Abstract

We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.

© 2013 Optical Society of America

1. Introduction

Quantum information processing requires the precise control and manipulation of quantum states. It has been proven that single-qubit operations and two-qubit entangling gates are sufficient for universal quantum computing [1]. One of the typical two-qubit gates is the controlled-not (CNOT) gate. The implementation of a photonic CNOT gate is one of the main directions as photons can be distributed fast and reliably over a long distance in less-loss optical fibers or a free space (low decoherence) and a single-qubit manipulation can be accomplished easily. Although they are perfect information carriers in quantum communication purpose, photons seem to be less suitable for quantum computing as they lack the sufficient strong interaction between each other. Surprisingly, Knill, Laflamme, and Milburn [2] demonstrated that using only single-photon sources, single-photon detectors, and linear optical elements, a CNOT gate on photonic qubits with a maximal success probability of 3/4 could be created with the use of polynomial resources. Subsequently, some improved works in theory [36] and in experiment [79] have been accomplished. Unfortunately, Pittman, Jacobs, and Franson [3] showed that even with the help of maximally entangled two-photon pairs, the success probability of a CNOT gate can only be boosted to 1/4 and it is still far lower than the maximum 3/4.

Toffoli gate is a fundamental quantum gate for three-qubit systems. It has been demonstrated that an arbitrary multi-qubit gate can be decomposed into a sequence of Toffoli and Hadamard gates [10]. Linear optical three-qubit Toffoli gate with an optimal success probability of 0.75% is proposed by Fiurášek [11]. In 2009, Shende and Markov [12] proved that 6 CNOT gates are required for the synthesis of a Toffoli gate in the best case, which increases the difficulty to implement the Toffoli gate.

To avoid the probabilistic quantum computing with linear optics, a near deterministic CNOT gate based on weak cross-Kerr nonlinearities has been proposed [13,14] and it provides a way for deterministic quantum computation in principle [15, 16]. Based on cross-Kerr nonlinearity, Lin and He proposed a scheme for a three-qubit Toffoli gate [17], and the scheme contains 4 two-qubit gates and 2 additional photonic qubits are required. A giant Kerr nonlinearity is still a challenge with current technology, even with electromagnetically induced transparency [18], as the initially achieved phase shift at the single-photon level is only in the order of 10−5[19]. Moreover, it is currently not clear whether these nonlinearities are sufficient for the natural implementation of single-photon qubit gates.

Previous works showed that the spin of a singly charged electron confined in a quantum dot (QD) [2025] can be used for storing and processing quantum information, due to the long electron-spin coherence time (∼ μs) [2631] using spin-echo techniques. The QD spin state can be initiated by means of optical pumping or optical cooling [32, 33], and then performing single-spin rotations [26,27] or via a spin-flip Raman transition [32], the spin superposition state can be obtained. Ultrafast optical coherent control on QD spins has been demonstrated [3436]. The system based on QD has received increasing attention because of the comparative easiness of incorporating a QD into a solid-state cavity, which could facilitate the deterministic transfer of quantum information between the photonic qubit and the spin qubit, and this transformation extends the potential applications of quantum information and quantum communication. A spin-QD-cavity unit, e.g., an excess electron confined in a self-assembled In(Ga)As QD or a GaAs interface QD inside an optical resonant microcavity was proposed by Hu et al.[37,38]. This unit is the key element for constructing universal hybrid quantum gates, entangled state analyzer, teleportation, photonic hyper-CNOT gates, quantum repeaters, entanglement purification, and creating entangled states and hyperentangled Bell states [3748]. In this unit, the QD spin represents the qubit and promises a scalable quantum computing, and the QD spin manipulation is well developed using pulsed magnetic-resonance technique.

In this article, we investigate the possibility of achieving scalable photonic quantum computing assisted by a QD spin in a double-sided optical microcavity. By the giant optical circular birefringence for the right-circularly and the left-circularly lights induced by a QD spin in a microcavity as a result of cavity quantum electrodynamics (QED), we construct a CNOT gate and a Toffoli gate for photonic qubits. Both these two quantum gates are based on some single-photon input-output processes and the readout on an electron-medium spin. They work in a deterministic way. The CNOT and the Toffoli gates discussed in [41, 42] are encoded on a control photon polarization qubit (electron spin qubit) and target electron spin qubits (photon polarization qubit). The gates in this article both are encoded on the polarization of single photonic qubits, and it have several advantages, including scalable, low decoherence, deterministic, suitable for information transmission. The electron confined in the cavity only plays a role of medium. We analyze the experimental feasibility of these two quantum gates, concluding that our proposals can be implemented with current technology.

2. Deterministic photonic two-qubit CNOT gate without additional photonic qubits

Let us consider a singly charged electron self-assembled GaAs/InAs QD or GaAs interface QD confined in an optical resonant microcavity with two partially reflective mirrors [38, 41] (called it a spin-QD-double-side-cavity unit below, see Fig. 1(a)). When an excess electron is injected into the QD, optical excitation can create a trion X (also called a negatively charged exciton) which consists of two electrons and a hole [49]. The optical properties of the unit are determined by X, and there are only two dipole transitions which lead to large differences in the phase or the amplitude of the reflection and the transmission coefficients between two circular polarizations of photons, one involving a sz = +1 photon and the other involving a sz = −1 photon (see Fig. 1(b)) [50] due to Pauli’s exclusion principle. In the following, we consider the case that a dipole is resonant with the cavity mode and is probed with a resonant light. If the injected photon couples to the dipole, that is, the photon can be absorbed to create a X, the cavity is reflective, and both the polarization and the propagation direction of the photon will be flipped. Otherwise, the cavity is transmissive and the photon will acquire a π mod 2π phase shift relative to the reflected photon. The interaction between the input photons with sz = ±1 and the electron spin in the cavity is described as follows [38, 41, 42]:

|R|L,|L|R,|R|L,|L|R,|R|R,|L|L,|R|R,|L|L.
Here |↑〉 and |↓〉 represent the spin states |+12 and |12 of the excess electron, respectively. |⇑〉 and |⇓〉 represent the spin states |+32 and |32 of the heavy hole, respectively. The spin quantization axis for angular momentum is along the normal direction of the cavity, that is, the z axis. The right-circularly-polarized photon and the left-circularly-polarized photon are marked by |R〉 and |L〉, respectively, and the subscript ↑ (↓) indicates their propagation direction along (against) the z axis. Such a unit can act as an entanglement beam splitter (EBS) which can splits directly an initial product state of a photon-spin system into two entangled states via the transmission and reflection in a deterministic way. It is worth pointing out that a polarization-degenerate cavity mode is required to transfer the polarization of the photon to the spin of the atom-like system, or vice the versa in several quantum information applications, and it is also necessary in our schemes. Excellent progress has been made on the unpolarized micropillar cavities [5153] and the H1 photonic crystal cavities [54, 55].

 

Fig. 1 (a) Schematic diagram for a spin-QD-double-side-cavity unit. (b) Energy levels and optical property of a negatively charged exciton X in a GaAs/InAs QD or GaAs interface QD confined in an optical resonant microcavity with two partially reflective mirrors.

Download Full Size | PPT Slide | PDF

In a single electron charged QD system, the spontaneous spin flip Raman scattering transitions, |↓↑⇓〉 → |↑〉 and |↑↓⇑〉 → |↓〉, are ideally dark [56], nevertheless, in a realistic QD system, there is Γ ≫ γ ≠ 0 due to the inherent hole mixing or a in-plane magnetic field is not parallel to the z axis. Here, Γ is the allowed transition and γ is the forbidden transition [32]. The strong hyperfine interaction between the excess electron and the QD nuclear spin ensemble leads to a spin-flip (|↓〉 ↔ |↑〉) at the rate ξ↑↓. ξ↑↓ is strongly suppressed even under a weak magnetic field B[57, 58]. When B = 0, the optical transitions do not alter spin state occupancies [32]. The energy splitting, which results in a net spin flip, does not occur for charged excitons due to the quenched exchange interaction [59, 60], and our schemes are immune to energy splitting in principle.

In the following, we will utilize this EBS to construct a photonic two-qubit CNOT gate.

Figure 2 shows the principle of the present deterministic scheme for implementing a photonic two-qubit CNOT gate which requires no auxiliary photonic qubits. Now, let us describe the quantum circuit in detail. Suppose the control photon c, the target photon t, and the excess electron-medium e in the cavity are prepared in

|ψcp=αc|Rc+βc|Lc,|ψtp=αt|Rt+βt|Lt,|ψe=|,
respectively. Here |αc|2 + |βc|2 = |αt|2 + |βt|2 = 1.

First, the control photon c is sent into the input port cin and it reaches PBS1. PBS1 transmits the right-circularly-polarized photon and reflects the left-circularly-polarized photon, which results in the fact that the control photon in the state |Rc,2 is injected into the cavity and the control photon in the state |Lc,1 deserts the cavity. That is, PBS1 transforms the initial state of the whole system |Ω0〉 into |Ω1〉. Here

|Ω0=|ψcp|ψtp|ψe,
|Ω1=(αcαt|Rc,2|Rt+αcβt|Rc,2|Lt+βcαt|Lc,1|Rt+βcβt|Lc,1|Lt)|.
The subscript i (i = 1, 2, ··· ,) of |Rc, i (|Lc, i) denotes the photon is in the state |R〉 (|L〉) emitting from spatial mode i. Before and after the control photon coming from spatial mode 2 interacts with the QD inside the cavity, a Hadamard operation (Hp, i.e., passing through HWP1 whose optical is are set to be 22.5°) is performed on it and a Hadamard operation (He, e.g., using a π/2 microwave pulse or an optical pulse [3436]) is also performed on the electron, simultaneously. These two Hadamard operations complete the transformations as following:
|RHp12(|R+|L),|LHp12(|R|L),
|He|12(|+|),|He|12(||).
After the photon emitting from spatial mode 2 interacts with the QD inside the cavity, one can obtain
|Ω2=12αcαt(|Rc,3+|Lc,4)|Rt(|+|)12αcβt(|Rc,3+|Lc,4)|Lt(|+|)+(βcαt|Lc,1|Rt+βcβt|Lc,1|Lt)|.
PBS2 transforms |Rc,3 and |Lc,4 into |Rc,5 and |Lc,5, respectively, and then an Hp (i.e., passing through HWP2) and an He are performed on the control photon and the electron, respectively. After the wave-packets emitting from spatial modes 1 and 5 arrive PBS3 simultaneously, one can obtain
|Ω3=αcαt|Rc,6|Rt|αcβt|Rc,6|Lt|+βcαt|Lc,6|Rt|+βcβt|Lc,6|Lt|.

Next, the target photon t is injected into the cavity through the input port tin. PBS4 completes the transformations |RtPBS4|Rt,8 and |LtPBS4|Lt,7. After the target photon interacts with the QD, it emitted from path 9. This nonlinear interaction transforms the state of the whole system into

|Ω4=(αcαt|Rc,6|Rt,9+αcβt|Rc,6|Lt,9)|+(βcαt|Lc,6|Lt,9+βcβt|Lc,6|Rt,9)|.

