photons interact with the N-V center, the output state of the composite system becomes

|ψ2=122(|R+|Lσz1)2(|R+|L1)(|+|).
Then we perform a bit flip operation on the N-V center and interate the process on the second and the third photons which evolves the photonic system as
|ψ3=14(|R+|Lσz2)3(|R+|Lσz1)2(|R+|L)1(|+|).
After the nth rounds iterations, the final cluster state of the composite system can be described as:
|ψout=12n+2i=1n1(|R+|Lσzni)(|+|).

The fidelity of the generated cluster state relies on the high fidelity operation of the CPHASE gate. The key parameters of the gate are the coupling strength g, the cavity decay rate κ and the decay rate of the N-V center γ. We numerically simulated the fidelity of the generated cluster state versus different initial coefficients on the certain reflection coefficients. In Fig. 4 we labeled the fidelity of the generated cluster state and the coefficient |g/γκ|, the fidelity of 7-qubit cluster state is larger than 0.8 if the coefficient g/γκ is larger than 5. Here we set the reflection coefficient κs = 0. It is obvious that the efficiency of the scheme relies on the large coupling between the N-V center and the microcavity, also with less decay rate of γ and κ. Actually, the following numerical simulation results show that the CPHASE gate works remarkably well even if g ∼κ. In the implementation of such devices, the coherent coupling between N-V centers and microcavities can be achieved as g/κ = 0.5 and the decay rate is γ = 2π × 10MHz as discussed in [28]. The dynamics of the input-output field theory reveals that the phase shift induced by the atom-cavity interaction depends on the experimental parameters, such as the coupling of N-V centers and microcavities. As discussed in [29], the coherent coupling rate of the N-V center with the microdisk is 28MHz in the near field of a 100nm scale. On the other hand, the protocol is essentially based on the efficient output of photons which implies the large cavity decay rate [9]. In 2008, Dayan et al. designed and experimentally realized a photon turnstile exploiting the atom and microtoroidal resonator coupled system. The photon number at the output can be controlled by the atom dynamically. Also the fidelity of the CPHASE gate operation and the fidelity of the cluster state generation may be effected by the imperfect operation of the RF pulse on the N-V center, which may cause an imperfect Hadamard operation on the state. Of course this will reduce the success probability of the generated cluster state. Moreover, the present model relies on the decoherence time of the spins in N-V centers, which mainly characterized by the spin relaxation time T1 and the dephasing time T2. According to Refs.[30, 31], the electron spin relaxation time of the N-V centers scaled from microseconds to seconds at low temperature and the dephasing time is approaching to 2ms in an isptopically pure diamond.

 

Fig. 4 The fidelity of the generated cluster state. Here we consider the ideal condition with no cavity leakage. The four curves describe the fidelity of the final cluster state with 2-qubit, 3-qubit, 5-qubit and 7-qubit, respectively.

Download Full Size | PPT Slide | PDF

4. Summary

In summary, we present a robust and realistic scheme to achieve the photonic CPHASE gate operation using N-V centers and linear optical devices. Moreover, the cluster state can be efficiently generated by using photonic qubits based on current experiment techniques. The experimental feasibilities are also discussed which shows us that these protocols have practically applications in quantum information science especially for scalable quantum information processing on solid chips.

Acknowledgments

This work is supported by the National Fundamental Research Program Grant No. 2010CB923202, the Fundamental Research Funds for the Central Universities, the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University (Grant No. KF201301), and China National Natural Science Foundation Grant No. 61205117.

References and links

1. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature 422, 408–411 (2003). [CrossRef]   [PubMed]  

2. X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003). [CrossRef]  

3. Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. 94, 030501 (2005). [CrossRef]   [PubMed]  

4. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010). [CrossRef]  

5. K. Lemr, A. Cernoch, J. Soubusta, K. Kieling, J. Eisert, and M. Dusek, “Experimental implementation of the optimal linear-optical controlled phase gate,” Phys. Rev. Lett. 106, 013602 (2011). [CrossRef]   [PubMed]  

6. R. Ukai, S. Yokoyama, J. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation,” Phys. Rev. Lett. 107, 250501 (2011). [CrossRef]  

7. W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12, 113039 (2010). [CrossRef]  

8. W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A 84, 010301(R)(2011). [CrossRef]  

9. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008). [CrossRef]   [PubMed]  

10. Q. Chen, W. L. Yang, M. Fang, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011). [CrossRef]  

11. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature 466, 730–734 (2010). [CrossRef]   [PubMed]  

12. C. Wang, Y. Zhang, G. S. Jin, and R. Zhang, “Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators,” J. Opt. Soc. Ame. B 29(12), 3349–3354 (2012). [CrossRef]  

13. R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett. 97, 087601 (2006); [CrossRef]   [PubMed]  ;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281–285 (2006). [CrossRef]   [PubMed]  

14. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin Heidelberg, 1994).

15. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009). [CrossRef]  

16. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001) [CrossRef]   [PubMed]  

17. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005) [CrossRef]   [PubMed]  

18. X. B. Zou, S.L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007). [CrossRef]  

19. N.K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005). [CrossRef]   [PubMed]  

20. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A , 79, 022301 (2009). [CrossRef]  

21. Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys. 10, 123013 (2008). [CrossRef]  

22. M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett. 93, 040503 (2004). [CrossRef]   [PubMed]  

23. S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, “Weak nonlinearities and cluster states,” Phys. Rev. A 75, 042323 (2007). [CrossRef]  

24. Q. Lin and B. He, “Efficient generation of universal two-dimensional cluster states with hybrid systems,” Phys. Rev. A 82, 022331 (2010). [CrossRef]  

25. Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008). [CrossRef]   [PubMed]  

26. J. Q. You, X. B. Wang, T. Tanamoto, and F. Nori, “Efficient one-step generation of large cluster states with solid-state circuits,” Phys. Rev. A 75, 052319 (2007). [CrossRef]  

27. Y. X. Liu, L. F. Wei, J. S. Tsai, and F. Nori, “Controllable coupling between flux qubits,” Phys. Rev. Lett. 96, 067003 (2006). [CrossRef]   [PubMed]  

28. P. E. Barclay, K. -M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express 17, 9588–9601 (2009). [CrossRef]   [PubMed]  

29. P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17, 8081–8097 (2009). [CrossRef]   [PubMed]  

30. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008). [CrossRef]   [PubMed]  

31. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422, 408–411 (2003).
    [CrossRef] [PubMed]
  2. X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science301, 809–811 (2003).
    [CrossRef]
  3. Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett.94, 030501 (2005).
    [CrossRef] [PubMed]
  4. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett.104, 010503 (2010).
    [CrossRef]
  5. K. Lemr, A. Cernoch, J. Soubusta, K. Kieling, J. Eisert, and M. Dusek, “Experimental implementation of the optimal linear-optical controlled phase gate,” Phys. Rev. Lett.106, 013602 (2011).
    [CrossRef] [PubMed]
  6. R. Ukai, S. Yokoyama, J. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation,” Phys. Rev. Lett.107, 250501 (2011).
    [CrossRef]
  7. W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys.12, 113039 (2010).
    [CrossRef]
  8. W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A84, 010301(R)(2011).
    [CrossRef]
  9. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
    [CrossRef] [PubMed]
  10. Q. Chen, W. L. Yang, M. Fang, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011).
    [CrossRef]
  11. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010).
    [CrossRef] [PubMed]
  12. C. Wang, Y. Zhang, G. S. Jin, and R. Zhang, “Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators,” J. Opt. Soc. Ame. B29(12), 3349–3354 (2012).
    [CrossRef]
  13. R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
    [CrossRef] [PubMed]
  14. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin Heidelberg, 1994).
  15. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009).
    [CrossRef]
  16. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett.86, 5188–5191 (2001)
    [CrossRef] [PubMed]
  17. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature434, 169–176 (2005)
    [CrossRef] [PubMed]
  18. X. B. Zou, S.L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A75, 034302 (2007).
    [CrossRef]
  19. N.K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett.95, 210504 (2005).
    [CrossRef] [PubMed]
  20. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A, 79, 022301 (2009).
    [CrossRef]
  21. Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10, 123013 (2008).
    [CrossRef]
  22. M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett.93, 040503 (2004).
    [CrossRef] [PubMed]
  23. S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, “Weak nonlinearities and cluster states,” Phys. Rev. A75, 042323 (2007).
    [CrossRef]
  24. Q. Lin and B. He, “Efficient generation of universal two-dimensional cluster states with hybrid systems,” Phys. Rev. A82, 022331 (2010).
    [CrossRef]
  25. Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett.101, 230501 (2008).
    [CrossRef] [PubMed]
  26. J. Q. You, X. B. Wang, T. Tanamoto, and F. Nori, “Efficient one-step generation of large cluster states with solid-state circuits,” Phys. Rev. A75, 052319 (2007).
    [CrossRef]
  27. Y. X. Liu, L. F. Wei, J. S. Tsai, and F. Nori, “Controllable coupling between flux qubits,” Phys. Rev. Lett.96, 067003 (2006).
    [CrossRef] [PubMed]
  28. P. E. Barclay, K. -M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express17, 9588–9601 (2009).
    [CrossRef] [PubMed]
  29. P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express17, 8081–8097 (2009).
    [CrossRef] [PubMed]
  30. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008).
    [CrossRef] [PubMed]
  31. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
    [CrossRef] [PubMed]

