Abstract

We present a brand-range self-sweeping Tm-Ho co-doped fiber laser experimentally. The laser’s center wavelength sweeps periodically around 1.9 μm with self-sweeping range of 4 nm ~17 nm, and the sweep rate can be changed in the range of 0.4 nm/s ~1.5 nm/s. The sweep range increases and the sweep rate declines when the pump power rises.

©2013 Optical Society of America

1. Introduction

Fiber laser near 2 μm has attracted intense attentions for its various applications such as remote sensing [1, 2] and nonlinear frequency conversion [3]. Many of the applications can benefit greatly if the 2 μm fiber laser’s wavelength is tunable. There are many demonstrations on wavelength-tunable lasers using active and passive methods. Actively wavelength-tuning lasers usually need external control device to scan the laser’s frequency continuously. Several useful techniques for actively tuning have been demonstrated using devices such as Fabry-Perot (F-P) tunable filter [410] and polygonal scanner [1113]. Semiconductor optical amplifier (SOA) has been used to realize wavelength-sweeping [14, 15]. Wavelength-swept 2 μm laser has been demonstrated using actively tuning methods [8, 16, 17]. All these actively wavelength-tunable lasers need external control to make the laser’s wavelength scanning dynamically.

Self-sweeping, which does not need special control devices to provide scanning of the wavelength, can be an attractive approach for tuning the laser’s wavelength. Self-sweeping fiber lasers based on Yb-doped and Er-doped fibers have been reported only recently [1822], although the self-sweeping in much narrower bandwidth was observed already in Ruby lasers [23, 24] However, there has been no demonstration (to our knowledge) on Tm-doped self-sweeping fiber laser so far.

In this letter, we present a Tm-Ho co-doped self-sweeping fiber laser near 1.9 μm without any actively scanning device. The maximum sweep range is about 17 nm and the sweep rate is about 0.4 nm/s ~1.5 nm/s. This is the first experimental report on the approach to realize self-sweeping near the range of 2 μm.

2. Experimental setup

Figure 1 depicts the experimental setup of the self-sweeping Tm-Ho co-doped fiber laser. The home-made 1570 nm continuous-wave fiber laser has a maximum output power of 333 mW. A wavelength division multiplexer (WDM, 1550/2000 nm) is employed to inject the 1570 nm pump laser into the Tm-Ho co-doped fiber laser cavity. The gain medium is a piece of 4 m long single-cladding Tm-Ho co-doped fiber (Coractive) with core diameter of 9 μm and cladding diameter of 125 μm (NA = 0.16). The active fiber is highly doped and the absorption coefficient is > 100 dB/m at 790 nm. A polarization controller (PC) and a 50/50 coupler (AFR, coupler 1, center wavelength at 2 μm) are used as a passive fiber loop mirror (FLM), which is one end of the self-sweeping fiber laser’s oscillation cavity. The flat-angle cleaved end of coupler 2 (AFR, 2 μm) provides the 4% Fresnel reflection, which is the other end of the laser cavity. The rest ports of the couplers are angle cleaved in order to prevent unnecessary feedback into the laser cavity. An isolator is also employed to avoid feedback from the output end of the fiber. A piece of 50 m long single-mode fiber (G652D) is employed to increase the length of the cavity.

 figure: Fig. 1

Fig. 1 Setup of Tm-Ho co-doped self-sweeping fiber laser system. PC: polarization controller; WDM: wavelength division multiplexer; T-HDF: Tm-Ho co-doped fiber; SMF: single-mode fiber; ISO: Isolator.