At last, one performs an He on the excess electron and measures the excess electron in the basis {|↑〉, |↓〉}. According to the outcome of this measurement, a proper feed-forward operation is performed on the control qubit to complete the CNOT gate. If the spin is in the state |↓〉, σz = |R〉 〈R| − |L〉 〈L| is performed on the photon emitting from the output port cout. Otherwise, nothing is performed on the photons from both cout and tout. With these measurement and operation, the state of the two-photon system becomes

|ψct=αcαt|Rc,6|Rt,9+αcβt|Rc,6|Lt,9+βcαt|Lc,6|Lt,9+βcβt|Lc,6|Rt,9.
One can see that the state of the target photonic qubit is flipped when the control photonic qubit is in the state |L〉, while it does not change when the control photon is in the state |R〉, compared to the original state of the two-photon system |ψcp|ψtp. That is, the quantum circuit shown in Fig. 2 can be used to achieve a deterministic CNOT gate on two photonic qubits with a success probability of 100% in principle.

 

Fig. 2 Quantum circuit for implementing a deterministic photonic two-qubit CNOT gate without additional photonic qubits via a spin-QD-double-side-cavity system. PBSi (i = 1, 2, 3, 4) transmits the photon in the right-circularly-polarized state |R〉 and reflects the photon in the left-circularly-polarized state |L〉, respectively. HWPj (j = 1, 2) is used to perform a Hadamard operation on the polarization of photons, that is, |R12(|R+|L) and |L12(|R|L). DL is the time-delay device for making the photons from spatial modes 5 and 1 reach PBS3 simultaneously, that is, fiber loops for the storage of the photon for the time needed by the interaction between the single photon and the QD.

Download Full Size | PPT Slide | PDF

3. Deterministic Toffoli gate for three photonic qubits

The schematic diagram for implementing a deterministic three-qubit Toffoli gate, which performs a NOT operation on the target qubit if and only if (iff) both the two control qubits are in the polarization state |L〉, is shown in Fig. 3. Suppose the inputting control photons c1 and c2, and the target photon t are prepared in arbitrary polarization superposition states as follows:

|ψc1p=αc1|Rc1+βc1|Lc1,|ψc2p=αc2|Rc2+βc2|Lc2,|ψtp=αt|Rt+βt|Lt.
Here |αc1|2 + |βc1|2 = |αc2|2 + |βc2|2 = |αt|2 + |βt|2 = 1. To show the principle of the present Toffoli gate explicitly, we give the evolution of the whole system composed of two control photons c1 and c2, a target photon t, and an excess electron-medium below. Its initial state is
|Ξ0=|ψc1p|ψc2p|ψtp|.
Here |↑〉 is the initial state of the excess electron-medium confined in the QD inside the cavity.

 

Fig. 3 Schematic diagram for implementing a deterministic photonic three-qubit Toffoli gate. The implementation of the Toffoli gate is divided into two processes shown in (a) and (b), and the cavity is just the same one for the first and the second control qubits to interact with the spin in sequence. Pπ is a phase shifter that contributes a π phase shift to the photon passing through it. The working states of the optical switches S1 and S2 shown in (c) and (d) can be controlled accurately by a computer. S1 leads the photon emitting from spatial mode 11 to 12 until t = T0 + 2T1 + T2, and then leads the photon emitting from spatial mode 11 to 14 from t = T0 + 2T1 + T2 to t = T0 + 3T1 + T2 + T3. When T0 + 3T1 + T2 + T3 < t < T0 + 4T1 + 2T2 + T3, S1 turns back to spatial mode 12 again. T0 is the time for the single-photon process PBS4-S2, while T1 for S2-PBS5-cavity-PBS5-S1, T2 for S1-HWP3-S2, and T3 for S2-S1. DL in (a) is used for the storage of the photon for the time needed by the interaction between the single photon and the QD, while DL in (b) is four times of (a).

Download Full Size | PPT Slide | PDF

First, the first control photon c1 is injected into the input port c1in (depicted in Fig. 3(a)). PBS1 splits the control photon into two wave-packets, that is, |Rc1 → |Rc1,2 and |Lc1 → |Lc1,1. The photon in the state |Rc1,2 is injected into the cavity, while the photon in the state |Lc1,1 does not interact with the QD inside the cavity. With the same arguments as made for the CNOT gate above, we find that after the first control photon c1 interacts with the QD inside the cavity, it emitted from the output port c1out with the state of the whole system as

|Ξ1=[(αc1αc2|Rc1,6|Rc2αc1βc2|Rc1,6|Lc2)|+(βc1αc2|Lc1,6|Rc2+βc1βc2|Lc1,6|Lc2)|](αt|Rt+βt|Lt).

Second, the second control photon c2 is injected into the input port c2in (depicted in Fig. 3(b)), and then |Rc2PBS4|Rc2,7 and |Lc2PBS4|Lc2,8. The photon in the state |Rc2,7 is injected into the cavity and interacts with the QD inside the cavity, while the photon in the state |Lc2,8 does not pass through the cavity. The interaction between the QD and the second control photon coming from path 7 transforms the state of the whole system into

|Ξ2=[(αc1αc2|Rc1,6|Lc2,11αc1βc2|Rc1,6|Lc2,8)|+(βc1αc2|Lc1,6|Rc2,11+βc1βc2|Lc1,6|Lc2,8)|](αt|Rt+βt|Lt).
Next, we lead the photon in the state |Lc2,11 or |Rc2,11 to spatial mode 12 with the optical switch S1, that is, |Lc2,11S2|Lc2,12 and |Rc2,11S2|Rc2,12. Before the photon reaches the optical switch S2, Hadamard operations Hp (i.e., passing through HWP3) and He are performed on the photon and the electron, respectively. The interaction between the second control photon coming from path 13 and the QD transforms the state of the system into
|Ξ3=[αc1αc22|Rc1,6(|Rc2,11|Lc2,11)(||)αc1βc2|Rc1,6|Lc2,8|+βc1αc22|Lc1,6(|Rc2,11+|Lc2,11)(||)+βc1βc2|Lc1,6|Lc2,8|](αt|Rt+βt|Lt).
Subsequently, an He is performed on the electron, which transforms the state of the system into
|Ξ4=[αc1αc22|Rc1,6(|Rc2,11|Lc2,11)|αc1βc2|Rc1,6|Lc2,8|]+βc1αc22|Lc1,6(|Rc2,11+|Lc2,11)|+βc1βc2|Lc1,6|Lc2,8|(αt|Rt+βt|Lt).
Next, we lead the photon in the state |Lc2,11 or |Rc2,11 to spatial path 14 for interacting with the QD inside the cavity again by using the switch S1. The evolution of the lead-back photon can be described by the processes |Rc2,11S1|Rc2,14S2|Rc2,9PBS5|Rc2,10 and |Lc2,11S1|Lc2,14S2|Lc2,9PBS5|Lc2,15, respectively.

Third, as depicted in Fig. 3(b), the target photon t is injected into the input port tin and interacts with the QD inside the cavity after an He is performed on the electron described by Eq. (16) and before the photon emitting from path 11 interacts with the QD. The evolution of the target photon t can be described by the processes |Rt|PBS7|Rt,18|cavity|Rt,19|Pπ|Rt,20|PBS7|Rt,21|, |Rt|PBS7|Rt,18|cavity|Lt,18|PBS7|Lt,21|, |Lt|PBS7|Lt,20|Pπ|Lt,19|cavity|Lt,18|PBS7|Lt,21|, and |Lt|PBS7|Lt,20|Pπ|Lt,19|cavity|Rt,19|Pπ|Rt,20PBS7|Rt,21, respectively.

Fourth, we perform an He on the electron after the target photon t interacts with the QD and before the second control photon c2 in the state |Rc2,10 or |Lc2,15 interacts with the QD. After |Rc2,10 and |Lc2,15 interact with the QD, the state of the whole system becomes

|Ξ5=αc1αc22|Rc1,6(|Rc2,11|Lc2,11(αt|Lt,21+βt|Rt,21)||)αc1βc2|Rc1,6|Lc2,8(αt|Lt,21+βt|Rt,21)|βc1αc22|Lc1,6(|Rc2,11+|Lc2,11(αt|Lt,21+βt|Rt,21)|+|)+βc1βc2|Lc1,6|Lc2,8(αt|Rt,21+βt|Lt,21)|.

Next, we lead the photon emitting from path 11 to path 12 by using the switch S1 ( |Rc2,11S1|Rc2,12, |Lc2,11S1|Lc2,12) for passing through HWP3 (i.e., Hp is performed on |Rc2,12 and |Lc2,12). Also, an He is performed on the electron. When the photon emitting from spatial mode 13, it is led to the cavity by S2. After the photon interacts with the QD inside the cavity, it emits from path 16 with the state of the whole system as

|Ξ6=αc1αc2|Rc1,6|Rc2,16(αt|Lt,21+βt|Rt,21)|αc1βc2|Rc1,6|Lc2,8(αt|Lt,21+βt|Rt,21)|+βc1αc2|Lc1,6|Rc2,16(αt|Lt,21+βt|Rt,21)|+βc1βc2|Lc1,6|Lc2,8(αt|Rt,21+βt|Lt,21)|.
When the photons in the states |Rc2, 16 and |Lc2, 8 pass through PBS6 simultaneously, the state of the whole system becomes
|Ξ7=αc1αc2|Rc1,6|Rc2,17(αt|Lt,21+βt|Rt,21)|αc1βc2|Rc1,6|Lc2,17(αt|Lt,21+βt|Rt,21)|+βc1αc2|Lc1,6|Rc2,17(αt|Lt,21+βt|Rt,21)|+βc1βc2|Lc1,6|Lc2,17(αt|Rt,21+βt|Lt,21)|.

Fifth, a Hadamard operation He is performed on the electron and a measurement on the excess electron in the basis {|↑〉, |↓〉} is taken. In order to complete the Toffoli gate with a success probability of 100%, −σz = −|R〉 〈R| + |L〉 〈L| and σx = |R〉 〈L| + |L〉 〈R| are performed on the outing control photon c1 and the outing target photon t, respectively iff the spin is in |↑〉. σx is performed on the outing target photon t iff the spin is in |↓〉. After these operations, the finial state of the three-photon system becomes

|ψT=αc1αc2|Rc1,6|Rc2,17(αt|Rt,21+βt|Lt,21)+αc1βc2|Rc1,6|Lc2,17(αt|Rt,21+βt|Lt,21)+βc1αc2|Lc1,6|Rc2,17(αt|Rt,21+βt|Lt,21)+βc1βc2|Lc1,6|Lc2,17(αt|Lt,21+βt|Rt,21).
One can see that the state of the target photonic qubit t is flipped when both the two control photonic qubits c1 and c2 are in the state |L〉, compared to the initial state of the photon system composed of the three photonic qubits. That is, the quantum circuit shown in Fig. 3 can be used to construct a Toffoli gate on a three-photon system in a deterministic way.