2012

C. Wang, Y. Zhang, G. S. Jin, and R. Zhang, “Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators,” J. Opt. Soc. Ame. B29(12), 3349–3354 (2012).
[CrossRef]

2011

Q. Chen, W. L. Yang, M. Fang, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011).
[CrossRef]

K. Lemr, A. Cernoch, J. Soubusta, K. Kieling, J. Eisert, and M. Dusek, “Experimental implementation of the optimal linear-optical controlled phase gate,” Phys. Rev. Lett.106, 013602 (2011).
[CrossRef] [PubMed]

R. Ukai, S. Yokoyama, J. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation,” Phys. Rev. Lett.107, 250501 (2011).
[CrossRef]

W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A84, 010301(R)(2011).
[CrossRef]

2010

W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys.12, 113039 (2010).
[CrossRef]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett.104, 010503 (2010).
[CrossRef]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010).
[CrossRef] [PubMed]

Q. Lin and B. He, “Efficient generation of universal two-dimensional cluster states with hybrid systems,” Phys. Rev. A82, 022331 (2010).
[CrossRef]

2009

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A, 79, 022301 (2009).
[CrossRef]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express17, 8081–8097 (2009).
[CrossRef] [PubMed]

P. E. Barclay, K. -M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express17, 9588–9601 (2009).
[CrossRef] [PubMed]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

2008

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008).
[CrossRef] [PubMed]

Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10, 123013 (2008).
[CrossRef]

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett.101, 230501 (2008).
[CrossRef] [PubMed]

2007

J. Q. You, X. B. Wang, T. Tanamoto, and F. Nori, “Efficient one-step generation of large cluster states with solid-state circuits,” Phys. Rev. A75, 052319 (2007).
[CrossRef]

S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, “Weak nonlinearities and cluster states,” Phys. Rev. A75, 042323 (2007).
[CrossRef]

X. B. Zou, S.L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A75, 034302 (2007).
[CrossRef]

2006

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

Y. X. Liu, L. F. Wei, J. S. Tsai, and F. Nori, “Controllable coupling between flux qubits,” Phys. Rev. Lett.96, 067003 (2006).
[CrossRef] [PubMed]

2005

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature434, 169–176 (2005)
[CrossRef] [PubMed]

N.K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett.95, 210504 (2005).
[CrossRef] [PubMed]

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett.94, 030501 (2005).
[CrossRef] [PubMed]

2004

M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett.93, 040503 (2004).
[CrossRef] [PubMed]

2003

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422, 408–411 (2003).
[CrossRef] [PubMed]

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science301, 809–811 (2003).
[CrossRef]

2001

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett.86, 5188–5191 (2001)
[CrossRef] [PubMed]

Achard, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

An, J. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

Aoki, T.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Aspelmeyer, M.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature434, 169–176 (2005)
[CrossRef] [PubMed]

Awschalom, D. D.

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

Balasubramanian, G.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

Barclay, P. E.

Beausoleil, R. G.

Becher, C.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422, 408–411 (2003).
[CrossRef] [PubMed]

Beck, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

Blatt, R.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422, 408–411 (2003).
[CrossRef] [PubMed]

Briegel, H. J.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett.86, 5188–5191 (2001)
[CrossRef] [PubMed]

Cernoch, A.

