Abstract

Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

© 2013 OSA

1. Introduction

Random lasers refer to a unique class of lasers where a classical resonator is replaced by randomly distributed scattering centers. Lasing in such a system with “non-resonant feedback” was first demonstrated by Ambartsumyan et al, where the fully reflecting mirror of a ruby laser was replaced with a rough surface [1]. The field saw a resurgence in activity after the development of pulsed lasers, eventually leading to realization of various random lasing configurations [24]. The most common form of the random laser is the powder form, where the active medium itself helps to scatter the emitted radiation [5]. Other forms include colloidal suspension of scattering centers in an active medium [6], nanowires [7] and polymers [8]. The simplicity of realization of random lasers gives them an upper hand over conventional lasers. In general, the drawbacks of such systems are the requirement of high peak powers, low efficiency due to small active areas with poor confinement and low directionality, and more importantly, cumbersome or almost no control over the spectral properties of the emission.

To address confinement and directionality issues, a suspension of TiO2 particles in a rhodamine-G solution was inserted into hollow core optical fiber [9]. This resulted in an improvement in the efficiency by two orders of magnitude when compared to random lasing realized in bulk random media due to fiber guiding properties. In fibers, a random feedback can be also provided by strong scattering on conventional fiber optic mirrors – fiber Bragg gratings (FBGs) placed (in spectral domain) in a random way by using a number of different gratings [10,11] or introducing randomly incorporated phase errors in a single FBG [12].

Recently, a concept of a new type of a random laser operating via extremely weak random scattering in a single mode fiber has been proposed and experimentally demonstrated [13]. The random distributed feedback (DFB) is provided via backward random Rayleigh scattering amplified through the Raman effect in a long (tens of km). While the threshold of this laser is relatively high, the efficiency was noted to be quite comparable to existing CW lasers [13,14]. A number of different random DFB fiber laser configurations are realized up to date [1536]. In particular, random DFB fiber lasers can be multi-wavelength [1820], tunable [21,22], can operate in different spectral bands [23,24] and provide cascaded operation at higher Stokes components [23,25]. In terms of applications, random DFB fiber lasers are promising for sensing [2731,34] and telecom applications [32,33]. In particular, the use of the random DFB system as a sensor in conjunction with a Brillouin-OTDR system was also demonstrated [31]. The random DFB fiber laser has a lower noise figure when compared to a bi-directional 1st order and 2nd order Raman pumping configurations [32,33]. The concept of random DFB fiber laser is further developed by implementing a stimulated Brillouin scattering (SBS) instead of Raman scattering [34,35].

In all random DFB lasers demonstrated up to date, the laser radiation is rather broad having a typical spectral width of 1 nm and more. It is of practical interest to suppress the linewidth of the random DFB laser. In the present work, lasing of spectral widths down to 0.05 nm is demonstrated in the random DFB system by use of narrow FBG or fiber based Fabry-Perot filter.

2. Experimental results

2.1 The laser design

Figure 1 shows a schematic diagram of the experimental setup. Two spans of 40 km standard Corning SMF 28 fiber were pumped from the central point by two Raman fiber lasers at 1455 nm. Raman gain has a maximum near 1550 nm in this case. Above the generation threshold, the random generation owing the random distributed Rayleigh feedback is started.

 

Fig. 1 Experimental configuration of the narrow-band random DFB laser. The red arrows indicate the direction of propagation of laser radiation within the cavity. A spectrally selective element is inserted in the lower branch.

Download Full Size | PPT Slide | PDF

To obtain the narrow-band generation, spectral filters are used. Two types of filters are used in this work: FBG or fiber-coupled Fabry-Perot filter (FFP). The FBG has a Gaussian profile, with line-width 0.05 nm and centered around 1550.5 nm. The FFP filter has a pass-band at 1552.7 nm, finesse 486 and a free spectral range 623.60 GHz. This corresponds to a spectral width of 10 pm for every FFP transmission pike. To enable using the filter in the laser and to preserve the random feedback at the same time, a unidirectional circulator configuration is employed. This also provides isolation when the FFP is used. The radiation propagating from left fiber end to right fiber end is bypassed through the spectral filter allowing selective gain only within the reflection bandwidth of the filter. The radiation propagating from the right fiber end to the left fiber end freely passes via the upper branch.