4. Discussion and summary

Let us discuss the feasibility to implement our proposals in a promising system with a GaAs-or InAs-based QD confined in an optical resonant microcavity with two partially reflective mirrors.

We can briefly review the reflection and the transmission coefficients of the cavities, for describing the photon-spin interaction in the system. It is known that they can be obtained by solving the Heisenberg equations of motion for the cavity field operator â and the QD dipole operator σ

da^dt=[i(ωcω)+κ+κs2]a^gσκa^inκa^in+H^,dσdt=[i(ωXω)+γ2]σgσza^+G^,
combining with the input-output relations for the cavity [61]
a^r=a^in+κa^,a^t=a^in+κa^,
and taking 〈σz〉 ≈ −1. Hu et al.[38] presented an explicit expression for the transmission coefficient t(ω) and the reflection coefficient r(ω). They can be expressed as
t(ω)=κ[i(ωXω)+γ2][i(ωXω)+γ2][i(ωcω)+κ+κs2]+g2,r(ω)=1+t(ω).
Here ω, ωc, and ωX denote the frequencies of the external field (probe photon), the cavity mode, and the X transition, respectively. g denotes the X cavity coupling rate. γ/2, κ, and κs/2 denote the decay rates of the X dipole, the cavity field, and the leaky modes (side leakage), respectively. As shown in Fig. 1(a), Ĥ and Ĝ are the noise operators related to the reservoirs needed to conserve the commutation. âin (â′in) and âr and (ât) are the input field operators and the output field operators, respectively.

The reflected and the transmitting lights feel phase shifts due to the complex reflection and transmission coefficients given by Eq. (23), and the phase shift can be adjusted by ωωc (ωc = ωX). In our work, we set the cavity to be resonant with the X and the input photons, that is, ωc = ωX = ω, and the reflection and the transmission coefficients of the coupled (hot, that is, g ≠ 0) cavity described by Eq. (23) can be simplified as

r=1+t,t=κγ2γ2[κ+κs2]+g2.
By taking g=0, the reflection and the transmission coefficients of the uncoupled cavity (cold cavity) can be written as
r0=κs2κ+κs2,t0=κκ+κs2.
Therefore, in a realistic spin-QD-double-side-cavity unit, the change of the input photon states in the system can be described as [41]
|R|r||L+|t||R,|L|r||R+|t||L,|R|r||L+|t||R,|L|r||R+|t||L,|R|t0||R|r0||L,|L|t0||L|r0||R,|R|t0||R|r0||L,|L|t0||L|r0||R.

First, we consider an ideal case in which the side leakage κs is much lower than the output coupling rate κ (that is, κs is negligible). Hu et al.[38] pointed out that under this condition, |t0(ω)| → 1, |r0(ω)|→ 0, |t(ω)|→ 0, and |r(ω)|→ 1 can be achieved in the strong coupling regime g > (κ, γ). In this time, Eq. (26) becomes Eq. (1), and the fidelities and the efficiencies of our gates can achieve unity. Unfortunately, this is a big challenge for QD-micropillar cavities although a significant progress has been made [62, 63]. If the cavity side leakage κs which will cause bit-flip errors is taken into account, the fidelities of our CNOT and Toffoli gates can be calculated as

FCT=[|t0|+|r|2]2,FT=[ξ1+2ξ2ξ332]2,
where
ξ1=(|t0||r0||t|+|r|)×[|r0|(|t0||r0|)(|t0||r0|+|r||t|)2+|r0|(|r||t|)(|t0||r0||r|+|t|)2+4|t0|(|r||t|)+4(|t0||r0|)],ξ2=|r|(|t0||r0|)(|t0||r0||r|+|t|)2+|r|(|r||t|)(|t0||r0|+|r||t|)2+4|t|(|t0||r0|)+4(|r||t|),ξ3=|r0|(|t0||r0|+|r||t|)2(|t0||r0||r|+|t|)2.
Here F = |〈Ψri〉|2. |Ψr〉 represents the finial state in a realistic QD-cavity system in our protocols, whereas |Ψi〉 represents the final state in the ideal condition.

In our work, the efficiency of the gate is defined as the ratio of the the number of the outputting photons to the inputting photons. The efficiencies of the CNOT and Toffoli gates can be expressed as

ηCT=13[12+5ζ4],ηT=14[1+5ζ4+ζ432].
Here ζ = |t0|2 + |r0|2 + |t|2 + |r|2.

For QD-cavity systems, strong coupling has been demonstrated. Forchel group [62] observed g/(κ + κs) ≈ 0.5 for a diameter d ≈ 1.5 μm micropillar with the quality factor Q = 4 × 8800 In(Ga)As QD-microcavity. g/(κ + κs) ≈ 2.4 for d ≈ 1.5 μm, g = 80 μeV and Q = 4 × 104 In(Ga)As QD-microcavity is also observed by this group [62, 63]. Yoshie [64] reported g/κ = 2.4 for QD-nanocavity. Hu et al.[40] reported g/(κ + κs) ≈ 1.0 for In(Ga)As QD-microcavity in 2011. In 2011, Young et al.[65] confirmed g > (κ +κs + γ)/4 in pillar microcavity. Fig. 4 and Fig. 5 present the fidelities and the efficiencies of our gates varying with κs and g/κ. They indicate that the fidelities and the efficiencies decrease with κs, and increase with g/κ. Let us now present some data in detail. When g/κ = 2.4 and κs = 0.5, FCNOT = 80.3%, FT = 48.4% with ηCNOT = 86% and ηT = 82.9%. If κsκ and g/κ = 2.4, FCNOT = 99.1%, FT = 95.8% with ηCNOT = 99.3% and ηT = 99.05%. From Fig. 4 and Fig. 5, we find that by taking a low κs, a near-unity fidelity and efficiency can be achieved in the strong-coupling regime. Moreover, a high fidelity and a high efficiency are achieved possibly in the weak-coupling regime.

 

Fig. 4 The fidelities of the present quantum gates as a function of the coupling strength g/κ and the side leakage rate κs. (a) The fidelity of the CNOT gate FCT ; (b) The fidelity of the Toffoli gate FT.

Download Full Size | PPT Slide | PDF

 

Fig. 5 The efficiencies of the present deterministic photon-qubit gates as a function of g/κ and κs. (a) The efficiency of the CNOT gate ηCT ; (b) The efficiency of the Toffoli gate ηT.

Download Full Size | PPT Slide | PDF

Hu et al.[38, 40] showed that besides the side leakage of the cavity, the electron-spin decoherence, the exciton dephasing, and the imperfect optical selection rule reduce the fidelity of the gate by few percents, respectively. The electron-spin decoherence decreases the fidelities of the gates by a factor

[1+exp(Δt/T2e)]/2.
Here T2e and Δt are the electron spin coherence time and the time interval between two input photons encoded for the gates, respectively. The electron-spin decoherence can reduce the fidelities by few presents as T2e could be maintained for more than 3 μs using spin-echo techniques [26, 27] and Δt, which limited by the critical photon and the cavity photon life time and should be shorter than T2e for getting a high fidelity, can be longer than ns [66]. The exciton dephasing caused by the exciton decoherence in a QD reduces the fidelities by a factor
[1exp(τ/T2)].
τ and T2 are the cavity photon lifetime and the exciton coherence time, respectively. The trion phasing induces the state of the electron with equal polarized superposition (|+|)/2 to be
ρe(t)=12(1et/2T2et/2T21),
as the information of the photonic qubits is transformed into the electron through the excitonic state. It has been reported that the exciton slightly decreases the fidelities because the exciton dephasing includes the optical dephasing and the spin dephasing. In self-assembled In(Ga) QD, the optical coherence time of exciton can be maintained several hundreds of picoseconds [6769] and it is ten times longer than the cavity photon lifetime (τ ∼ tens of picoseconds). The trion coherence time of the exciton (T2 > 100 ns has been reported) is at least three orders of longer than the cavity photon lifetime [7072]. The imperfect optical selection rule caused by the heavy-light hole mixing [73] in a realistic QD could be reduced by engineering the shape and the size of QDs or by choosing different types of QDs.

The time interval between the inputting photons Δt = τ/n0. Here n0 = γ2/2g2[74] is the number of the critical photons and τ is the cavity photon lifetime. n0 = 2 × 10−3 and τ ∼ 10 ns can be achieved [66] for a micropillar microcavity with d = 1.5 μm and Q = 1.7× 104. Therefore, the time difference between the inputting photons can be longer than τ/n0=4.5 ns [66] and it is several orders shorter than the single electron charged QD spin coherence time ∼ μs [2631]. As the CNOT and Toffoli gates are encoded in two and three photons, respectively, the speed of the photon-qubit for those two gates interacting with the spin should be less than τ/2 and τ/3, respectively.

Schemes for realizing the quantum gate on photonic qubits by means of the light-matter interactions have been received much attention. An auxiliary photonic qubit or qudit, as employed in [13, 14, 17, 75], is unnecessary in our schemes. Our scheme as shown in Fig. 2, 2 two-qubit entangling gates acting on light-matter systems are required, less than the ones in [76,77] which require 3 hybrid gates. Refs. [38, 78, 79] discussed the photonic entanglement assisted by an atom or a QD. However, based on parity-check gates, an additional photonic qubit is necessary to construct a two-qubit quantum gate. Procedure for multi-qubit gates using parity-check gates is an open question. The circuits of the photonic qubit gates assisted by matter-medium are mostly focused on two-qubit cases [13, 76, 77, 80], while the ones for multi-qubit systems are much more complex. Moreover, it is usual not an appealing method to realize a multi-qubit gates by means of two-qubit gates. For example, the synthesis of a Toffoli gate requires 5 two-qubit entangling gates assisted by a qudit [75], or requires 6 CNOT gates and some single-qubit gates [12]. In our work, we not only investigated the realization of a photonic two-qubit CNOT gate, but also generalized it to the three-qubit case. Moreover, our schemes are based on a QD-cavity system. It is easier to trap a QD inside the cavity than the atom, and the speed of the optical coherent manipulation of the QD is far faster than an atom. Compared with the gates based on spin-QD-single-side-cavity systems, the ones based on spin-QD-doubled-side-cavity systems are more robust and flexible [38].

In summary, we have investigated the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a singly charged QD spin in a double-sided optical microcavity as a result of cavity QED and have proposed an attractive scheme for a deterministic CNOT gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin. It requires no additional photonic qubits, different from those based on cross-Kerr nonlinearity or parity-check gates. Moreover, we have presented a deterministic scheme for implementing a three-qubit Toffoli gate on photon systems. In our schemes, the spin-QD-double-side-cavity system is only a solid medium. When the ratio of the side leakage to the cavity loss is low, a near-unity fidelity can be achieved in the strong-coupling regime and a high fidelity can be achieved in the weak-coupling regime. With these two quantum gates on photonic qubits and single-photon unitary operations, universal quantum computing can be achieved on photon systems in principle.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 11174039, NECT-11-0031, and the Fundamental Research Funds for the Central Universities.