K. Lemr, A. Cernoch, J. Soubusta, K. Kieling, J. Eisert, and M. Dusek, “Experimental implementation of the optimal linear-optical controlled phase gate,” Phys. Rev. Lett.106, 013602 (2011).
[CrossRef] [PubMed]

Chen, Q.

Q. Chen, W. L. Yang, M. Fang, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011).
[CrossRef]

Chen, Y. A.

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett.94, 030501 (2005).
[CrossRef] [PubMed]

Chen, Y. L.

Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10, 123013 (2008).
[CrossRef]

Childress, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010).
[CrossRef] [PubMed]

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

Chu, Y.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010).
[CrossRef] [PubMed]

Dayan, B.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Deuschle, T.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422, 408–411 (2003).
[CrossRef] [PubMed]

Du, J. F.

W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A84, 010301(R)(2011).
[CrossRef]

Q. Chen, W. L. Yang, M. Fang, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011).
[CrossRef]

W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys.12, 113039 (2010).
[CrossRef]

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett.94, 030501 (2005).
[CrossRef] [PubMed]

Dusek, M.

K. Lemr, A. Cernoch, J. Soubusta, K. Kieling, J. Eisert, and M. Dusek, “Experimental implementation of the optimal linear-optical controlled phase gate,” Phys. Rev. Lett.106, 013602 (2011).
[CrossRef] [PubMed]

Dutt, M.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010).
[CrossRef] [PubMed]

Eisert, J.

K. Lemr, A. Cernoch, J. Soubusta, K. Kieling, J. Eisert, and M. Dusek, “Experimental implementation of the optimal linear-optical controlled phase gate,” Phys. Rev. Lett.106, 013602 (2011).
[CrossRef] [PubMed]

Epstein, R. J.

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

Eschner, J.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422, 408–411 (2003).
[CrossRef] [PubMed]

Fang, M.

Q. Chen, W. L. Yang, M. Fang, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011).
[CrossRef]

Feng, M.

W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A84, 010301(R)(2011).
[CrossRef]

W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys.12, 113039 (2010).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

Fu, K. -M.

Fu, K.-M.

Furusawa, A.

R. Ukai, S. Yokoyama, J. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation,” Phys. Rev. Lett.107, 250501 (2011).
[CrossRef]

Gaebel, T.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008).
[CrossRef] [PubMed]

Gammon, D.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science301, 809–811 (2003).
[CrossRef]

Gao, J.

Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10, 123013 (2008).
[CrossRef]

Gilchrist, A.

N.K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett.95, 210504 (2005).
[CrossRef] [PubMed]

Gill, A. T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett.104, 010503 (2010).
[CrossRef]

Gulde, S.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422, 408–411 (2003).
[CrossRef] [PubMed]

Guo, G. C.

Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10, 123013 (2008).
[CrossRef]

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett.101, 230501 (2008).
[CrossRef] [PubMed]

X. B. Zou, S.L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A75, 034302 (2007).
[CrossRef]

Guo, G. P.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett.101, 230501 (2008).
[CrossRef] [PubMed]

Gurudev Dutt, M. V.

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

Häffner, H.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422, 408–411 (2003).
[CrossRef] [PubMed]

Han, Z. F.

Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10, 123013 (2008).
[CrossRef]

Hanson, R.

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

He, B.

Q. Lin and B. He, “Efficient generation of universal two-dimensional cluster states with hybrid systems,” Phys. Rev. A82, 022331 (2010).
[CrossRef]

Hemmer, P.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008).
[CrossRef] [PubMed]

Hemmer, P. R.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010).
[CrossRef] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

Henage, T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett.104, 010503 (2010).
[CrossRef]

Hu, Y.

W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A84, 010301(R)(2011).
[CrossRef]

Isenhower, L.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett.104, 010503 (2010).
[CrossRef]

Isoya, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

Jacques, V.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008).
[CrossRef] [PubMed]

Jelezko, F.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008).
[CrossRef] [PubMed]

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

Jiang, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010).
[CrossRef] [PubMed]

Jin, G. S.

C. Wang, Y. Zhang, G. S. Jin, and R. Zhang, “Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators,” J. Opt. Soc. Ame. B29(12), 3349–3354 (2012).
[CrossRef]

Johnson, T. A.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett.104, 010503 (2010).
[CrossRef]

Katzer, D. S.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science301, 809–811 (2003).
[CrossRef]

Kieling, K.