The non-uniform longitudinal power distribution in the random DFB fiber laser allows us to use low-power handling filter (like FFP) to manage properties of the high power (~1 W) random generation. Indeed, the power at the central point of configuration is sufficiently lower than maximum generated power [13,14,36]. In our case the power at filter position is always lower than 10 mW, while generated power at maximum is of order of 1 W.

2.2 Emission characteristics

Firstly, we study the system with FBG used as a spectral filter. Generation initiates beyond a marked threshold, and the generation power increases almost linearly with the pump power (Fig. 2(a)). Till the pump power of 1.2 W, the generation spectral width is almost constant at level around 0.05 nm and follows the spectral width of used FBG (Fig. 2(b)). So narrow-band generation in a random DFB fiber laser is achieved. Note that the minimal spectral achieved in the configuration without spectral filter is 0.5 nm. Beyond 1.2 W of pump power, the spectrum becomes to be broader than spectral filter. Moreover, the generation properties become asymmetric: the spectral broadening is much more pronounced at the left output of the laser, where the broadest spectrum has a width of ~0.3 nm (being still narrower than in the case of random DFB fiber laser without any spectral filters). The spectrum width of the generation emitted from the right end of the system is always below 0.1 nm. Note that in the case of the pure random DFB system which does not employ any spectral filters, the output characteristics are symmetric [13]. We have specially checked that the observed asymmetry (power and spectral) in outputs is reversed if the filter is moved to the upper branch, which rules out any effects arising due to pump asymmetry.

 

Fig. 2 Generation properties of random DFB fiber laser with a narrow-band FBG as a spectral filter: (a) Output power (b) The full linewidth and half maximum (FWHM) depending on pump power. (c,d) Optical spectra at different pump power level from left (c) and right (d) outputs.

Download Full Size | PPT Slide | PDF

Similar results are obtained with FFP as a spectral filter (Figs. 3(a), 3(b)). The narrow-band generation is generated. The observed line-width is below the 0.02 nm OSA instrument function. As pump power increasing, the spectrum becomes broader than the spectral width of FFP filter and asymmetry generation properties emitted from the left and right outputs of the system arises. As the free spectral range of the FFP is smaller than the Raman gain profile spectral width, multiple lines are generated simultaneously (Fig. 3(b)), each of them being narrow-band itself. Note that the presented configuration provides a straight-forward and easy way to obtain a narrow-band multi-wavelength and simultaneously tunable generation by using narrow-band tunable FFP filter. The separation between channels can be controlled in precise way by managing FFP spectral properties.

 

Fig. 3 Generation properties of random DFB fiber laser with a narrow-band FFP as a spectral filter: (a) Transmission profile of the FFP (b) Multiwavelength narrow-band generation observed at the right output.

Download Full Size | PPT Slide | PDF

3. Discussion

The generated spectra are different along the different points in the cavity for both FBG based and FFP based configurations (Figs. 4(a), 4(b)). While the FBG/FFP presents a well filtered signal for the fiber span on the right, the backscattered signal from the right contains a significant Brillouin scattered component (0.08 nm shifted from the main spectral peak), as observed in the upper branch. As the generation power along the fiber could be as high as 1 W providing high enough nonlinearity, the four wave mixing (FWM) between different SBS components could be initiated. In addition, as the random DFB fiber laser is mode-less, i.e. comprising numerous very close-spaced spectral components [13], the radiation even in so narrow bandwidth as 10 pm has to be partially coherent. So, in addition to the SBS initiated FWM, the self-phase modulation of partially coherent radiation [37] within each SBS component could be pronounced. Depending on phase stochastization mechanism, different spectral broadening laws (linear [38] or square-root [39,40]) could be realized. The question of exact spectral broadening law in narrow-band random DFB fiber laser should be further investigated.

 

Fig. 4 Optical spectra at different locations in a random DFB fiber laser with (a) FBG and (b) FFP filter.

Download Full Size | PPT Slide | PDF

The narrow-band random DFB fiber laser could be a good candidate to investigate temporal and statistical properties of random fiber lasers. Indeed, the question of temporal and statistical properties of quasi-CW partially coherent lasers is of general interest in past years [4146]. There is no up to date any experimental study of temporal or statistical properties of random DFB fiber lasers based on Raman scattering. However, it is known that random Rayleigh scattering could change sufficiently temporal and statistical properties of SBS lasers [47]. Having narrow-band generation within 10 pm (around 1 GHz) bandwidth, the temporal and statistical properties of the laser could be investigated in real-time using conventional oscilloscopes directly without using spectral filtering techniques [46] or indirect methods of measuring fast intensity fluctuations [48]. The result of this investigation will be published elsewhere.