Download Full Size | PPT Slide | PDF

3. Self-sweeping results

The laser output power’s temporal characteristics were measured using an InGaAs PIN photodetector (7 GHz bandwidth) and a digital oscilloscope (1.5 GHz bandwidth). It is found that the fiber laser operates in the self-pulsing regime, as Fig. 2 shows. The self-pulsing frequency is in the range of 15 kHz ~25 kHz, and the pulse train is modulated by high frequency intermode beating. The intermode beating frequency is determined by longitudinal mode frequency interval, Δυq = c/2nL, where c is the speed of light in vacuum space (~3 × 108 m/s), n is the refractive index (~1.45) and L is the length of laser cavity (~60 m). The measured intermode beating frequency of the pulse shape is 1.68 MHz, and the calculated Δυq equals 1.72 MHz.

 figure: Fig. 2

Fig. 2 Self-pulsation shape (a) and the intermode beating in one pulse (b) when the fiber laser’s wavelength is self-sweeping.

Download Full Size | PPT Slide | PDF

The laser’s wavelength swept automatically when carefully tuning the PC and making the output power of the laser be the minimum value. The laser’s spectrum was studied using an optical spectrum analyser (OSA, YOKOGAWA), as Fig. 3 shows. One can see that the PC and coupler 1 together serve as a broad-band FLM with a reflective wavelength range of 1800 nm ~2000 nm. The signal-noise ratio is higher than 25 dB.

 figure: Fig. 3

Fig. 3 Spectrum of Tm-Ho co-doped self-sweeping fiber laser in a wide range.

Download Full Size | PPT Slide | PDF

The static output spectra of the self-sweeping Tm-Ho co-doped fiber laser at different time are depicted in Fig. 4. The data were obtained by single-shot recording of the spectra from the OSA at different time while the laser was operating in the self-sweeping regime. The 1570 nm pump power was 333 mW, and the fiber laser’s wavelength swept in the range of 1904.7 nm ~1921.8 nm. It can be found from Fig. 4 that the powers of each wavelength are similar, and the wavelength-sweeping range has reached as wide as 17 nm.

 figure: Fig. 4

Fig. 4 Static output spectra of the Tm-Ho co-doped self-sweeping fiber laser at different time.

Download Full Size | PPT Slide | PDF

Some typical temporal dynamics of the fiber laser’ spectra with different pump powers are shown in Fig. 5. The OSA in our experiment is not a very fast scanning one. However, when shorten the OSA’s scan range (~30 nm), the OSA can read the selected spectra at a frequency of ~5 Hz. It is fast enough to analyze the self-sweep of the laser wavelength. Actually, the passive single-mode fiber in the laser cavity was employed to slow the sweep rate [21], thus our OSA is capable of analyzing the spectra. It can be found from the curves that the Tm-Ho co-doped fiber laser is in the regime of self-sweeping. The wavelength of the laser starts from a shorter wavelength and sweeps to a longer one periodically without using any actively scanning device. The sweep range is around 1900 nm and relatively stable. It should be noted that, by turning the PC, the sweep range of the laser can also vary manually. As seen in Fig. 5, the sweep range with 333 mW pump power [Fig. 5(d)] does not overlap with the others [Fig. 5(a)-5(c)]. That’s because the PC’s rotation position of Fig. 5(d) is different with those of the three others.

 figure: Fig. 5

Fig. 5 Temporal dynamics of the self-sweeping fiber laser’s wavelength at different pump powers. (a) 275 mW; (b) 291 mW; (c) 310 mW; (d) 333 mW.

Download Full Size | PPT Slide | PDF

This self-sweeping result can be explained by the theory of the non-stationary spatial hole burning (SHB) in the longitudinal distribution of gain for a small number of generated modes [1821, 24]. Suppose that there were a few longitudinal modes in every self-pulsation of the fiber laser. The generated modes results in dynamic SHB in the fiber gain medium, and the dynamic SHB will suppress these existing corresponding longitudinal modes during the next self-pulsation. These processes will generate the self-scanning of the fiber laser’s longitudinal modes, which means the wavelength of the laser is in the regime of self-sweeping. The SHB theory in [21] estimated that the sweep rate increases as the laser power scales up and decreases as the laser cavity length decreases, but does not discuss the relationship between the sweep range and the pump power.