K. Lemr, A. Cernoch, J. Soubusta, K. Kieling, J. Eisert, and M. Dusek, “Experimental implementation of the optimal linear-optical controlled phase gate,” Phys. Rev. Lett.106, 013602 (2011).
[CrossRef] [PubMed]

Kimble, H. J.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Kolesov, R.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

Lancaster, G. P. T.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422, 408–411 (2003).
[CrossRef] [PubMed]

Langford, N.K.

N.K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett.95, 210504 (2005).
[CrossRef] [PubMed]

Lemr, K.

K. Lemr, A. Cernoch, J. Soubusta, K. Kieling, J. Eisert, and M. Dusek, “Experimental implementation of the optimal linear-optical controlled phase gate,” Phys. Rev. Lett.106, 013602 (2011).
[CrossRef] [PubMed]

Li, J.

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A, 79, 022301 (2009).
[CrossRef]

Li, K.

X. B. Zou, S.L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A75, 034302 (2007).
[CrossRef]

Li, X. Q.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science301, 809–811 (2003).
[CrossRef]

Lin, Q.

Q. Lin and B. He, “Efficient generation of universal two-dimensional cluster states with hybrid systems,” Phys. Rev. A82, 022331 (2010).
[CrossRef]

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A, 79, 022301 (2009).
[CrossRef]

Lin, Z. R.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett.101, 230501 (2008).
[CrossRef] [PubMed]

Liu, Y. X.

Y. X. Liu, L. F. Wei, J. S. Tsai, and F. Nori, “Controllable coupling between flux qubits,” Phys. Rev. Lett.96, 067003 (2006).
[CrossRef] [PubMed]

Louis, S. G. R.

S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, “Weak nonlinearities and cluster states,” Phys. Rev. A75, 042323 (2007).
[CrossRef]

Lukin, M. D.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010).
[CrossRef] [PubMed]

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

Markham, M.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

Maze, J.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010).
[CrossRef] [PubMed]

McMillan, J. F.

Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10, 123013 (2008).
[CrossRef]

Mendoza, F. M.

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

Milburn, G. J.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin Heidelberg, 1994).

Mizuochi, N.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008).
[CrossRef] [PubMed]

Munro, W. J.

S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, “Weak nonlinearities and cluster states,” Phys. Rev. A75, 042323 (2007).
[CrossRef]

Nemoto, K.

S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, “Weak nonlinearities and cluster states,” Phys. Rev. A75, 042323 (2007).
[CrossRef]

Neumann, P.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008).
[CrossRef] [PubMed]

Nielsen, M. A.

M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett.93, 040503 (2004).
[CrossRef] [PubMed]

Nori, F.

J. Q. You, X. B. Wang, T. Tanamoto, and F. Nori, “Efficient one-step generation of large cluster states with solid-state circuits,” Phys. Rev. A75, 052319 (2007).
[CrossRef]

Y. X. Liu, L. F. Wei, J. S. Tsai, and F. Nori, “Controllable coupling between flux qubits,” Phys. Rev. Lett.96, 067003 (2006).
[CrossRef] [PubMed]

O’Brien, J. L.

N.K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett.95, 210504 (2005).
[CrossRef] [PubMed]

Oh, C. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

Ostby, E. P.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Painter, O.

Pan, J. W.

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett.94, 030501 (2005).
[CrossRef] [PubMed]

Park, D.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science301, 809–811 (2003).
[CrossRef]

Parkins, A. S.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Piermarocchi, C.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science301, 809–811 (2003).
[CrossRef]

Prevedel, R.

N.K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett.95, 210504 (2005).
[CrossRef] [PubMed]

Pryde, G. J.

N.K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett.95, 210504 (2005).
[CrossRef] [PubMed]

Raussendorf, R.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett.86, 5188–5191 (2001)
[CrossRef] [PubMed]

Rempp, F.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008).
[CrossRef] [PubMed]

Resch, K. J.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature434, 169–176 (2005)
[CrossRef] [PubMed]

N.K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett.95, 210504 (2005).
[CrossRef] [PubMed]

Riebe, M.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422, 408–411 (2003).
[CrossRef] [PubMed]

Roos, C. F.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422, 408–411 (2003).
[CrossRef] [PubMed]

Rudolph, T.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature434, 169–176 (2005)
[CrossRef] [PubMed]

Saffman, M.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett.104, 010503 (2010).
[CrossRef]

Santori, C.