4. Conclusions

To conclude, for the first time narrow-band generation of random DFB fiber laser has been demonstrated using narrow-band spectral filter in the random laser. Despite the fact that there is almost no generated power in the central part of the laser where the filter is placed, introducing the narrow-band filter provides laser generation with a line-width down to 0.05 nm being 10 times narrower than minimal achieved line-width in random DFB fiber lasers without spectral filters. The random DFB laser with FFP provides multi-wavelength and narrow-band (within each line) generation. At low power, the generation spectrum bandwidth is limited by the spectral filter bandwidth, but not by the Raman gain spectral profile. At higher pump power, the nonlinear spectral broadening affects the spectral shape and width due to cooperative processes of stimulated Brillouin scattering, self-phase modulation and four wave mixing. The presented laser configuration provides the opportunity of obtaining extremely narrow line-width radiation upon suitable optimization and simultaneous tunable and multi-wavelength operation.

Acknowledgments

Authors would like to acknowledge the support of the European Research Council, EPSRC, SB RAS partner integration projects, grants of the Russian Ministry of Education and Science, Russian Foundation for Basic Research, Department of General Physics of the Russian Academy of Sciences, and thank E.V. Podivilov for fruitful discussions.

References and links

1. R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokov, “Laser with nonresonant feedback,” Sov. Phys. JETP 3, 167–169 (1966).

2. H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003). [CrossRef]  

3. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen. 38(49), 10497–10535 (2005). [CrossRef]  

4. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008). [CrossRef]  

5. V. Markushev, V. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron. 16(2), 281–283 (1986). [CrossRef]  

6. H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, and R. P. H. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron. 9(1), 111–119 (2003). [CrossRef]  

7. H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys. 97(6), 064315 (2005). [CrossRef]  

8. S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in π-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000). [CrossRef]  

9. C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007). [CrossRef]   [PubMed]  

10. O. Shapira and B. Fischer, “Localization of light in a random-grating array in a single-mode fiber,” J. Opt. Soc. Am. A. 22(12), 2542 (2005). [CrossRef]  

11. N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express 17(2), 395–404 (2009). [CrossRef]   [PubMed]  

12. M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009). [CrossRef]   [PubMed]  

13. S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010). [CrossRef]  

14. I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express 20(27), 28033–28038 (2012). [CrossRef]   [PubMed]  

15. D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010). [CrossRef]  

16. W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21(7), 8544–8549 (2013). [CrossRef]   [PubMed]  

17. A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express 19(15), 14152–14159 (2011). [CrossRef]   [PubMed]  

18. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010). [CrossRef]   [PubMed]  

19. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011). [CrossRef]   [PubMed]  

20. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering”, Appl. Phys. B 99, 391–395 (2010).

21. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011). [CrossRef]  

22. A. Sarmani, R. Zamiri, and M. Bakar, “Tunable Raman fiber laser induced by Rayleigh backscattering in an ultra-long cavity,” J. Eur. Opt. Soc - Rapid. 11043, 4–7 (2011).

23. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express 19(19), 18486–18494 (2011). [CrossRef]   [PubMed]  

24. R. Teng, Y. Ding, and L. Chen, “Random fiber laser operating at 1,115 nm,” Appl. Phys. B 111, 1–4 (2013).

25. W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20(13), 14400–14405 (2012). [CrossRef]   [PubMed]  

26. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol. 28, 3149–3155 (2010).

27. H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B 104(4), 957–960 (2011). [CrossRef]  

28. A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol. 30(8), 1168–1172 (2012). [CrossRef]  

29. Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett. 17(10), 2044–2046 (2005). [CrossRef]  

30. Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20(16), 17695–17700 (2012). [CrossRef]   [PubMed]  

31. X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE 8421, 842127, 842127-4 (2012). [CrossRef]  

32. J. Nuño del Campo, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers”, in Advanced Photonics Congress (OSA, 2012), p. JM5A.7. [CrossRef]  

33. X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express 21(5), 6572–6577 (2013). [CrossRef]   [PubMed]  

34. M. Pang, S. Xie, X. Bao, D.-P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett. 37(15), 3129–3131 (2012). [CrossRef]   [PubMed]  