References and links

1. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3457 (1995) [CrossRef]   [PubMed]  .

2. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001) [CrossRef]  .

3. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001) [CrossRef]  .

4. E. Knill, “Quantum gates using linear optics and postselection,” Phys. Rev. A 66, 052306 (2002) [CrossRef]  .

5. M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett. 93, 040503 (2004) [CrossRef]   [PubMed]  .

6. D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005) [CrossRef]   [PubMed]  .

7. T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Experimental controlled-not logic gate for single photons in the coincidence basis,” Phys. Rev. A 68, 032316 (2003) [CrossRef]  .

8. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature (London) 426, 264–267 (2003) [CrossRef]  .

9. S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-not gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004) [CrossRef]   [PubMed]  .

10. Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput. 3, 084–092 (2003).

11. J. Fiurášek, “Linear-optics quantum Toffoli and Fredkin gates,” Phys. Rev. A 73, 062313 (2006) [CrossRef]  .

12. V. V. Shende and I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quantum Inf. Comput. 9, 0461–0486 (2009).

13. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004) [CrossRef]  .

14. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009) [CrossRef]  .

15. W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: A new route to optical quantum computation,” New J. Phys. 7, 137 (2005) [CrossRef]  .

16. T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30 (2006) [CrossRef]  .

17. Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009) [CrossRef]  .

18. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005) [CrossRef]  .

19. H. Schmidt and A. Imamogdlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996) [CrossRef]   [PubMed]  .

20. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998) [CrossRef]  .

21. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999) [CrossRef]  .

22. C. Piermarocchi, P. C. Chen, L. J. Sham, and D. G. Steel, “Optical RKKY interaction between charged semiconductor quantum dots,” Phys. Rev. Lett. 89, 167402 (2002) [CrossRef]   [PubMed]  .

23. T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003) [CrossRef]  .

24. S. M. Clark, K. M. C. Fu, T. D. Ladd, and Y. Yamamoto, “Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses,” Phys. Rev. Lett. 99, 040501 (2007) [CrossRef]   [PubMed]  .

25. Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008) [CrossRef]   [PubMed]  .

26. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005) [CrossRef]   [PubMed]  .

27. A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006) [CrossRef]   [PubMed]  .

28. A. Greilich, A. Shabaev, D. R. Yakovlev, A. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, “Nuclei-induced frequency focusing of electron spin coherence,” Science 317, 1896–1899 (2007) [CrossRef]   [PubMed]  .

29. X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature (London) 459, 1105–1109 (2009) [CrossRef]  .

30. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009) [CrossRef]   [PubMed]  .

31. D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010) [CrossRef]  .

32. M. Atatre, J. Dreiser, A. Badolato, A. Hogele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006) [CrossRef]  .

33. X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett. 99, 097401 (2007) [CrossRef]   [PubMed]  .

34. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008) [CrossRef]   [PubMed]  .

35. D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008) [CrossRef]  .

36. A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262–266 (2009) [CrossRef]  .

37. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008) [CrossRef]  .

38. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009) [CrossRef]  .

39. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008) [CrossRef]  .

40. C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011) [CrossRef]  .

41. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010) [CrossRef]   [PubMed]  .

42. H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013) [CrossRef]  .

43. B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. (accepted); arXiv:1303.0056.

44. T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012) [CrossRef]  .

45. C. Wang, Y. Zhang, and R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19, 25685–25695 (2011) [CrossRef]  .

46. C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011) [CrossRef]  .

47. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012) [CrossRef]   [PubMed]  .

48. T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012) [CrossRef]  .

49. R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. M. Ribeiro, and P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997) [CrossRef]  .

50. C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998) [CrossRef]  .

51. C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009) [CrossRef]  .

52. J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011) [CrossRef]  .

53. C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011) [CrossRef]  .

54. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012) [CrossRef]  .

55. J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012) [CrossRef]   [PubMed]  .

56. M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005) [CrossRef]   [PubMed]  .

57. J. M. Elzerman, R. Hanson, L. H. W. van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature (London) 430, 431–425 (2004) [CrossRef]  .

58. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature (London) 432, 81–84 (2004) [CrossRef]  .

59. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, and A. Forchel, “Fine structure of neutral and charged excitons in self-assembled In(Ga)/As(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002) [CrossRef]  .

60. J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, and A. F. G. Monte, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002) [CrossRef]  .

61. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).

62. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007) [CrossRef]  .

63. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004) [CrossRef]  .

64. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004) [CrossRef]  .

65. A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011) [CrossRef]  .

66. By taking g/(κ+ κs) = 1.0,κs= 0.7 and γ= 0.1κfor a micropillar microcavitr with diameter d= 1.5μm, Q= 1.7 × 104, one can get n0= 2 × 10−3, τ= 9 ps, and τ/n0= 4.5 ns.

67. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001) [CrossRef]   [PubMed]  .

68. D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001) [CrossRef]   [PubMed]  .

69. W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004) [CrossRef]  .

70. D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007) [CrossRef]  .

71. B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008) [CrossRef]  .

72. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009) [CrossRef]   [PubMed]  .

73. G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003) [CrossRef]  .

74. H. J. Kimble, Cavity Quantum Electrodynamics (Academic, San Diego, 1994).

75. R. Ionicioiu, T. P. Spiller, and W. J. Munro, “Generalized Toffoli gates using qudit catalysis,” Phys. Rev. A 80, 012312 (2009) [CrossRef]  .

76. W. L. Yang, H. Wei, F. Zhou, and M. Feng, “Generation of multi-atom entangled states and implementation of controlled-phase gating using photonic modules,” J. Phys. B: At. Mol. Opt. Phys. 42, 055503 (2009) [CrossRef]  .

77. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interaction,” Phys. Rev. Lett. 92, 127902 (2004) [CrossRef]   [PubMed]  .

78. S. J. Devitt, A. D. Greentree, R. Ionicioiu, J. L. O’Brien, W. J. Munro, and L. C. L. Hollenberg, “Photonic module: An on-demand resource for photonic entanglement,” Phys. Rev. A 76, 052312 (2007) [CrossRef]  .

79. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-out process with respect to low cavities,” Phy. Rev. A 79, 032303 (2009) [CrossRef]  .

80. C. W. Wong, J. Gao, J. F. McMillan, F.W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics and Nanostructures-Fundamentals and Applications 7, 47 (2009) [CrossRef]  .

References

  • View by:
  • |
  • |
  • |

  1. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3457 (1995).
    [Crossref] [PubMed]
  2. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
    [Crossref]
  3. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
    [Crossref]
  4. E. Knill, “Quantum gates using linear optics and postselection,” Phys. Rev. A 66, 052306 (2002).
    [Crossref]
  5. M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett. 93, 040503 (2004).
    [Crossref] [PubMed]
  6. D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
    [Crossref] [PubMed]
  7. T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Experimental controlled-not logic gate for single photons in the coincidence basis,” Phys. Rev. A 68, 032316 (2003).
    [Crossref]
  8. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature (London) 426, 264–267 (2003).
    [Crossref]
  9. S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-not gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
    [Crossref] [PubMed]
  10. Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput. 3, 084–092 (2003).
  11. J. Fiurášek, “Linear-optics quantum Toffoli and Fredkin gates,” Phys. Rev. A 73, 062313 (2006).
    [Crossref]
  12. V. V. Shende and I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quantum Inf. Comput. 9, 0461–0486 (2009).
  13. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
    [Crossref]
  14. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
    [Crossref]
  15. W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: A new route to optical quantum computation,” New J. Phys. 7, 137 (2005).
    [Crossref]
  16. T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30 (2006).
    [Crossref]
  17. Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009).
    [Crossref]
  18. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  19. H. Schmidt and A. Imamogdlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
    [Crossref] [PubMed]
  20. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
    [Crossref]
  21. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
    [Crossref]
  22. C. Piermarocchi, P. C. Chen, L. J. Sham, and D. G. Steel, “Optical RKKY interaction between charged semiconductor quantum dots,” Phys. Rev. Lett. 89, 167402 (2002).
    [Crossref] [PubMed]
  23. T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
    [Crossref]
  24. S. M. Clark, K. M. C. Fu, T. D. Ladd, and Y. Yamamoto, “Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses,” Phys. Rev. Lett. 99, 040501 (2007).
    [Crossref] [PubMed]
  25. Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
    [Crossref] [PubMed]
  26. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
    [Crossref] [PubMed]
  27. A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
    [Crossref] [PubMed]
  28. A. Greilich, A. Shabaev, D. R. Yakovlev, A. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, “Nuclei-induced frequency focusing of electron spin coherence,” Science 317, 1896–1899 (2007).
    [Crossref] [PubMed]
  29. X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature (London) 459, 1105–1109 (2009).
    [Crossref]
  30. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
    [Crossref] [PubMed]
  31. D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
    [Crossref]
  32. M. Atatre, J. Dreiser, A. Badolato, A. Hogele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
    [Crossref]
  33. X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett. 99, 097401 (2007).
    [Crossref] [PubMed]
  34. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
    [Crossref] [PubMed]
  35. D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
    [Crossref]
  36. A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262–266 (2009).
    [Crossref]
  37. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
    [Crossref]
  38. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
    [Crossref]
  39. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
    [Crossref]
  40. C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
    [Crossref]
  41. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
    [Crossref] [PubMed]
  42. H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
    [Crossref]
  43. B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. (accepted); arXiv:1303.0056.
  44. T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
    [Crossref]
  45. C. Wang, Y. Zhang, and R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19, 25685–25695 (2011).
    [Crossref]
  46. C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).
    [Crossref]
  47. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
    [Crossref] [PubMed]
  48. T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
    [Crossref]
  49. R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. M. Ribeiro, and P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
    [Crossref]
  50. C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
    [Crossref]
  51. C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
    [Crossref]
  52. J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
    [Crossref]
  53. C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
    [Crossref]
  54. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
    [Crossref]
  55. J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
    [Crossref] [PubMed]
  56. M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
    [Crossref] [PubMed]
  57. J. M. Elzerman, R. Hanson, L. H. W. van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature (London) 430, 431–425 (2004).
    [Crossref]
  58. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature (London) 432, 81–84 (2004).
    [Crossref]
  59. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, and A. Forchel, “Fine structure of neutral and charged excitons in self-assembled In(Ga)/As(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
    [Crossref]
  60. J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, and A. F. G. Monte, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
    [Crossref]
  61. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).
  62. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
    [Crossref]
  63. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
    [Crossref]
  64. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
    [Crossref]
  65. A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
    [Crossref]
  66. By taking g/(κ+ κs) = 1.0,κs/κ= 0.7 and γ= 0.1κfor a micropillar microcavitr with diameter d= 1.5μm, Q= 1.7 × 104, one can get n0= 2 × 10−3, τ= 9 ps, and τ/n0= 4.5 ns.
  67. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
    [Crossref] [PubMed]
  68. D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
    [Crossref] [PubMed]
  69. W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
    [Crossref]
  70. D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
    [Crossref]
  71. B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
    [Crossref]
  72. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
    [Crossref] [PubMed]
  73. G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
    [Crossref]
  74. H. J. Kimble, Cavity Quantum Electrodynamics (Academic, San Diego, 1994).
  75. R. Ionicioiu, T. P. Spiller, and W. J. Munro, “Generalized Toffoli gates using qudit catalysis,” Phys. Rev. A 80, 012312 (2009).
    [Crossref]
  76. W. L. Yang, H. Wei, F. Zhou, and M. Feng, “Generation of multi-atom entangled states and implementation of controlled-phase gating using photonic modules,” J. Phys. B: At. Mol. Opt. Phys. 42, 055503 (2009).
    [Crossref]
  77. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interaction,” Phys. Rev. Lett. 92, 127902 (2004).
    [Crossref] [PubMed]
  78. S. J. Devitt, A. D. Greentree, R. Ionicioiu, J. L. O’Brien, W. J. Munro, and L. C. L. Hollenberg, “Photonic module: An on-demand resource for photonic entanglement,” Phys. Rev. A 76, 052312 (2007).
    [Crossref]
  79. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-out process with respect to low cavities,” Phy. Rev. A 79, 032303 (2009).
    [Crossref]
  80. C. W. Wong, J. Gao, J. F. McMillan, F.W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics and Nanostructures-Fundamentals and Applications 7, 47 (2009).
    [Crossref]