Schenck, E.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature434, 169–176 (2005)
[CrossRef] [PubMed]

Schmidt-Kaler, F.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422, 408–411 (2003).
[CrossRef] [PubMed]

Sham, L. J.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science301, 809–811 (2003).
[CrossRef]

Sorensen, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010).
[CrossRef] [PubMed]

Soubusta, J.

K. Lemr, A. Cernoch, J. Soubusta, K. Kieling, J. Eisert, and M. Dusek, “Experimental implementation of the optimal linear-optical controlled phase gate,” Phys. Rev. Lett.106, 013602 (2011).
[CrossRef] [PubMed]

Spiller, T. P.

S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, “Weak nonlinearities and cluster states,” Phys. Rev. A75, 042323 (2007).
[CrossRef]

Steel, D.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science301, 809–811 (2003).
[CrossRef]

Stievater, T. H.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science301, 809–811 (2003).
[CrossRef]

Tanamoto, T.

J. Q. You, X. B. Wang, T. Tanamoto, and F. Nori, “Efficient one-step generation of large cluster states with solid-state circuits,” Phys. Rev. A75, 052319 (2007).
[CrossRef]

Taylor, J. M.

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

Tissler, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

Togan, E.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010).
[CrossRef] [PubMed]

Trifonov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010).
[CrossRef] [PubMed]

Tsai, J. S.

Y. X. Liu, L. F. Wei, J. S. Tsai, and F. Nori, “Controllable coupling between flux qubits,” Phys. Rev. Lett.96, 067003 (2006).
[CrossRef] [PubMed]

Tu, T.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett.101, 230501 (2008).
[CrossRef] [PubMed]

Twitchen, D.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

Ukai, R.

R. Ukai, S. Yokoyama, J. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation,” Phys. Rev. Lett.107, 250501 (2011).
[CrossRef]

Urban, E.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett.104, 010503 (2010).
[CrossRef]

Vahala, K. J.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

van Loock, P.

R. Ukai, S. Yokoyama, J. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation,” Phys. Rev. Lett.107, 250501 (2011).
[CrossRef]

Vedral, V.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature434, 169–176 (2005)
[CrossRef] [PubMed]

Walker, T. G.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett.104, 010503 (2010).
[CrossRef]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin Heidelberg, 1994).

Walther, P.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature434, 169–176 (2005)
[CrossRef] [PubMed]

Wang, C.

C. Wang, Y. Zhang, G. S. Jin, and R. Zhang, “Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators,” J. Opt. Soc. Ame. B29(12), 3349–3354 (2012).
[CrossRef]

Wang, X. B.

J. Q. You, X. B. Wang, T. Tanamoto, and F. Nori, “Efficient one-step generation of large cluster states with solid-state circuits,” Phys. Rev. A75, 052319 (2007).
[CrossRef]

Watanabe, H.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008).
[CrossRef] [PubMed]

Wei, L. F.

Y. X. Liu, L. F. Wei, J. S. Tsai, and F. Nori, “Controllable coupling between flux qubits,” Phys. Rev. Lett.96, 067003 (2006).
[CrossRef] [PubMed]

Weinfurter, H.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature434, 169–176 (2005)
[CrossRef] [PubMed]

Weinhold, T. J.

N.K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett.95, 210504 (2005).
[CrossRef] [PubMed]

White, A. G.

N.K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett.95, 210504 (2005).
[CrossRef] [PubMed]

Wong, C. W.

Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10, 123013 (2008).
[CrossRef]

Wrachtrup, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008).
[CrossRef] [PubMed]

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

Wu, Y. W.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science301, 809–811 (2003).
[CrossRef]

Xiao, Y. F.

Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10, 123013 (2008).
[CrossRef]

Xu, Z. Y.

W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys.12, 113039 (2010).
[CrossRef]

Yamasaki, S.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008).
[CrossRef] [PubMed]

Yang, T.

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett.94, 030501 (2005).
[CrossRef] [PubMed]

Yang, W. L.

W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A84, 010301(R)(2011).
[CrossRef]

Q. Chen, W. L. Yang, M. Fang, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011).
[CrossRef]

W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys.12, 113039 (2010).
[CrossRef]

Yang, X.

Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10, 123013 (2008).
[CrossRef]

Yin, Z. Q.

W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A84, 010301(R)(2011).
[CrossRef]

Yokoyama, S.

R. Ukai, S. Yokoyama, J. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation,” Phys. Rev. Lett.107, 250501 (2011).
[CrossRef]

Yoshikawa, J.

R. Ukai, S. Yokoyama, J. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation,” Phys. Rev. Lett.107, 250501 (2011).
[CrossRef]

You, J. Q.

J. Q. You, X. B. Wang, T. Tanamoto, and F. Nori, “Efficient one-step generation of large cluster states with solid-state circuits,” Phys. Rev. A75, 052319 (2007).
[CrossRef]

Zeilinger, A.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature434, 169–176 (2005)
[CrossRef] [PubMed]

Zhang, A. N.

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett.94, 030501 (2005).
[CrossRef] [PubMed]

Zhang, H.

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett.94, 030501 (2005).
[CrossRef] [PubMed]

Zhang, R.

C. Wang, Y. Zhang, G. S. Jin, and R. Zhang, “Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators,” J. Opt. Soc. Ame. B29(12), 3349–3354 (2012).
[CrossRef]

Zhang, S.L.

X. B. Zou, S.L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A75, 034302 (2007).
[CrossRef]

Zhang, X. L.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett.104, 010503 (2010).
[CrossRef]

Zhang, Y.

C. Wang, Y. Zhang, G. S. Jin, and R. Zhang, “Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators,” J. Opt. Soc. Ame. B29(12), 3349–3354 (2012).
[CrossRef]

Zhao, Z.

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett.94, 030501 (2005).
[CrossRef] [PubMed]

Zhu, F. Y.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett.101, 230501 (2008).
[CrossRef] [PubMed]

Zibrov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010).
[CrossRef] [PubMed]

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

Zou, X. B.

Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10, 123013 (2008).
[CrossRef]

X. B. Zou, S.L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A75, 034302 (2007).
[CrossRef]

J. Opt. Soc. Ame. B

C. Wang, Y. Zhang, G. S. Jin, and R. Zhang, “Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators,” J. Opt. Soc. Ame. B29(12), 3349–3354 (2012).
[CrossRef]

Nat. Mater.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009).
[CrossRef] [PubMed]

Nature

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010).
[CrossRef] [PubMed]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature434, 169–176 (2005)
[CrossRef] [PubMed]

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422, 408–411 (2003).
[CrossRef] [PubMed]

New J. Phys.

W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys.12, 113039 (2010).
[CrossRef]

Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10, 123013 (2008).
[CrossRef]

Opt. Express

Phys. Rev. A

J. Q. You, X. B. Wang, T. Tanamoto, and F. Nori, “Efficient one-step generation of large cluster states with solid-state circuits,” Phys. Rev. A75, 052319 (2007).
[CrossRef]

S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, “Weak nonlinearities and cluster states,” Phys. Rev. A75, 042323 (2007).
[CrossRef]

Q. Lin and B. He, “Efficient generation of universal two-dimensional cluster states with hybrid systems,” Phys. Rev. A82, 022331 (2010).
[CrossRef]

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A, 79, 022301 (2009).
[CrossRef]

W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A84, 010301(R)(2011).
[CrossRef]

X. B. Zou, S.L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A75, 034302 (2007).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

Q. Chen, W. L. Yang, M. Fang, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011).
[CrossRef]

Phys. Rev. Lett.

R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006).
[CrossRef] [PubMed]

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett.86, 5188–5191 (2001)
[CrossRef] [PubMed]

N.K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett.95, 210504 (2005).
[CrossRef] [PubMed]

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett.94, 030501 (2005).
[CrossRef] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett.104, 010503 (2010).
[CrossRef]

K. Lemr, A. Cernoch, J. Soubusta, K. Kieling, J. Eisert, and M. Dusek, “Experimental implementation of the optimal linear-optical controlled phase gate,” Phys. Rev. Lett.106, 013602 (2011).
[CrossRef] [PubMed]

R. Ukai, S. Yokoyama, J. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation,” Phys. Rev. Lett.107, 250501 (2011).
[CrossRef]

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett.101, 230501 (2008).
[CrossRef] [PubMed]