35. A. A. Fotiadi, I. Lobach, and P. Mégret, “Dynamics of ultra-long Brillouin fiber laser,” Proc. SPIE 8601, 86011K, 86011K-9 (2013). [CrossRef]  

36. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20(10), 11178–11188 (2012). [CrossRef]   [PubMed]  

37. J. T. Manassah, “Self-phase modulation of incoherent light revisited,” Opt. Lett. 16(21), 1638–1640 (1991). [CrossRef]   [PubMed]  

38. S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett. 37(13), 2508–2510 (2012). [CrossRef]   [PubMed]  

39. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729 (2007). [CrossRef]  

40. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008). [CrossRef]   [PubMed]  

41. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010). [CrossRef]   [PubMed]  

42. S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett. 36(6), 790–792 (2011). [CrossRef]   [PubMed]  

43. D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett. 36(18), 3617–3619 (2011). [CrossRef]   [PubMed]  

44. D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285(8), 2154–2160 (2012). [CrossRef]  

45. A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21(7), 8177–8182 (2013). [CrossRef]   [PubMed]  

46. S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett. 37(4), 500–502 (2012). [CrossRef]   [PubMed]  

47. A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett. 23(23), 1805–1807 (1998). [CrossRef]   [PubMed]  

48. J. Schröder and S. Coen, “Observation of high-contrast, fast intensity noise of a continuous wave Raman fiber laser,” Opt. Express 17(19), 16444–16449 (2009). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokov, “Laser with nonresonant feedback,” Sov. Phys. JETP3, 167–169 (1966).
  2. H. Cao, “Lasing in random media,” Waves Random Media13(3), R1–R39 (2003).
    [CrossRef]
  3. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen.38(49), 10497–10535 (2005).
    [CrossRef]
  4. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys.4(5), 359–367 (2008).
    [CrossRef]
  5. V. Markushev, V. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron.16(2), 281–283 (1986).
    [CrossRef]
  6. H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, and R. P. H. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron.9(1), 111–119 (2003).
    [CrossRef]
  7. H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005).
    [CrossRef]
  8. S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in π-conjugated polymers,” IEEE J. Quantum Electron.36(1), 2–11 (2000).
    [CrossRef]
  9. C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
    [CrossRef] [PubMed]
  10. O. Shapira and B. Fischer, “Localization of light in a random-grating array in a single-mode fiber,” J. Opt. Soc. Am. A.22(12), 2542 (2005).
    [CrossRef]
  11. N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express17(2), 395–404 (2009).
    [CrossRef] [PubMed]
  12. M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express17(21), 19067–19074 (2009).
    [CrossRef] [PubMed]
  13. S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
    [CrossRef]
  14. I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
    [CrossRef] [PubMed]
  15. D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
    [CrossRef]
  16. W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express21(7), 8544–8549 (2013).
    [CrossRef] [PubMed]
  17. A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express19(15), 14152–14159 (2011).
    [CrossRef] [PubMed]
  18. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
    [CrossRef] [PubMed]
  19. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
    [CrossRef] [PubMed]
  20. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering”, Appl. Phys. B99, 391–395 (2010).
  21. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
    [CrossRef]
  22. A. Sarmani, R. Zamiri, and M. Bakar, “Tunable Raman fiber laser induced by Rayleigh backscattering in an ultra-long cavity,” J. Eur. Opt. Soc - Rapid.11043, 4–7 (2011).
  23. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
    [CrossRef] [PubMed]
  24. R. Teng, Y. Ding, and L. Chen, “Random fiber laser operating at 1,115 nm,” Appl. Phys. B111, 1–4 (2013).
  25. W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012).
    [CrossRef] [PubMed]
  26. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28, 3149–3155 (2010).
  27. H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
    [CrossRef]
  28. A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol.30(8), 1168–1172 (2012).
    [CrossRef]
  29. Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett.17(10), 2044–2046 (2005).
    [CrossRef]
  30. Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express20(16), 17695–17700 (2012).
    [CrossRef] [PubMed]
  31. X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127, 842127-4 (2012).
    [CrossRef]
  32. J. Nuño del Campo, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers”, in Advanced Photonics Congress (OSA, 2012), p. JM5A.7.
    [CrossRef]
  33. X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013).
    [CrossRef] [PubMed]
  34. M. Pang, S. Xie, X. Bao, D.-P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett.37(15), 3129–3131 (2012).
    [CrossRef] [PubMed]
  35. A. A. Fotiadi, I. Lobach, and P. Mégret, “Dynamics of ultra-long Brillouin fiber laser,” Proc. SPIE8601, 86011K, 86011K-9 (2013).
    [CrossRef]
  36. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
    [CrossRef] [PubMed]
  37. J. T. Manassah, “Self-phase modulation of incoherent light revisited,” Opt. Lett.16(21), 1638–1640 (1991).
    [CrossRef] [PubMed]
  38. S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett.37(13), 2508–2510 (2012).
    [CrossRef] [PubMed]
  39. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24(8), 1729 (2007).
    [CrossRef]
  40. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett.33(6), 633–635 (2008).
    [CrossRef] [PubMed]
  41. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
    [CrossRef] [PubMed]
  42. S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett.36(6), 790–792 (2011).
    [CrossRef] [PubMed]
  43. D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett.36(18), 3617–3619 (2011).
    [CrossRef] [PubMed]
  44. D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285(8), 2154–2160 (2012).
    [CrossRef]
  45. A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express21(7), 8177–8182 (2013).
    [CrossRef] [PubMed]
  46. S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett.37(4), 500–502 (2012).
    [CrossRef] [PubMed]
  47. A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett.23(23), 1805–1807 (1998).
    [CrossRef] [PubMed]
  48. J. Schröder and S. Coen, “Observation of high-contrast, fast intensity noise of a continuous wave Raman fiber laser,” Opt. Express17(19), 16444–16449 (2009).
    [CrossRef] [PubMed]