Figure 6 depicts the sweep range and sketch of gain contours versus wavelengths of the Tm-Ho co-doped laser at different pump powers. One can see from Fig. 6(a) that the laser’s sweep range increases as the pump power increases. It is in accordance with observations in Yb-doped fiber lasers reported in [19]. A reasonable explanation is that the gain contour of the Tm-Ho co-doped fiber lifts up as the pump power increases [Fig. 6(b)], which results in a wider spectral range for lasing. Hence more longitudinal modes with different frequencies can take part in the lasing progress and results in SHB, the laser’ center wavelength can sweep in a broader range.

 figure: Fig. 6

Fig. 6 Sweep range of the Tm-Ho co-doped fiber laser at different pump powers (a) and sketch of gain contours versus wavelengths of the Tm-Ho co-doped laser at different pump powers (b).

Download Full Size | PPT Slide | PDF

The sweep rate of Tm-Ho co-doped fiber laser decreases as the pump power increases, as shown in Fig. 7(a). Meanwhile, the laser’s frequency of self-pulsation (relaxation oscillation) increases as the pump power scales up [Fig. 7(b)]. This result is not consistent with the SHB analysis in Yb-doped fiber laser [21]. We think that the increasing number of longitudinal modes by scaling the pump power up may play an important role in sweep progress. It is possible that the detailed mechanism of self-sweeping in fiber laser should be studied thoroughly and improved.

 figure: Fig. 7

Fig. 7 Sweep rate (a) and self-pulsation frequency (b) of the Tm-Ho co-doped fiber laser at different pump powers.

Download Full Size | PPT Slide | PDF

It should be noted that the Ho ions in active fiber may play an important role in the sweep wavelength of our experiment. Tm-doped fibers have high gain in the wide spectrum of 1.8 ~2.0 μm, and the maximum emission cross section located around 1.84 μm. The Ho ions may extend the laser’s wavelength beyond 2 μm [25]. In our experiment, the self-sweep wavelengths of the laser were generally longer than 1.84 μm. So we think the Ho ions increases the gain of active fiber at longer wavelengths, thus the laser’s self-sweep wavelengths may move to longer spectra, even the sweep range may be broadened, too.

The discussion above is just a qualitative explanation, more detailed and theoretical analysis should be performed using numerical simulation, which is out of the frame of our research. However, the experiment in this paper provides an effective approach for self-sweeping fiber laser near 2 μm. The laser’s performance and parameters can be improved in further endeavors.

4. Conclusion

A self-sweeping Tm-Ho co-doped fiber laser around 1.9 μm is demonstrated. The laser cavity is formed by a flat cleaved end of a fiber coupler and a FLM consists of a PC and a coupler. All the unnecessary feedbacks into the laser cavity are avoided. The fiber laser operates in the regime of self-sweeping without any actively scanning device, and the laser has a maximum sweep range of 17 nm, the sweep rate is 0.4 nm/s ~1.5 nm/s. Self-pulsation is observed while the wavelength of the laser is self-sweeping. The sweep range increases as the pump power rises, and meanwhile the sweep rate decreases. Detailed and thorough theoretical analysis of the experimental results should be performed in the future work.

References and links

1. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993). [CrossRef]  

2. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 microm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006). [CrossRef]   [PubMed]  

3. S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

4. S. H. Yun, D. J. Richardson, and B. Y. Kim, “Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser,” Opt. Lett. 23(11), 843–845 (1998). [CrossRef]   [PubMed]  

5. K. Liu, W. Jing, G. Peng, J. Zhang, Y. Wang, T. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intracavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20(18), 1515–1517 (2008). [CrossRef]  

6. H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, “Observation of acetylene molecular absorption line with tunable, single-frequency, and mode-hop-free erbium-doped fiber ring laser,” IEEE J. Quantum Electron. 38(10), 1325–1330 (2002). [CrossRef]  

7. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005). [CrossRef]   [PubMed]  

8. J. Geng, Q. Wang, J. Wang, S. Jiang, and K. Hsu, “All-fiber wavelength-swept laser near 2 μm,” Opt. Lett. 36(19), 3771–3773 (2011). [CrossRef]   [PubMed]  