2013 (1)

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

2012 (5)

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[Crossref] [PubMed]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[Crossref] [PubMed]

2011 (6)

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[Crossref]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

C. Wang, Y. Zhang, and R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19, 25685–25695 (2011).
[Crossref]

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).
[Crossref]

2010 (2)

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[Crossref]

2009 (13)

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature (London) 459, 1105–1109 (2009).
[Crossref]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

V. V. Shende and I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quantum Inf. Comput. 9, 0461–0486 (2009).

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
[Crossref]

Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009).
[Crossref]

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262–266 (2009).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

R. Ionicioiu, T. P. Spiller, and W. J. Munro, “Generalized Toffoli gates using qudit catalysis,” Phys. Rev. A 80, 012312 (2009).
[Crossref]

W. L. Yang, H. Wei, F. Zhou, and M. Feng, “Generation of multi-atom entangled states and implementation of controlled-phase gating using photonic modules,” J. Phys. B: At. Mol. Opt. Phys. 42, 055503 (2009).
[Crossref]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-out process with respect to low cavities,” Phy. Rev. A 79, 032303 (2009).
[Crossref]

C. W. Wong, J. Gao, J. F. McMillan, F.W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics and Nanostructures-Fundamentals and Applications 7, 47 (2009).
[Crossref]

2008 (6)

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[Crossref]

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[Crossref] [PubMed]

2007 (6)

S. M. Clark, K. M. C. Fu, T. D. Ladd, and Y. Yamamoto, “Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses,” Phys. Rev. Lett. 99, 040501 (2007).
[Crossref] [PubMed]

A. Greilich, A. Shabaev, D. R. Yakovlev, A. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, “Nuclei-induced frequency focusing of electron spin coherence,” Science 317, 1896–1899 (2007).
[Crossref] [PubMed]

X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett. 99, 097401 (2007).
[Crossref] [PubMed]

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

S. J. Devitt, A. D. Greentree, R. Ionicioiu, J. L. O’Brien, W. J. Munro, and L. C. L. Hollenberg, “Photonic module: An on-demand resource for photonic entanglement,” Phys. Rev. A 76, 052312 (2007).
[Crossref]

2006 (4)

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

M. Atatre, J. Dreiser, A. Badolato, A. Hogele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref]

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30 (2006).
[Crossref]

J. Fiurášek, “Linear-optics quantum Toffoli and Fredkin gates,” Phys. Rev. A 73, 062313 (2006).
[Crossref]

2005 (5)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: A new route to optical quantum computation,” New J. Phys. 7, 137 (2005).
[Crossref]

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[Crossref] [PubMed]

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref] [PubMed]

2004 (9)

J. M. Elzerman, R. Hanson, L. H. W. van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature (London) 430, 431–425 (2004).
[Crossref]

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature (London) 432, 81–84 (2004).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[Crossref]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interaction,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-not gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett. 93, 040503 (2004).
[Crossref] [PubMed]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

2003 (5)

Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput. 3, 084–092 (2003).

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Experimental controlled-not logic gate for single photons in the coincidence basis,” Phys. Rev. A 68, 032316 (2003).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature (London) 426, 264–267 (2003).
[Crossref]

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[Crossref]

G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[Crossref]

2002 (4)

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, and A. Forchel, “Fine structure of neutral and charged excitons in self-assembled In(Ga)/As(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[Crossref]

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, and A. F. G. Monte, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[Crossref]

C. Piermarocchi, P. C. Chen, L. J. Sham, and D. G. Steel, “Optical RKKY interaction between charged semiconductor quantum dots,” Phys. Rev. Lett. 89, 167402 (2002).
[Crossref] [PubMed]

E. Knill, “Quantum gates using linear optics and postselection,” Phys. Rev. A 66, 052306 (2002).
[Crossref]

2001 (4)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[Crossref]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[Crossref]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[Crossref] [PubMed]

1999 (1)

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

1998 (2)

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[Crossref]

1997 (1)

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. M. Ribeiro, and P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[Crossref]

1996 (1)

1995 (1)

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3457 (1995).
[Crossref] [PubMed]

Abstreiter, G.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[Crossref]

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature (London) 432, 81–84 (2004).
[Crossref]

Ahmadi, E. D.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

An, J. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-out process with respect to low cavities,” Phy. Rev. A 79, 032303 (2009).
[Crossref]

Ashmore, A. D.

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, and A. F. G. Monte, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[Crossref]

Atatre, M.

M. Atatre, J. Dreiser, A. Badolato, A. Hogele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref]

Awschalom, D. D.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Badolato, A.

M. Atatre, J. Dreiser, A. Badolato, A. Hogele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref]

Baker, C.

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, and A. F. G. Monte, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[Crossref]

Bakker, M.

Barenco, A.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3457 (1995).
[Crossref] [PubMed]

Bayer, M.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262–266 (2009).
[Crossref]

A. Greilich, A. Shabaev, D. R. Yakovlev, A. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, “Nuclei-induced frequency focusing of electron spin coherence,” Science 317, 1896–1899 (2007).
[Crossref] [PubMed]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, and A. Forchel, “Fine structure of neutral and charged excitons in self-assembled In(Ga)/As(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[Crossref]

Beirne, G. J.

Bennett, C. H.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3457 (1995).
[Crossref] [PubMed]

Berezovsky, J.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

Berman, P. R.

M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref] [PubMed]

Bester, G.

G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[Crossref]

Bichler, M.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[Crossref]

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature (London) 432, 81–84 (2004).
[Crossref]

Bimberg, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Birkedal, D.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[Crossref] [PubMed]

Bonato, C.

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[Crossref] [PubMed]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

Borri, P.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[Crossref]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Bose, R.

C. W. Wong, J. Gao, J. F. McMillan, F.W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics and Nanostructures-Fundamentals and Applications 7, 47 (2009).
[Crossref]

Bouwmeester, D.

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[Crossref] [PubMed]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

Bracker, A. S.

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature (London) 459, 1105–1109 (2009).
[Crossref]

X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett. 99, 097401 (2007).
[Crossref] [PubMed]

M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref] [PubMed]

Branning, D.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature (London) 426, 264–267 (2003).
[Crossref]

Braunstein, S. L.

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30 (2006).
[Crossref]

Browne, D. E.

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[Crossref] [PubMed]

Brunner, D.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[Crossref]

Bulaev, D. V.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[Crossref]

Burkard, G.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Calarco, T.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[Crossref]

Chen, P. C.

C. Piermarocchi, P. C. Chen, L. J. Sham, and D. G. Steel, “Optical RKKY interaction between charged semiconductor quantum dots,” Phys. Rev. Lett. 89, 167402 (2002).
[Crossref] [PubMed]

Cheng, J.

X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett. 99, 097401 (2007).
[Crossref] [PubMed]

M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref] [PubMed]

Clark, S. M.

S. M. Clark, K. M. C. Fu, T. D. Ladd, and Y. Yamamoto, “Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses,” Phys. Rev. Lett. 99, 040501 (2007).
[Crossref] [PubMed]

Cleve, R.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3457 (1995).
[Crossref] [PubMed]

Coldren, L. A.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

Dalgarno, P. A.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[Crossref]

Datta, A.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[Crossref]

De Greve, K.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[Crossref]

Deng, F. G.

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[Crossref] [PubMed]

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. (accepted); arXiv:1303.0056.

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Devitt, S. J.

S. J. Devitt, A. D. Greentree, R. Ionicioiu, J. L. O’Brien, W. J. Munro, and L. C. L. Hollenberg, “Photonic module: An on-demand resource for photonic entanglement,” Phys. Rev. A 76, 052312 (2007).
[Crossref]

Ding, D.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

DiVincenzo, D. P.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3457 (1995).
[Crossref] [PubMed]

Dreiser, J.

M. Atatre, J. Dreiser, A. Badolato, A. Hogele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref]

Duan, L. M.

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interaction,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

Ducommun, Y.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature (London) 432, 81–84 (2004).
[Crossref]

Dürr, C. S.

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. M. Ribeiro, and P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[Crossref]

Dutt, M. V. G.

M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref] [PubMed]

Economou, S. E.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262–266 (2009).
[Crossref]

M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref] [PubMed]

Efros, A. L.

A. Greilich, A. Shabaev, D. R. Yakovlev, A. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, “Nuclei-induced frequency focusing of electron spin coherence,” Science 317, 1896–1899 (2007).
[Crossref] [PubMed]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Elzerman, J. M.

J. M. Elzerman, R. Hanson, L. H. W. van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature (London) 430, 431–425 (2004).
[Crossref]

Emary, C.

X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett. 99, 097401 (2007).
[Crossref] [PubMed]

Fedichev, P.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[Crossref]

Feng, M.

W. L. Yang, H. Wei, F. Zhou, and M. Feng, “Generation of multi-atom entangled states and implementation of controlled-phase gating using photonic modules,” J. Phys. B: At. Mol. Opt. Phys. 42, 055503 (2009).
[Crossref]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-out process with respect to low cavities,” Phy. Rev. A 79, 032303 (2009).
[Crossref]

Finley, J. J.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[Crossref]

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature (London) 432, 81–84 (2004).
[Crossref]

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, and A. F. G. Monte, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[Crossref]

Fitch, M. J.