2013 (5)

2012 (10)

S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett.37(4), 500–502 (2012).
[CrossRef] [PubMed]

S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett.37(13), 2508–2510 (2012).
[CrossRef] [PubMed]

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285(8), 2154–2160 (2012).
[CrossRef]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

M. Pang, S. Xie, X. Bao, D.-P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett.37(15), 3129–3131 (2012).
[CrossRef] [PubMed]

A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol.30(8), 1168–1172 (2012).
[CrossRef]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express20(16), 17695–17700 (2012).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127, 842127-4 (2012).
[CrossRef]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
[CrossRef] [PubMed]

2011 (8)

A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express19(15), 14152–14159 (2011).
[CrossRef] [PubMed]

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
[CrossRef]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

A. Sarmani, R. Zamiri, and M. Bakar, “Tunable Raman fiber laser induced by Rayleigh backscattering in an ultra-long cavity,” J. Eur. Opt. Soc - Rapid.11043, 4–7 (2011).

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett.36(6), 790–792 (2011).
[CrossRef] [PubMed]

D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett.36(18), 3617–3619 (2011).
[CrossRef] [PubMed]

2010 (6)

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
[CrossRef] [PubMed]

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering”, Appl. Phys. B99, 391–395 (2010).

S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28, 3149–3155 (2010).

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

2009 (3)

2008 (2)

2007 (2)

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24(8), 1729 (2007).
[CrossRef]

2005 (4)

O. Shapira and B. Fischer, “Localization of light in a random-grating array in a single-mode fiber,” J. Opt. Soc. Am. A.22(12), 2542 (2005).
[CrossRef]

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen.38(49), 10497–10535 (2005).
[CrossRef]

H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005).
[CrossRef]

Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett.17(10), 2044–2046 (2005).
[CrossRef]

2003 (2)

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, and R. P. H. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron.9(1), 111–119 (2003).
[CrossRef]

H. Cao, “Lasing in random media,” Waves Random Media13(3), R1–R39 (2003).
[CrossRef]

2000 (1)

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in π-conjugated polymers,” IEEE J. Quantum Electron.36(1), 2–11 (2000).
[CrossRef]

1998 (1)

1991 (1)

1986 (1)

V. Markushev, V. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron.16(2), 281–283 (1986).
[CrossRef]

1966 (1)

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokov, “Laser with nonresonant feedback,” Sov. Phys. JETP3, 167–169 (1966).

Abu Bakar, M. H.

Adikan, F. R. M.

Alcon-Camas, M.

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

J. Nuño del Campo, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers”, in Advanced Photonics Congress (OSA, 2012), p. JM5A.7.
[CrossRef]

Ambartsumyan, R.

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokov, “Laser with nonresonant feedback,” Sov. Phys. JETP3, 167–169 (1966).