9. F. D. Nielsen, L. Thrane, J. Black, K. Hsu, A. Bjarklev, and P. E. Andersen, “Swept-wavelength sources for optical coherence tomography in the 1 μm range,” Proc. SPIE 5861, 58610H, 58610H-8 (2005). [CrossRef]  

10. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997). [CrossRef]  

11. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30(23), 3159–3161 (2005). [CrossRef]   [PubMed]  

12. G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express 16(18), 14095–14105 (2008). [CrossRef]   [PubMed]  

13. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003). [CrossRef]   [PubMed]  

14. Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17(10), 8310–8318 (2009). [CrossRef]   [PubMed]  

15. H. Don Lee, J. H. Lee, M. Y. Jeong, and C. S. Kim, “Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier,” Opt. Express 19(15), 14586–14593 (2011). [CrossRef]   [PubMed]  

16. J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004). [CrossRef]  

17. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20(17), 19349–19354 (2012). [CrossRef]   [PubMed]  

18. P. Peterka, P. Navrátil, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubecek, “Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities,” Proc. SPIE 8433, 843309, 843309-8 (2012). [CrossRef]  

19. P. Navrátil, P. Vojtisek, P. Peterka, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping and self-pulsing in rare-earth doped fiber lasers,” Proc. SPIE 8697, 86971M, 86971M-6 (2012). [CrossRef]  

20. P. Peterka, P. Navrátil, J. Maria, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett. 9(6), 445–450 (2012). [CrossRef]  

21. I. A. Lobach, S. I. Kablukov, E. V. Podivilov, and S. A. Babin, “Broad-range self-sweeping of a narrow-line self-pulsing Yb-doped fiber laser,” Opt. Express 19(18), 17632–17640 (2011). [CrossRef]   [PubMed]  

22. A. V. Kir’yanov and N. N. Ilichev, “Self-induced laser line sweeping in an ytterbium fiber laser with nonresonant Fabry-Perot cavity,” Laser Phys. Lett. 8(4), 305–312 (2011). [CrossRef]  

23. V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quant. Electron. 3(3), 211–215 (1973). [CrossRef]  

24. T. P. Hughes and K. M. Young, “Mode sequences in ruby laser emission,” Nature 196(4852), 332–334 (1962). [CrossRef]  

25. Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
    [Crossref]
  2. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 microm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).
    [Crossref] [PubMed]
  3. S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).
  4. S. H. Yun, D. J. Richardson, and B. Y. Kim, “Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser,” Opt. Lett. 23(11), 843–845 (1998).
    [Crossref] [PubMed]
  5. K. Liu, W. Jing, G. Peng, J. Zhang, Y. Wang, T. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intracavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20(18), 1515–1517 (2008).
    [Crossref]
  6. H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, “Observation of acetylene molecular absorption line with tunable, single-frequency, and mode-hop-free erbium-doped fiber ring laser,” IEEE J. Quantum Electron. 38(10), 1325–1330 (2002).
    [Crossref]
  7. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [Crossref] [PubMed]
  8. J. Geng, Q. Wang, J. Wang, S. Jiang, and K. Hsu, “All-fiber wavelength-swept laser near 2 μm,” Opt. Lett. 36(19), 3771–3773 (2011).
    [Crossref] [PubMed]
  9. F. D. Nielsen, L. Thrane, J. Black, K. Hsu, A. Bjarklev, and P. E. Andersen, “Swept-wavelength sources for optical coherence tomography in the 1 μm range,” Proc. SPIE 5861, 58610H, 58610H-8 (2005).
    [Crossref]
  10. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997).
    [Crossref]
  11. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30(23), 3159–3161 (2005).
    [Crossref] [PubMed]
  12. G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express 16(18), 14095–14105 (2008).
    [Crossref] [PubMed]
  13. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
    [Crossref] [PubMed]
  14. Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17(10), 8310–8318 (2009).
    [Crossref] [PubMed]
  15. H. Don Lee, J. H. Lee, M. Y. Jeong, and C. S. Kim, “Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier,” Opt. Express 19(15), 14586–14593 (2011).
    [Crossref] [PubMed]
  16. J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004).
    [Crossref]
  17. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20(17), 19349–19354 (2012).
    [Crossref] [PubMed]
  18. P. Peterka, P. Navrátil, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubecek, “Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities,” Proc. SPIE 8433, 843309, 843309-8 (2012).
    [Crossref]
  19. P. Navrátil, P. Vojtisek, P. Peterka, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping and self-pulsing in rare-earth doped fiber lasers,” Proc. SPIE 8697, 86971M, 86971M-6 (2012).
    [Crossref]
  20. P. Peterka, P. Navrátil, J. Maria, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett. 9(6), 445–450 (2012).
    [Crossref]
  21. I. A. Lobach, S. I. Kablukov, E. V. Podivilov, and S. A. Babin, “Broad-range self-sweeping of a narrow-line self-pulsing Yb-doped fiber laser,” Opt. Express 19(18), 17632–17640 (2011).
    [Crossref] [PubMed]
  22. A. V. Kir’yanov and N. N. Ilichev, “Self-induced laser line sweeping in an ytterbium fiber laser with nonresonant Fabry-Perot cavity,” Laser Phys. Lett. 8(4), 305–312 (2011).
    [Crossref]
  23. V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quant. Electron. 3(3), 211–215 (1973).
    [Crossref]
  24. T. P. Hughes and K. M. Young, “Mode sequences in ruby laser emission,” Nature 196(4852), 332–334 (1962).
    [Crossref]
  25. Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011).
    [Crossref]