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Experimental controlled-not logic gate for single photons in the coincidence basis,” Phys. Rev. A 68, 032316 (2003).
[Crossref]

Fiurášek, J.

J. Fiurášek, “Linear-optics quantum Toffoli and Fredkin gates,” Phys. Rev. A 73, 062313 (2006).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Forchel, A.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, and A. Forchel, “Fine structure of neutral and charged excitons in self-assembled In(Ga)/As(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[Crossref]

Fox, A. M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Franson, J. D.

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Experimental controlled-not logic gate for single photons in the coincidence basis,” Phys. Rev. A 68, 032316 (2003).
[Crossref]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[Crossref]

Friess, B.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[Crossref]

Fu, K. M. C.

S. M. Clark, K. M. C. Fu, T. D. Ladd, and Y. Yamamoto, “Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses,” Phys. Rev. Lett. 99, 040501 (2007).
[Crossref] [PubMed]

Gammon, D.

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature (London) 459, 1105–1109 (2009).
[Crossref]

X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett. 99, 097401 (2007).
[Crossref] [PubMed]

M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref] [PubMed]

Gao, J.

C. W. Wong, J. Gao, J. F. McMillan, F.W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics and Nanostructures-Fundamentals and Applications 7, 47 (2009).
[Crossref]

Gasparoni, S.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-not gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

Gerardot, B. D.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[Crossref]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Gorbunov, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Gorbunov, A. A.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, and A. Forchel, “Fine structure of neutral and charged excitons in self-assembled In(Ga)/As(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[Crossref]

Gossard, A. C.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Greentree, A. D.

S. J. Devitt, A. D. Greentree, R. Ionicioiu, J. L. O’Brien, W. J. Munro, and L. C. L. Hollenberg, “Photonic module: An on-demand resource for photonic entanglement,” Phys. Rev. A 76, 052312 (2007).
[Crossref]

Greilich, A.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262–266 (2009).
[Crossref]

A. Greilich, A. Shabaev, D. R. Yakovlev, A. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, “Nuclei-induced frequency focusing of electron spin coherence,” Science 317, 1896–1899 (2007).
[Crossref] [PubMed]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Gudat, J.

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

Guo, G. C.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[Crossref] [PubMed]

Guo, G. P.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[Crossref] [PubMed]

Hagemeier, J.

Hanson, M. P.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Hanson, R.

J. M. Elzerman, R. Hanson, L. H. W. van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature (London) 430, 431–425 (2004).
[Crossref]

Haupt, F.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

He, B.

Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009).
[Crossref]

Heiss, D.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[Crossref]

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature (London) 432, 81–84 (2004).
[Crossref]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Höfling, S.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Hofmann, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Hogele, A.

M. Atatre, J. Dreiser, A. Badolato, A. Hogele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref]

Hollenberg, L. C. L.

S. J. Devitt, A. D. Greentree, R. Ionicioiu, J. L. O’Brien, W. J. Munro, and L. C. L. Hollenberg, “Photonic module: An on-demand resource for photonic entanglement,” Phys. Rev. A 76, 052312 (2007).
[Crossref]

Hu, C. Y.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[Crossref]

Hua, M.

Huang, Q.

X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett. 99, 097401 (2007).
[Crossref] [PubMed]

Huebl, H.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[Crossref]

Hugues, M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Hvam, J. M.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[Crossref] [PubMed]

Imamogdlu, A.

Imamoglu, A.

M. Atatre, J. Dreiser, A. Badolato, A. Hogele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Ionicioiu, R.

R. Ionicioiu, T. P. Spiller, and W. J. Munro, “Generalized Toffoli gates using qudit catalysis,” Phys. Rev. A 80, 012312 (2009).
[Crossref]

S. J. Devitt, A. D. Greentree, R. Ionicioiu, J. L. O’Brien, W. J. Munro, and L. C. L. Hollenberg, “Photonic module: An on-demand resource for photonic entanglement,” Phys. Rev. A 76, 052312 (2007).
[Crossref]

Jacobs, B. C.

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Experimental controlled-not logic gate for single photons in the coincidence basis,” Phys. Rev. A 68, 032316 (2003).
[Crossref]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[Crossref]

Jin, G. S.

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).
[Crossref]

Johnson, A. C.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Kamp, M.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Karczewski, G.

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[Crossref]

Karrai, K.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[Crossref]

M. Atatre, J. Dreiser, A. Badolato, A. Hogele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref]

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. M. Ribeiro, and P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[Crossref]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Kim, H.

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[Crossref] [PubMed]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

Kimble, H. J.

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interaction,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

H. J. Kimble, Cavity Quantum Electrodynamics (Academic, San Diego, 1994).

Knill, E.

E. Knill, “Quantum gates using linear optics and postselection,” Phys. Rev. A 66, 052306 (2002).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[Crossref]

Kossut, J.

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[Crossref]

Kotthaus, J. P.

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. M. Ribeiro, and P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[Crossref]

Kouwenhoven, L. P.

J. M. Elzerman, R. Hanson, L. H. W. van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature (London) 430, 431–425 (2004).
[Crossref]

Kroner, M.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[Crossref]

Kroutvar, M.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature (London) 432, 81–84 (2004).
[Crossref]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Kuther, A.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, and A. Forchel, “Fine structure of neutral and charged excitons in self-assembled In(Ga)/As(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[Crossref]

Kwon, S. H.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Ladd, T. D.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[Crossref]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[Crossref]

S. M. Clark, K. M. C. Fu, T. D. Ladd, and Y. Yamamoto, “Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses,” Phys. Rev. Lett. 99, 040501 (2007).
[Crossref] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[Crossref]

Laird, E. A.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Landwehr, G.

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[Crossref]

Langbein, W.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[Crossref]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Leosson, K.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[Crossref] [PubMed]

Li, B.

M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref] [PubMed]

Li, J.

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
[Crossref]

Li, T.

Li, X. Q.

M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref] [PubMed]

Lin, Q.

Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009).
[Crossref]

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
[Crossref]

Lin, Z. R.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[Crossref] [PubMed]

Liu, R. B.

M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref] [PubMed]

Löffler, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Long, G. L.

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

Loss, D.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[Crossref]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

Lu, Y.

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

Lukin, M. D.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Luo, Y. Q.

Luxmoore, B. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Luxmoore, I. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Marcus, C. M.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Margolus, N.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3457 (1995).
[Crossref] [PubMed]

Markov, I. L.

V. V. Shende and I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quantum Inf. Comput. 9, 0461–0486 (2009).

McMahon, P. L.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[Crossref]

McMillan, J. F.

C. W. Wong, J. Gao, J. F. McMillan, F.W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics and Nanostructures-Fundamentals and Applications 7, 47 (2009).
[Crossref]

Mikkelsen, M. H.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

Milburn, G. J.

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30 (2006).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).

Monte, A. F. G.

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, and A. F. G. Monte, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[Crossref]

Mowbray, D. J.

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, and A. F. G. Monte, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[Crossref]

Munro, W. J.

R. Ionicioiu, T. P. Spiller, and W. J. Munro, “Generalized Toffoli gates using qudit catalysis,” Phys. Rev. A 80, 012312 (2009).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

S. J. Devitt, A. D. Greentree, R. Ionicioiu, J. L. O’Brien, W. J. Munro, and L. C. L. Hollenberg, “Photonic module: An on-demand resource for photonic entanglement,” Phys. Rev. A 76, 052312 (2007).
[Crossref]

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30 (2006).
[Crossref]

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: A new route to optical quantum computation,” New J. Phys. 7, 137 (2005).
[Crossref]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

Nair, S.

G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[Crossref]

Nemoto, K.

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30 (2006).
[Crossref]

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: A new route to optical quantum computation,” New J. Phys. 7, 137 (2005).
[Crossref]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

Nielsen, M. A.

M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett. 93, 040503 (2004).
[Crossref] [PubMed]

O’Brien, J. L.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

S. J. Devitt, A. D. Greentree, R. Ionicioiu, J. L. O’Brien, W. J. Munro, and L. C. L. Hollenberg, “Photonic module: An on-demand resource for photonic entanglement,” Phys. Rev. A 76, 052312 (2007).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature (London) 426, 264–267 (2003).
[Crossref]

Oemrawsingh, S. S. R.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

Oh, C. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-out process with respect to low cavities,” Phy. Rev. A 79, 032303 (2009).
[Crossref]

Öhberg, P.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[Crossref]

Ortner, G.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, and A. Forchel, “Fine structure of neutral and charged excitons in self-assembled In(Ga)/As(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[Crossref]

Ossau, W.

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[Crossref]

Oulton, R.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Pan, J. W.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-not gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

Pazy, E.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[Crossref]

Petroff, P.

Petroff, P. M.

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[Crossref]

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. M. Ribeiro, and P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[Crossref]

Petta, J. R.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Piermarocchi, C.

C. Piermarocchi, P. C. Chen, L. J. Sham, and D. G. Steel, “Optical RKKY interaction between charged semiconductor quantum dots,” Phys. Rev. Lett. 89, 167402 (2002).
[Crossref] [PubMed]

Pittman, T. B.

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Experimental controlled-not logic gate for single photons in the coincidence basis,” Phys. Rev. A 68, 032316 (2003).
[Crossref]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[Crossref]

Press, D.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[Crossref]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[Crossref]

Pryde, G. J.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature (London) 426, 264–267 (2003).
[Crossref]

Ralph, T. C.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature (London) 426, 264–267 (2003).
[Crossref]

Rarity, J. G.

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[Crossref]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

Reinecke, T. L.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262–266 (2009).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Reitzenstein, S.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Ren, B. C.

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[Crossref] [PubMed]

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. (accepted); arXiv:1303.0056.

Reuter, D.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262–266 (2009).
[Crossref]

A. Greilich, A. Shabaev, D. R. Yakovlev, A. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, “Nuclei-induced frequency focusing of electron spin coherence,” Science 317, 1896–1899 (2007).
[Crossref] [PubMed]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[Crossref]

Ribeiro, G. M.

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. M. Ribeiro, and P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[Crossref]

Rudolph, T.

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[Crossref] [PubMed]

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-not gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Schaeck, S.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[Crossref]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Schmidt, H.

Schneider, C.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Schuh, D.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature (London) 432, 81–84 (2004).
[Crossref]

Seidl, S.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[Crossref]

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Shabaev, A.

A. Greilich, A. Shabaev, D. R. Yakovlev, A. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, “Nuclei-induced frequency focusing of electron spin coherence,” Science 317, 1896–1899 (2007).
[Crossref] [PubMed]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Sham, L. J.

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature (London) 459, 1105–1109 (2009).
[Crossref]

X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett. 99, 097401 (2007).
[Crossref] [PubMed]

M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref] [PubMed]

C. Piermarocchi, P. C. Chen, L. J. Sham, and D. G. Steel, “Optical RKKY interaction between charged semiconductor quantum dots,” Phys. Rev. Lett. 89, 167402 (2002).
[Crossref] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Shende, V. V.