M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett.93, 040503 (2004).
[CrossRef] [PubMed]

Y. X. Liu, L. F. Wei, J. S. Tsai, and F. Nori, “Controllable coupling between flux qubits,” Phys. Rev. Lett.96, 067003 (2006).
[CrossRef] [PubMed]

Science

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008).
[CrossRef] [PubMed]

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science301, 809–811 (2003).
[CrossRef]

Other

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin Heidelberg, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the setup for the construction of CPHASE gate between the photon and the N-V center. PBSs represent the polarization beam splitters which transmit horizontal polarized photons and reflect the vertical polarized photons; and QWPs denote the quarter-wave plates that achieve the polarization changes of the single-photon pulse as HL. In the bubble, the detailed energy configuration is described for N-V center in diamond nanocrystal.

Fig. 2
Fig. 2

Schematic diagram of the setup for the construction of controlled phase gate based on photonic qubits. CPF represents the controlled phase flip operation between the single photon and the N-V centers.

Fig. 3
Fig. 3

The success probabilities of the CPHASE gate versus g / γ κ. Here g represents the coupling strength between the N-V center and the microcavity. κ and γ denote the decay rates of the cavity and the N-V centers, respectively. The left figure represents the success probability of the photon and N-V center CPHASE gate, and the right figure illustrates the success probability of the photonic CPHASE gate operation.

Fig. 4
Fig. 4

The fidelity of the generated cluster state. Here we consider the ideal condition with no cavity leakage. The four curves describe the fidelity of the final cluster state with 2-qubit, 3-qubit, 5-qubit and 7-qubit, respectively.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d d t a ^ ( t ) = [ i ( ω c ω ) + κ + κ s ] a ^ ( t ) g σ ^ κ a ^ in ( t )
d d t σ ^ = [ i ( ω 0 ω ) + κ ] σ ^ g σ ^ z a ^ ( t ) .
r ( ω ) = [ i ( ω 0 ω p ) + γ 2 ] [ i ( ω c ω p ) κ 2 + κ s 2 ] + g 2 [ i ( ω 0 ω p ) + γ 2 ] [ i ( ω c ω p ) + κ 2 + κ s 2 ] + g 2 .
r ( ω ) = γ κ + 4 g 2 γ κ + 4 g 2 .
| ψ in = ( α | H + β | V ) ( η | + + δ | ) .
| ψ out = α | H ( η | + + δ | ) + β | V ( η | + + δ | ) α η | L , + α δ | L , + β η | V , + + β δ | V , ( α | H σ z N V + β | V ) ( η | + + δ | ) ,
U a j C P | ψ j | ϕ N V | ψ k = [ α 1 2 ( | L | + | L | ) + β 1 2 ( | R | + + | R | ) ] ( α 2 | L + β 2 | R ) .
R ( π / 2 ) : α 1 2 [ | L ( | + + | ) | L ( | + | ) ] + β 1 2 [ | R ( | + + | ) + | R ( | + | ) ] ( α 2 | L + β 2 | R ) .
U a k C P : α 1 α 2 2 [ | L , L ( | + | ) | L , L ( | + + | ) ] + β 1 α 2 2 [ | R , L ( | + | ) + | R , L ( | + + | ) ] + α 1 β 2 2 [ | L , R ( | + + | ) | L , R ( | + | ) ] + β 1 β 2 2 [ | R , R ( | + + | ) + | R , R ( | + | ) ]
R ( π / 2 ) : α 1 α 2 2 | L , L ( | + | ) β 1 α 2 2 | R , L ( | + | ) + α 1 β 2 2 | L , R ( | + + | ) + β 1 β 2 2 | R , R ( | + | ) .
U a j C P : α 1 α 2 2 | L , L ( | | + ) + β 1 α 2 2 | R , L ( | + | ) + α 1 β 2 2 | L , R ( | + | ) + β 1 β 2 2 ( | R , R | + | ) .
| ψ 2 = 1 2 2 ( | R + | L σ z 1 ) 2 ( | R + | L 1 ) ( | + | ) .
| ψ 3 = 1 4 ( | R + | L σ z 2 ) 3 ( | R + | L σ z 1 ) 2 ( | R + | L ) 1 ( | + | ) .
| ψ out = 1 2 n + 2 i = 1 n 1 ( | R + | L σ z n i ) ( | + | ) .

Metrics