2012 (4)

A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20(17), 19349–19354 (2012).
[Crossref] [PubMed]

P. Peterka, P. Navrátil, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubecek, “Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities,” Proc. SPIE 8433, 843309, 843309-8 (2012).
[Crossref]

P. Navrátil, P. Vojtisek, P. Peterka, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping and self-pulsing in rare-earth doped fiber lasers,” Proc. SPIE 8697, 86971M, 86971M-6 (2012).
[Crossref]

P. Peterka, P. Navrátil, J. Maria, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett. 9(6), 445–450 (2012).
[Crossref]

2011 (5)

2009 (1)

2008 (2)

G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express 16(18), 14095–14105 (2008).
[Crossref] [PubMed]

K. Liu, W. Jing, G. Peng, J. Zhang, Y. Wang, T. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intracavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20(18), 1515–1517 (2008).
[Crossref]

2006 (1)

2005 (3)

2004 (1)

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004).
[Crossref]

2003 (1)

2002 (1)

H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, “Observation of acetylene molecular absorption line with tunable, single-frequency, and mode-hop-free erbium-doped fiber ring laser,” IEEE J. Quantum Electron. 38(10), 1325–1330 (2002).
[Crossref]

2000 (1)

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

1998 (1)

1997 (1)

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

1993 (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

1973 (1)

V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quant. Electron. 3(3), 211–215 (1973).
[Crossref]

1962 (1)

T. P. Hughes and K. M. Young, “Mode sequences in ruby laser emission,” Nature 196(4852), 332–334 (1962).
[Crossref]

Ahl, J. L.

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

Akimoto, Y.

H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, “Observation of acetylene molecular absorption line with tunable, single-frequency, and mode-hop-free erbium-doped fiber ring laser,” IEEE J. Quantum Electron. 38(10), 1325–1330 (2002).
[Crossref]

Alam, S. U.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004).
[Crossref]

Allik, T. H.

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

Andersen, P. E.

F. D. Nielsen, L. Thrane, J. Black, K. Hsu, A. Bjarklev, and P. E. Andersen, “Swept-wavelength sources for optical coherence tomography in the 1 μm range,” Proc. SPIE 5861, 58610H, 58610H-8 (2005).
[Crossref]

Antipov, O. L.

Antsiferov, V. V.

V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quant. Electron. 3(3), 211–215 (1973).
[Crossref]

Babin, S. A.

Bai, Y.

Bjarklev, A.