Ania-Castanon, J. D.

Ania-Castañón, J. D.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

J. Nuño del Campo, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers”, in Advanced Photonics Congress (OSA, 2012), p. JM5A.7.
[CrossRef]

Babin, S.

S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

Babin, S. A.

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express21(7), 8177–8182 (2013).
[CrossRef] [PubMed]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett.37(13), 2508–2510 (2012).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett.33(6), 633–635 (2008).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24(8), 1729 (2007).
[CrossRef]

Bakar, A. A. A.

Bakar, M.

A. Sarmani, R. Zamiri, and M. Bakar, “Tunable Raman fiber laser induced by Rayleigh backscattering in an ultra-long cavity,” J. Eur. Opt. Soc - Rapid.11043, 4–7 (2011).

Bao, X.

Basov, N.

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokov, “Laser with nonresonant feedback,” Sov. Phys. JETP3, 167–169 (1966).

Bednyakova, A. E.

Briskina, C. M.

V. Markushev, V. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron.16(2), 281–283 (1986).
[CrossRef]

Brito-Silva, A. M.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

Burin, A. L.

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, and R. P. H. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron.9(1), 111–119 (2003).
[CrossRef]

Cao, H.

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen.38(49), 10497–10535 (2005).
[CrossRef]

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, and R. P. H. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron.9(1), 111–119 (2003).
[CrossRef]

H. Cao, “Lasing in random media,” Waves Random Media13(3), R1–R39 (2003).
[CrossRef]

Chaikina, E. I.

Chang, R. P. H.

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, and R. P. H. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron.9(1), 111–119 (2003).
[CrossRef]

Chen, L.

Churkin, D.

D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

Churkin, D. V.

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express21(7), 8177–8182 (2013).
[CrossRef] [PubMed]

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285(8), 2154–2160 (2012).
[CrossRef]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett.36(18), 3617–3619 (2011).
[CrossRef] [PubMed]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
[CrossRef] [PubMed]

S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett.33(6), 633–635 (2008).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24(8), 1729 (2007).
[CrossRef]

Coen, S.

Cui, Y.

Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett.17(10), 2044–2046 (2005).
[CrossRef]

Dalloz, N.

de Araújo, C. B.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

de Matos, C. J.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

de S Menezes, L.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

Ding, Y.

R. Teng, Y. Ding, and L. Chen, “Random fiber laser operating at 1,115 nm,” Appl. Phys. B111, 1–4 (2013).

El-Taher, A. E.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Fedoruk, M. P.

Fischer, B.

O. Shapira and B. Fischer, “Localization of light in a random-grating array in a single-mode fiber,” J. Opt. Soc. Am. A.22(12), 2542 (2005).
[CrossRef]

Fotiadi, A. A.

A. A. Fotiadi, I. Lobach, and P. Mégret, “Dynamics of ultra-long Brillouin fiber laser,” Proc. SPIE8601, 86011K, 86011K-9 (2013).
[CrossRef]

A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett.23(23), 1805–1807 (1998).
[CrossRef] [PubMed]

Frazão, O.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28, 3149–3155 (2010).

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering”, Appl. Phys. B99, 391–395 (2010).

Frolov, S. V.

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in π-conjugated polymers,” IEEE J. Quantum Electron.36(1), 2–11 (2000).
[CrossRef]

Fujii, A.

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in π-conjugated polymers,” IEEE J. Quantum Electron.36(1), 2–11 (2000).
[CrossRef]

Gagné, M.

Gomes, A. S.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

Gorbunov, O. A.

Harper, P.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

Hsieh, W. F.

H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005).
[CrossRef]

Hsu, H. C.

H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005).
[CrossRef]

Ismagulov, A. E.

Jia, X. H.

Jia, X.-H.

X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127, 842127-4 (2012).
[CrossRef]

Jiang, Y.

Kablukov, S.

D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

Kablukov, S. I.

Karalekas, V.

D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Kashyap, R.

Kiyan, R. V.

Kobelke, J.

Kryukov, P.

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokov, “Laser with nonresonant feedback,” Sov. Phys. JETP3, 167–169 (1966).

Leskova, T. A.

Letokov, V.

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokov, “Laser with nonresonant feedback,” Sov. Phys. JETP3, 167–169 (1966).

Li, P. Y.

Lizárraga, N.

Lobach, I.