V. V. Shende and I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quantum Inf. Comput. 9, 0461–0486 (2009).

Sherwin, M.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Shi, Y. Y.

Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput. 3, 084–092 (2003).

Shor, P.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3457 (1995).
[Crossref] [PubMed]

Skolnick, M. S.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, and A. F. G. Monte, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[Crossref]

Sleator, T.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3457 (1995).
[Crossref] [PubMed]

Small, A.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Smolin, J. A.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3457 (1995).
[Crossref] [PubMed]

Song, S. Y.

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

Spatzek, S.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262–266 (2009).
[Crossref]

Spiller, T. P.

R. Ionicioiu, T. P. Spiller, and W. J. Munro, “Generalized Toffoli gates using qudit catalysis,” Phys. Rev. A 80, 012312 (2009).
[Crossref]

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30 (2006).
[Crossref]

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: A new route to optical quantum computation,” New J. Phys. 7, 137 (2005).
[Crossref]

Stavarache, V.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[Crossref]

Steel, D. G.

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature (London) 459, 1105–1109 (2009).
[Crossref]

X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett. 99, 097401 (2007).
[Crossref] [PubMed]

M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref] [PubMed]

C. Piermarocchi, P. C. Chen, L. J. Sham, and D. G. Steel, “Optical RKKY interaction between charged semiconductor quantum dots,” Phys. Rev. Lett. 89, 167402 (2002).
[Crossref] [PubMed]

Stern, O.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, and A. Forchel, “Fine structure of neutral and charged excitons in self-assembled In(Ga)/As(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[Crossref]

Stoltz, N. G.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[Crossref]

Strauß, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Sun, B.

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature (London) 459, 1105–1109 (2009).
[Crossref]

X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett. 99, 097401 (2007).
[Crossref] [PubMed]

Sun, F.W.

C. W. Wong, J. Gao, J. F. McMillan, F.W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics and Nanostructures-Fundamentals and Applications 7, 47 (2009).
[Crossref]

Tartakovskii, A. I.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Taylor, J. M.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Thijssen, A. C. T.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

Thon, S.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

Truong, T. A.

Tu, T.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[Crossref] [PubMed]

van Beveren, L. H. W.

J. M. Elzerman, R. Hanson, L. H. W. van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature (London) 430, 431–425 (2004).
[Crossref]

van Exter, M. P.

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[Crossref] [PubMed]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

van Loock, P.

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30 (2006).
[Crossref]

van Nieuwenburg, E.

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

Vandersypen, L. M. K.

J. M. Elzerman, R. Hanson, L. H. W. van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature (London) 430, 431–425 (2004).
[Crossref]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).

Walther, P.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-not gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

Wang, C.

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).
[Crossref]

C. Wang, Y. Zhang, and R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19, 25685–25695 (2011).
[Crossref]

Wang, T. J.

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

Warburton, R. J.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[Crossref]

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. M. Ribeiro, and P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[Crossref]

Wasley, N. A.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Wei, H.

W. L. Yang, H. Wei, F. Zhou, and M. Feng, “Generation of multi-atom entangled states and implementation of controlled-phase gating using photonic modules,” J. Phys. B: At. Mol. Opt. Phys. 42, 055503 (2009).
[Crossref]

Wei, H. R.

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[Crossref] [PubMed]

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. (accepted); arXiv:1303.0056.

Weinfurter, H.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3457 (1995).
[Crossref] [PubMed]

White, A. G.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature (London) 426, 264–267 (2003).
[Crossref]

Wieck, A.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Wieck, A. D.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262–266 (2009).
[Crossref]

A. Greilich, A. Shabaev, D. R. Yakovlev, A. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, “Nuclei-induced frequency focusing of electron spin coherence,” Science 317, 1896–1899 (2007).
[Crossref] [PubMed]

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[Crossref]

Witkamp, B.

J. M. Elzerman, R. Hanson, L. H. W. van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature (London) 430, 431–425 (2004).
[Crossref]

Woggon, U.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[Crossref]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Wojtowicz, T.

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[Crossref]

Wong, C. W.

C. W. Wong, J. Gao, J. F. McMillan, F.W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics and Nanostructures-Fundamentals and Applications 7, 47 (2009).
[Crossref]

Worschech, L.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

Wu, Y. W.

X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett. 99, 097401 (2007).
[Crossref] [PubMed]

Wüst, G.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

Xu, X. D.

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature (London) 459, 1105–1109 (2009).
[Crossref]

X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett. 99, 097401 (2007).
[Crossref] [PubMed]

M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref] [PubMed]

Yacoby, A.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Yakovlev, D. R.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262–266 (2009).
[Crossref]

A. Greilich, A. Shabaev, D. R. Yakovlev, A. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, “Nuclei-induced frequency focusing of electron spin coherence,” Science 317, 1896–1899 (2007).
[Crossref] [PubMed]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[Crossref]

Yamamoto, Y.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[Crossref]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[Crossref]

S. M. Clark, K. M. C. Fu, T. D. Ladd, and Y. Yamamoto, “Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses,” Phys. Rev. Lett. 99, 040501 (2007).
[Crossref] [PubMed]

Yang, W. L.

W. L. Yang, H. Wei, F. Zhou, and M. Feng, “Generation of multi-atom entangled states and implementation of controlled-phase gating using photonic modules,” J. Phys. B: At. Mol. Opt. Phys. 42, 055503 (2009).
[Crossref]

Yao, W.

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature (London) 459, 1105–1109 (2009).
[Crossref]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Young, A.

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Young, A. B.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

Yugova, I. A.

A. Greilich, A. Shabaev, D. R. Yakovlev, A. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, “Nuclei-induced frequency focusing of electron spin coherence,” Science 317, 1896–1899 (2007).
[Crossref] [PubMed]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Zeilinger, A.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-not gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

Zhang, B. Y.

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[Crossref]

Zhang, R.

Zhang, Y.

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).
[Crossref]

C. Wang, Y. Zhang, and R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19, 25685–25695 (2011).
[Crossref]

Zhou, F.

W. L. Yang, H. Wei, F. Zhou, and M. Feng, “Generation of multi-atom entangled states and implementation of controlled-phase gating using photonic modules,” J. Phys. B: At. Mol. Opt. Phys. 42, 055503 (2009).
[Crossref]

Zhu, F. Y.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[Crossref] [PubMed]

Zoller, P.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[Crossref]

Zunger, A.

G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[Crossref]

Appl. Phys. Lett. (4)

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[Crossref]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

W. L. Yang, H. Wei, F. Zhou, and M. Feng, “Generation of multi-atom entangled states and implementation of controlled-phase gating using photonic modules,” J. Phys. B: At. Mol. Opt. Phys. 42, 055503 (2009).
[Crossref]

Nature (London) (9)

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

J. M. Elzerman, R. Hanson, L. H. W. van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature (London) 430, 431–425 (2004).
[Crossref]

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature (London) 432, 81–84 (2004).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature (London) 426, 264–267 (2003).
[Crossref]

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature (London) 459, 1105–1109 (2009).
[Crossref]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[Crossref]

Nature Photon. (1)

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[Crossref]

Nature Phys. (1)

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262–266 (2009).
[Crossref]

New J. Phys. (2)

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: A new route to optical quantum computation,” New J. Phys. 7, 137 (2005).
[Crossref]

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Photonics and Nanostructures-Fundamentals and Applications (1)

C. W. Wong, J. Gao, J. F. McMillan, F.W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics and Nanostructures-Fundamentals and Applications 7, 47 (2009).
[Crossref]

Phy. Rev. A (1)

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-out process with respect to low cavities,” Phy. Rev. A 79, 032303 (2009).
[Crossref]

Phys. Rev. A (16)

R. Ionicioiu, T. P. Spiller, and W. J. Munro, “Generalized Toffoli gates using qudit catalysis,” Phys. Rev. A 80, 012312 (2009).
[Crossref]

S. J. Devitt, A. D. Greentree, R. Ionicioiu, J. L. O’Brien, W. J. Munro, and L. C. L. Hollenberg, “Photonic module: An on-demand resource for photonic entanglement,” Phys. Rev. A 76, 052312 (2007).
[Crossref]

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[Crossref]

Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009).
[Crossref]

J. Fiurášek, “Linear-optics quantum Toffoli and Fredkin gates,” Phys. Rev. A 73, 062313 (2006).
[Crossref]

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
[Crossref]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3457 (1995).
[Crossref] [PubMed]

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Experimental controlled-not logic gate for single photons in the coincidence basis,” Phys. Rev. A 68, 032316 (2003).
[Crossref]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[Crossref]

E. Knill, “Quantum gates using linear optics and postselection,” Phys. Rev. A 66, 052306 (2002).
[Crossref]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[Crossref]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).
[Crossref]

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

Phys. Rev. B (11)

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[Crossref]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, and A. Forchel, “Fine structure of neutral and charged excitons in self-assembled In(Ga)/As(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[Crossref]

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, and A. F. G. Monte, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[Crossref]

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[Crossref]

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[Crossref]

G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[Crossref]

Phys. Rev. Lett. (15)

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

S. M. Clark, K. M. C. Fu, T. D. Ladd, and Y. Yamamoto, “Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses,” Phys. Rev. Lett. 99, 040501 (2007).
[Crossref] [PubMed]

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[Crossref] [PubMed]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

C. Piermarocchi, P. C. Chen, L. J. Sham, and D. G. Steel, “Optical RKKY interaction between charged semiconductor quantum dots,” Phys. Rev. Lett. 89, 167402 (2002).
[Crossref] [PubMed]

M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett. 93, 040503 (2004).
[Crossref] [PubMed]

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[Crossref] [PubMed]

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-not gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interaction,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref] [PubMed]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[Crossref] [PubMed]

X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett. 99, 097401 (2007).
[Crossref] [PubMed]

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. M. Ribeiro, and P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[Crossref]

Quantum Inf. Comput. (2)

V. V. Shende and I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quantum Inf. Comput. 9, 0461–0486 (2009).

Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput. 3, 084–092 (2003).

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Science (7)

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

A. Greilich, A. Shabaev, D. R. Yakovlev, A. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, “Nuclei-induced frequency focusing of electron spin coherence,” Science 317, 1896–1899 (2007).
[Crossref] [PubMed]

M. Atatre, J. Dreiser, A. Badolato, A. Hogele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[Crossref] [PubMed]

Other (4)

H. J. Kimble, Cavity Quantum Electrodynamics (Academic, San Diego, 1994).

By taking g/(κ+ κs) = 1.0,κs/κ= 0.7 and γ= 0.1κfor a micropillar microcavitr with diameter d= 1.5μm, Q= 1.7 × 104, one can get n0= 2 × 10−3, τ= 9 ps, and τ/n0= 4.5 ns.