F. D. Nielsen, L. Thrane, J. Black, K. Hsu, A. Bjarklev, and P. E. Andersen, “Swept-wavelength sources for optical coherence tomography in the 1 μm range,” Proc. SPIE 5861, 58610H, 58610H-8 (2005).
[Crossref]

Black, J.

F. D. Nielsen, L. Thrane, J. Black, K. Hsu, A. Bjarklev, and P. E. Andersen, “Swept-wavelength sources for optical coherence tomography in the 1 μm range,” Proc. SPIE 5861, 58610H, 58610H-8 (2005).
[Crossref]

Boudoux, C.

Bouma, B. E.

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Budfli, P.

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

Chandra, S.

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

Chen, S.

Chicklis, E.

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

Clarkson, W. A.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004).
[Crossref]

Clayton, B.

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

Culverhouse, D. O.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

Don Lee, H.

Dussardier, B.

P. Peterka, P. Navrátil, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubecek, “Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities,” Proc. SPIE 8433, 843309, 843309-8 (2012).
[Crossref]

P. Peterka, P. Navrátil, J. Maria, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett. 9(6), 445–450 (2012).
[Crossref]

Folin, K. G.

V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quant. Electron. 3(3), 211–215 (1973).
[Crossref]

Fujimoto, J. G.

Geiser, A.

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

Geng, J.

J. Geng, Q. Wang, J. Wang, S. Jiang, and K. Hsu, “All-fiber wavelength-swept laser near 2 μm,” Opt. Lett. 36(19), 3771–3773 (2011).
[Crossref] [PubMed]

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Grudinin, A. B.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004).
[Crossref]

Gu, X.

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Honzátko, P.

P. Navrátil, P. Vojtisek, P. Peterka, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping and self-pulsing in rare-earth doped fiber lasers,” Proc. SPIE 8697, 86971M, 86971M-6 (2012).
[Crossref]

P. Peterka, P. Navrátil, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubecek, “Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities,” Proc. SPIE 8433, 843309, 843309-8 (2012).
[Crossref]

P. Peterka, P. Navrátil, J. Maria, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett. 9(6), 445–450 (2012).
[Crossref]

Hovis, W. W.

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

Hsu, K.

Huber, R.

Hughes, T. P.

T. P. Hughes and K. M. Young, “Mode sequences in ruby laser emission,” Nature 196(4852), 332–334 (1962).
[Crossref]

Hutchinson, J. A.

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

Ilichev, N. N.

A. V. Kir’yanov and N. N. Ilichev, “Self-induced laser line sweeping in an ytterbium fiber laser with nonresonant Fabry-Perot cavity,” Laser Phys. Lett. 8(4), 305–312 (2011).
[Crossref]

Inaba, H.

H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, “Observation of acetylene molecular absorption line with tunable, single-frequency, and mode-hop-free erbium-doped fiber ring laser,” IEEE J. Quantum Electron. 38(10), 1325–1330 (2002).
[Crossref]

Jeong, M. Y.

Jia, D.

K. Liu, W. Jing, G. Peng, J. Zhang, Y. Wang, T. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intracavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20(18), 1515–1517 (2008).
[Crossref]

Jiang, S.

J. Geng, Q. Wang, J. Wang, S. Jiang, and K. Hsu, “All-fiber wavelength-swept laser near 2 μm,” Opt. Lett. 36(19), 3771–3773 (2011).
[Crossref] [PubMed]

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Jiang, Z.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Jing, W.

K. Liu, W. Jing, G. Peng, J. Zhang, Y. Wang, T. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intracavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20(18), 1515–1517 (2008).
[Crossref]

Kablukov, S. I.

Kavaya, M. J.

Keueridge, P.

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

Kim, B. Y.

S. H. Yun, D. J. Richardson, and B. Y. Kim, “Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser,” Opt. Lett. 23(11), 843–845 (1998).
[Crossref] [PubMed]

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

Kim, C. S.

Kir’yanov, A. V.