A. A. Fotiadi, I. Lobach, and P. Mégret, “Dynamics of ultra-long Brillouin fiber laser,” Proc. SPIE8601, 86011K, 86011K-9 (2013).
[CrossRef]

Lopez-Amo, M.

Lu, C.

Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett.17(10), 2044–2046 (2005).
[CrossRef]

Lu, Y.

Mahdi, M. A.

Manassah, J. T.

Markushev, V.

V. Markushev, V. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron.16(2), 281–283 (1986).
[CrossRef]

Marques, M. B.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
[CrossRef]

Martinez Gámez, M. A.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

Martins, H. F.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
[CrossRef]

Mégret, P.

A. A. Fotiadi, I. Lobach, and P. Mégret, “Dynamics of ultra-long Brillouin fiber laser,” Proc. SPIE8601, 86011K, 86011K-9 (2013).
[CrossRef]

Méndez, E. R.

Nuño del Campo, J.

J. Nuño del Campo, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers”, in Advanced Photonics Congress (OSA, 2012), p. JM5A.7.
[CrossRef]

Pang, M.

Peng, F.

Pinto, A. M. R.

Podivilov, E.

D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

Podivilov, E. V.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett.37(13), 2508–2510 (2012).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett.33(6), 633–635 (2008).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24(8), 1729 (2007).
[CrossRef]

Politko, M. O.

Puente, N. P.

Randoux, S.

Rao, Y. J.

Rao, Y.-J.

X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127, 842127-4 (2012).
[CrossRef]

Santos, J. L.

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28, 3149–3155 (2010).

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering”, Appl. Phys. B99, 391–395 (2010).

Sarmani, A.

A. Sarmani, R. Zamiri, and M. Bakar, “Tunable Raman fiber laser induced by Rayleigh backscattering in an ultra-long cavity,” J. Eur. Opt. Soc - Rapid.11043, 4–7 (2011).

Sarmani, A. R.

Schröder, J.

Schuster, K.

Seeling, E. W.

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, and R. P. H. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron.9(1), 111–119 (2003).
[CrossRef]

Shapira, O.

O. Shapira and B. Fischer, “Localization of light in a random-grating array in a single-mode fiber,” J. Opt. Soc. Am. A.22(12), 2542 (2005).
[CrossRef]

Shkunov, M.

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in π-conjugated polymers,” IEEE J. Quantum Electron.36(1), 2–11 (2000).
[CrossRef]

Smirnov, S. V.

Suret, P.

Teng, R.

R. Teng, Y. Ding, and L. Chen, “Random fiber laser operating at 1,115 nm,” Appl. Phys. B111, 1–4 (2013).

Turitsyn, S.

S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Turitsyn, S. K.

Vardeny, Z. V.

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in π-conjugated polymers,” IEEE J. Quantum Electron.36(1), 2–11 (2000).
[CrossRef]

Vatnik, I. D.

Wang, Z.

Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett.17(10), 2044–2046 (2005).
[CrossRef]

Wang, Z. N.

Wang, Z.-N.

X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127, 842127-4 (2012).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys.4(5), 359–367 (2008).
[CrossRef]

Wu, C. Y.

H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005).
[CrossRef]

Wu, H.

Wu, H.-J.

Xie, S.

Xu, J. Y.

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, and R. P. H. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron.9(1), 111–119 (2003).
[CrossRef]

Yang, Z. X.

Yang, Z.-X.

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127, 842127-4 (2012).
[CrossRef]

Yoshino, K.

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in π-conjugated polymers,” IEEE J. Quantum Electron.36(1), 2–11 (2000).
[CrossRef]

Yun, B.

Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett.17(10), 2044–2046 (2005).
[CrossRef]

Zamiri, R.

A. Sarmani, R. Zamiri, and M. Bakar, “Tunable Raman fiber laser induced by Rayleigh backscattering in an ultra-long cavity,” J. Eur. Opt. Soc - Rapid.11043, 4–7 (2011).

Zhang, W. L.

Zhang, W.-L.

X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127, 842127-4 (2012).
[CrossRef]

Zhou, D.-P.

Zhu, J. M.

Zhu, J.-M.

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127, 842127-4 (2012).
[CrossRef]

Zhu, Y. Y.

Zlobina, E. A.

Zolin, V.

V. Markushev, V. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron.16(2), 281–283 (1986).
[CrossRef]

Appl. Phys. B (3)

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering”, Appl. Phys. B99, 391–395 (2010).