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. (accepted); arXiv:1303.0056.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram for a spin-QD-double-side-cavity unit. (b) Energy levels and optical property of a negatively charged exciton X in a GaAs/InAs QD or GaAs interface QD confined in an optical resonant microcavity with two partially reflective mirrors.
Fig. 2
Fig. 2 Quantum circuit for implementing a deterministic photonic two-qubit CNOT gate without additional photonic qubits via a spin-QD-double-side-cavity system. PBSi (i = 1, 2, 3, 4) transmits the photon in the right-circularly-polarized state |R〉 and reflects the photon in the left-circularly-polarized state |L〉, respectively. HWPj (j = 1, 2) is used to perform a Hadamard operation on the polarization of photons, that is, | R 1 2 ( | R + | L ) and | L 1 2 ( | R | L ). DL is the time-delay device for making the photons from spatial modes 5 and 1 reach PBS3 simultaneously, that is, fiber loops for the storage of the photon for the time needed by the interaction between the single photon and the QD.
Fig. 3
Fig. 3 Schematic diagram for implementing a deterministic photonic three-qubit Toffoli gate. The implementation of the Toffoli gate is divided into two processes shown in (a) and (b), and the cavity is just the same one for the first and the second control qubits to interact with the spin in sequence. Pπ is a phase shifter that contributes a π phase shift to the photon passing through it. The working states of the optical switches S1 and S2 shown in (c) and (d) can be controlled accurately by a computer. S1 leads the photon emitting from spatial mode 11 to 12 until t = T0 + 2T1 + T2, and then leads the photon emitting from spatial mode 11 to 14 from t = T0 + 2T1 + T2 to t = T0 + 3T1 + T2 + T3. When T0 + 3T1 + T2 + T3 < t < T0 + 4T1 + 2T2 + T3, S1 turns back to spatial mode 12 again. T0 is the time for the single-photon process PBS4-S2, while T1 for S2-PBS5-cavity-PBS5-S1, T2 for S1-HWP3-S2, and T3 for S2-S1. DL in (a) is used for the storage of the photon for the time needed by the interaction between the single photon and the QD, while DL in (b) is four times of (a).
Fig. 4
Fig. 4 The fidelities of the present quantum gates as a function of the coupling strength g/κ and the side leakage rate κs. (a) The fidelity of the CNOT gate FCT ; (b) The fidelity of the Toffoli gate FT.
Fig. 5
Fig. 5 The efficiencies of the present deterministic photon-qubit gates as a function of g/κ and κs. (a) The efficiency of the CNOT gate ηCT ; (b) The efficiency of the Toffoli gate ηT.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

| R | L , | L | R , | R | L , | L | R , | R | R , | L | L , | R | R , | L | L .
| ψ c p = α c | R c + β c | L c , | ψ t p = α t | R t + β t | L t , | ψ e = | ,
| Ω 0 = | ψ c p | ψ t p | ψ e ,
| Ω 1 = ( α c α t | R c , 2 | R t + α c β t | R c , 2 | L t + β c α t | L c , 1 | R t + β c β t | L c , 1 | L t ) | .
| R H p 1 2 ( | R + | L ) , | L H p 1 2 ( | R | L ) ,
| H e | 1 2 ( | + | ) , | H e | 1 2 ( | | ) .
| Ω 2 = 1 2 α c α t ( | R c , 3 + | L c , 4 ) | R t ( | + | ) 1 2 α c β t ( | R c , 3 + | L c , 4 ) | L t ( | + | ) + ( β c α t | L c , 1 | R t + β c β t | L c , 1 | L t ) | .
| Ω 3 = α c α t | R c , 6 | R t | α c β t | R c , 6 | L t | + β c α t | L c , 6 | R t | + β c β t | L c , 6 | L t | .
| Ω 4 = ( α c α t | R c , 6 | R t , 9 + α c β t | R c , 6 | L t , 9 ) | + ( β c α t | L c , 6 | L t , 9 + β c β t | L c , 6 | R t , 9 ) | .
| ψ c t = α c α t | R c , 6 | R t , 9 + α c β t | R c , 6 | L t , 9 + β c α t | L c , 6 | L t , 9 + β c β t | L c , 6 | R t , 9 .
| ψ c 1 p = α c 1 | R c 1 + β c 1 | L c 1 , | ψ c 2 p = α c 2 | R c 2 + β c 2 | L c 2 , | ψ t p = α t | R t + β t | L t .
| Ξ 0 = | ψ c 1 p | ψ c 2 p | ψ t p | .
| Ξ 1 = [ ( α c 1 α c 2 | R c 1 , 6 | R c 2 α c 1 β c 2 | R c 1 , 6 | L c 2 ) | + ( β c 1 α c 2 | L c 1 , 6 | R c 2 + β c 1 β c 2 | L c 1 , 6 | L c 2 ) | ] ( α t | R t + β t | L t ) .
| Ξ 2 = [ ( α c 1 α c 2 | R c 1 , 6 | L c 2 , 11 α c 1 β c 2 | R c 1 , 6 | L c 2 , 8 ) | + ( β c 1 α c 2 | L c 1 , 6 | R c 2 , 11 + β c 1 β c 2 | L c 1 , 6 | L c 2 , 8 ) | ] ( α t | R t + β t | L t ) .
| Ξ 3 = [ α c 1 α c 2 2 | R c 1 , 6 ( | R c 2 , 11 | L c 2 , 11 ) ( | | ) α c 1 β c 2 | R c 1 , 6 | L c 2 , 8 | + β c 1 α c 2 2 | L c 1 , 6 ( | R c 2 , 11 + | L c 2 , 11 ) ( | | ) + β c 1 β c 2 | L c 1 , 6 | L c 2 , 8 | ] ( α t | R t + β t | L t ) .
| Ξ 4 = [ α c 1 α c 2 2 | R c 1 , 6 ( | R c 2 , 11 | L c 2 , 11 ) | α c 1 β c 2 | R c 1 , 6 | L c 2 , 8 | ] + β c 1 α c 2 2 | L c 1 , 6 ( | R c 2 , 11 + | L c 2 , 11 ) | + β c 1 β c 2 | L c 1 , 6 | L c 2 , 8 | ( α t | R t + β t | L t ) .
| Ξ 5 = α c 1 α c 2 2 | R c 1 , 6 ( | R c 2 , 11 | L c 2 , 11 ( α t | L t , 21 + β t | R t , 21 ) | | ) α c 1 β c 2 | R c 1 , 6 | L c 2 , 8 ( α t | L t , 21 + β t | R t , 21 ) | β c 1 α c 2 2 | L c 1 , 6 ( | R c 2 , 11 + | L c 2 , 11 ( α t | L t , 21 + β t | R t , 21 ) | + | ) + β c 1 β c 2 | L c 1 , 6 | L c 2 , 8 ( α t | R t , 21 + β t | L t , 21 ) | .
| Ξ 6 = α c 1 α c 2 | R c 1 , 6 | R c 2 , 16 ( α t | L t , 21 + β t | R t , 21 ) | α c 1 β c 2 | R c 1 , 6 | L c 2 , 8 ( α t | L t , 21 + β t | R t , 21 ) | + β c 1 α c 2 | L c 1 , 6 | R c 2 , 16 ( α t | L t , 21 + β t | R t , 21 ) | + β c 1 β c 2 | L c 1 , 6 | L c 2 , 8 ( α t | R t , 21 + β t | L t , 21 ) | .
| Ξ 7 = α c 1 α c 2 | R c 1 , 6 | R c 2 , 17 ( α t | L t , 21 + β t | R t , 21 ) | α c 1 β c 2 | R c 1 , 6 | L c 2 , 17 ( α t | L t , 21 + β t | R t , 21 ) | + β c 1 α c 2 | L c 1 , 6 | R c 2 , 17 ( α t | L t , 21 + β t | R t , 21 ) | + β c 1 β c 2 | L c 1 , 6 | L c 2 , 17 ( α t | R t , 21 + β t | L t , 21 ) | .
| ψ T = α c 1 α c 2 | R c 1 , 6 | R c 2 , 17 ( α t | R t , 21 + β t | L t , 21 ) + α c 1 β c 2 | R c 1 , 6 | L c 2 , 17 ( α t | R t , 21 + β t | L t , 21 ) + β c 1 α c 2 | L c 1 , 6 | R c 2 , 17 ( α t | R t , 21 + β t | L t , 21 ) + β c 1 β c 2 | L c 1 , 6 | L c 2 , 17 ( α t | L t , 21 + β t | R t , 21 ) .
d a ^ d t = [ i ( ω c ω ) + κ + κ s 2 ] a ^ g σ κ a ^ in κ a ^ in + H ^ , d σ d t = [ i ( ω X ω ) + γ 2 ] σ g σ z a ^ + G ^ ,
a ^ r = a ^ in + κ a ^ , a ^ t = a ^ in + κ a ^ ,
t ( ω ) = κ [ i ( ω X ω ) + γ 2 ] [ i ( ω X ω ) + γ 2 ] [ i ( ω c ω ) + κ + κ s 2 ] + g 2 , r ( ω ) = 1 + t ( ω ) .
r = 1 + t , t = κ γ 2 γ 2 [ κ + κ s 2 ] + g 2 .
r 0 = κ s 2 κ + κ s 2 , t 0 = κ κ + κ s 2 .
| R | r | | L + | t | | R , | L | r | | R + | t | | L , | R | r | | L + | t | | R , | L | r | | R + | t | | L , | R | t 0 | | R | r 0 | | L , | L | t 0 | | L | r 0 | | R , | R | t 0 | | R | r 0 | | L , | L | t 0 | | L | r 0 | | R .
F CT = [ | t 0 | + | r | 2 ] 2 , F T = [ ξ 1 + 2 ξ 2 ξ 3 32 ] 2 ,
ξ 1 = ( | t 0 | | r 0 | | t | + | r | ) × [ | r 0 | ( | t 0 | | r 0 | ) ( | t 0 | | r 0 | + | r | | t | ) 2 + | r 0 | ( | r | | t | ) ( | t 0 | | r 0 | | r | + | t | ) 2 + 4 | t 0 | ( | r | | t | ) + 4 ( | t 0 | | r 0 | ) ] , ξ 2 = | r | ( | t 0 | | r 0 | ) ( | t 0 | | r 0 | | r | + | t | ) 2 + | r | ( | r | | t | ) ( | t 0 | | r 0 | + | r | | t | ) 2 + 4 | t | ( | t 0 | | r 0 | ) + 4 ( | r | | t | ) , ξ 3 = | r 0 | ( | t 0 | | r 0 | + | r | | t | ) 2 ( | t 0 | | r 0 | | r | + | t | ) 2 .
η CT = 1 3 [ 1 2 + 5 ζ 4 ] , η T = 1 4 [ 1 + 5 ζ 4 + ζ 4 32 ] .
[ 1 + exp ( Δ t / T 2 e ) ] / 2 .
[ 1 exp ( τ / T 2 ) ] .
ρ e ( t ) = 1 2 ( 1 e t / 2 T 2 e t / 2 T 2 1 ) ,

Metrics