A. V. Kir’yanov and N. N. Ilichev, “Self-induced laser line sweeping in an ytterbium fiber laser with nonresonant Fabry-Perot cavity,” Laser Phys. Lett. 8(4), 305–312 (2011).
[Crossref]

Komukai, T.

H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, “Observation of acetylene molecular absorption line with tunable, single-frequency, and mode-hop-free erbium-doped fiber ring laser,” IEEE J. Quantum Electron. 38(10), 1325–1330 (2002).
[Crossref]

Kubecek, V.

P. Peterka, P. Navrátil, J. Maria, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett. 9(6), 445–450 (2012).
[Crossref]

P. Peterka, P. Navrátil, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubecek, “Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities,” Proc. SPIE 8433, 843309, 843309-8 (2012).
[Crossref]

P. Navrátil, P. Vojtisek, P. Peterka, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping and self-pulsing in rare-earth doped fiber lasers,” Proc. SPIE 8697, 86971M, 86971M-6 (2012).
[Crossref]

Lagatsky, A. A.

Lanier, K.

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

Lee, J. H.

Liu, G. Y.

Liu, K.

K. Liu, W. Jing, G. Peng, J. Zhang, Y. Wang, T. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intracavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20(18), 1515–1517 (2008).
[Crossref]

Liu, T.

K. Liu, W. Jing, G. Peng, J. Zhang, Y. Wang, T. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intracavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20(18), 1515–1517 (2008).
[Crossref]

Lobach, I. A.

Luo, T.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Maria, J.

P. Peterka, P. Navrátil, J. Maria, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett. 9(6), 445–450 (2012).
[Crossref]

Mariampillai, A.

Miller, C.

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

Modlin, E. A.

Munce, N. R.

Nakazaki, Y.

Nakazawa, M.

H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, “Observation of acetylene molecular absorption line with tunable, single-frequency, and mode-hop-free erbium-doped fiber ring laser,” IEEE J. Quantum Electron. 38(10), 1325–1330 (2002).
[Crossref]

Navrátil, P.

P. Peterka, P. Navrátil, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubecek, “Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities,” Proc. SPIE 8433, 843309, 843309-8 (2012).
[Crossref]

P. Navrátil, P. Vojtisek, P. Peterka, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping and self-pulsing in rare-earth doped fiber lasers,” Proc. SPIE 8697, 86971M, 86971M-6 (2012).
[Crossref]

P. Peterka, P. Navrátil, J. Maria, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett. 9(6), 445–450 (2012).
[Crossref]

Nielsen, F. D.

F. D. Nielsen, L. Thrane, J. Black, K. Hsu, A. Bjarklev, and P. E. Andersen, “Swept-wavelength sources for optical coherence tomography in the 1 μm range,” Proc. SPIE 5861, 58610H, 58610H-8 (2005).
[Crossref]

Nilsson, J.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004).
[Crossref]

Oh, W. Y.

Onae, A.

H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, “Observation of acetylene molecular absorption line with tunable, single-frequency, and mode-hop-free erbium-doped fiber ring laser,” IEEE J. Quantum Electron. 38(10), 1325–1330 (2002).
[Crossref]

Peng, G.

K. Liu, W. Jing, G. Peng, J. Zhang, Y. Wang, T. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intracavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20(18), 1515–1517 (2008).
[Crossref]

Peterka, P.

P. Peterka, P. Navrátil, J. Maria, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett. 9(6), 445–450 (2012).
[Crossref]

P. Peterka, P. Navrátil, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubecek, “Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities,” Proc. SPIE 8433, 843309, 843309-8 (2012).
[Crossref]

P. Navrátil, P. Vojtisek, P. Peterka, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping and self-pulsing in rare-earth doped fiber lasers,” Proc. SPIE 8697, 86971M, 86971M-6 (2012).
[Crossref]

Petros, M.

Petzar, P. J.

Pivtsov, V. S.

V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quant. Electron. 3(3), 211–215 (1973).
[Crossref]

Podivilov, E. V.

Richardson, D. J.