R. Teng, Y. Ding, and L. Chen, “Random fiber laser operating at 1,115 nm,” Appl. Phys. B111, 1–4 (2013).

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in π-conjugated polymers,” IEEE J. Quantum Electron.36(1), 2–11 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, and R. P. H. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron.9(1), 111–119 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett.17(10), 2044–2046 (2005).
[CrossRef]

J. Appl. Phys. (1)

H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005).
[CrossRef]

J. Eur. Opt. Soc - Rapid. (1)

A. Sarmani, R. Zamiri, and M. Bakar, “Tunable Raman fiber laser induced by Rayleigh backscattering in an ultra-long cavity,” J. Eur. Opt. Soc - Rapid.11043, 4–7 (2011).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A. (1)

O. Shapira and B. Fischer, “Localization of light in a random-grating array in a single-mode fiber,” J. Opt. Soc. Am. A.22(12), 2542 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Math. Gen. (1)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen.38(49), 10497–10535 (2005).
[CrossRef]

Nat. Photonics (1)

S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys.4(5), 359–367 (2008).
[CrossRef]

Opt. Commun. (1)

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285(8), 2154–2160 (2012).
[CrossRef]

Opt. Express (12)

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express21(7), 8177–8182 (2013).
[CrossRef] [PubMed]

J. Schröder and S. Coen, “Observation of high-contrast, fast intensity noise of a continuous wave Raman fiber laser,” Opt. Express17(19), 16444–16449 (2009).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
[CrossRef] [PubMed]

N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express17(2), 395–404 (2009).
[CrossRef] [PubMed]

M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express17(21), 19067–19074 (2009).
[CrossRef] [PubMed]

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express21(7), 8544–8549 (2013).
[CrossRef] [PubMed]

A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express19(15), 14152–14159 (2011).
[CrossRef] [PubMed]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express20(16), 17695–17700 (2012).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013).
[CrossRef] [PubMed]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

Opt. Lett. (11)

J. T. Manassah, “Self-phase modulation of incoherent light revisited,” Opt. Lett.16(21), 1638–1640 (1991).
[CrossRef] [PubMed]

S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett.37(13), 2508–2510 (2012).
[CrossRef] [PubMed]

M. Pang, S. Xie, X. Bao, D.-P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett.37(15), 3129–3131 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett.37(4), 500–502 (2012).
[CrossRef] [PubMed]

A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett.23(23), 1805–1807 (1998).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett.33(6), 633–635 (2008).
[CrossRef] [PubMed]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
[CrossRef] [PubMed]

S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett.36(6), 790–792 (2011).
[CrossRef] [PubMed]

D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett.36(18), 3617–3619 (2011).
[CrossRef] [PubMed]

Phys. Rev. A (2)

D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

Proc. SPIE (2)

A. A. Fotiadi, I. Lobach, and P. Mégret, “Dynamics of ultra-long Brillouin fiber laser,” Proc. SPIE8601, 86011K, 86011K-9 (2013).
[CrossRef]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127, 842127-4 (2012).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. Markushev, V. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron.16(2), 281–283 (1986).
[CrossRef]

Sov. Phys. JETP (1)

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokov, “Laser with nonresonant feedback,” Sov. Phys. JETP3, 167–169 (1966).

Waves Random Media (1)

H. Cao, “Lasing in random media,” Waves Random Media13(3), R1–R39 (2003).
[CrossRef]

Other (1)

J. Nuño del Campo, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers”, in Advanced Photonics Congress (OSA, 2012), p. JM5A.7.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental configuration of the narrow-band random DFB laser. The red arrows indicate the direction of propagation of laser radiation within the cavity. A spectrally selective element is inserted in the lower branch.

Fig. 2
Fig. 2

Generation properties of random DFB fiber laser with a narrow-band FBG as a spectral filter: (a) Output power (b) The full linewidth and half maximum (FWHM) depending on pump power. (c,d) Optical spectra at different pump power level from left (c) and right (d) outputs.

Fig. 3
Fig. 3

Generation properties of random DFB fiber laser with a narrow-band FFP as a spectral filter: (a) Transmission profile of the FFP (b) Multiwavelength narrow-band generation observed at the right output.

Fig. 4
Fig. 4

Optical spectra at different locations in a random DFB fiber laser with (a) FBG and (b) FFP filter.

Metrics