S. H. Yun, D. J. Richardson, and B. Y. Kim, “Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser,” Opt. Lett. 23(11), 843–845 (1998).
[Crossref] [PubMed]

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

Sahu, J. K.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004).
[Crossref]

Selvas, R.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004).
[Crossref]

Sibbett, W.

Singh, U. N.

Slavík, R.

P. Peterka, P. Navrátil, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubecek, “Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities,” Proc. SPIE 8433, 843309, 843309-8 (2012).
[Crossref]

P. Peterka, P. Navrátil, J. Maria, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett. 9(6), 445–450 (2012).
[Crossref]

Standish, B. A.

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Taira, K.

Tearney, G. J.

Thrane, L.

F. D. Nielsen, L. Thrane, J. Black, K. Hsu, A. Bjarklev, and P. E. Andersen, “Swept-wavelength sources for optical coherence tomography in the 1 μm range,” Proc. SPIE 5861, 58610H, 58610H-8 (2005).
[Crossref]

Trieu, B. C.

Turner, P. W.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004).
[Crossref]

Ugozhaev, V. D.

V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quant. Electron. 3(3), 211–215 (1973).
[Crossref]

Vitkin, I. A.

Vojtisek, P.

P. Navrátil, P. Vojtisek, P. Peterka, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping and self-pulsing in rare-earth doped fiber lasers,” Proc. SPIE 8697, 86971M, 86971M-6 (2012).
[Crossref]

Wager, M.

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

Wang, J.

Wang, Q.

J. Geng, Q. Wang, J. Wang, S. Jiang, and K. Hsu, “All-fiber wavelength-swept laser near 2 μm,” Opt. Lett. 36(19), 3771–3773 (2011).
[Crossref] [PubMed]

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Wang, Y.

K. Liu, W. Jing, G. Peng, J. Zhang, Y. Wang, T. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intracavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20(18), 1515–1517 (2008).
[Crossref]

Wojtkowski, M.

Yamashita, S.

Young, K. M.

T. P. Hughes and K. M. Young, “Mode sequences in ruby laser emission,” Nature 196(4852), 332–334 (1962).
[Crossref]

Yu, J.

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Yun, S. H.

Zhang, H.

K. Liu, W. Jing, G. Peng, J. Zhang, Y. Wang, T. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intracavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20(18), 1515–1517 (2008).
[Crossref]

Zhang, J.

K. Liu, W. Jing, G. Peng, J. Zhang, Y. Wang, T. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intracavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20(18), 1515–1517 (2008).
[Crossref]

Zhang, Y.

K. Liu, W. Jing, G. Peng, J. Zhang, Y. Wang, T. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intracavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20(18), 1515–1517 (2008).
[Crossref]

IEEE J. Quantum Electron. (2)

H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, “Observation of acetylene molecular absorption line with tunable, single-frequency, and mode-hop-free erbium-doped fiber ring laser,” IEEE J. Quantum Electron. 38(10), 1325–1330 (2002).
[Crossref]

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (2)

K. Liu, W. Jing, G. Peng, J. Zhang, Y. Wang, T. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intracavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20(18), 1515–1517 (2008).
[Crossref]

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Laser Phys. Lett. (2)

P. Peterka, P. Navrátil, J. Maria, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett. 9(6), 445–450 (2012).
[Crossref]

A. V. Kir’yanov and N. N. Ilichev, “Self-induced laser line sweeping in an ytterbium fiber laser with nonresonant Fabry-Perot cavity,” Laser Phys. Lett. 8(4), 305–312 (2011).
[Crossref]

Nature (1)

T. P. Hughes and K. M. Young, “Mode sequences in ruby laser emission,” Nature 196(4852), 332–334 (1962).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004).
[Crossref]

Opt. Lett. (5)

Proc. SPIE (4)

S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budfli, P. Keueridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, “2-μm-pumped 8-12-μm OPO source for remote chemical sensing,” Proc. SPIE 4036, 200–208 (2000).

F. D. Nielsen, L. Thrane, J. Black, K. Hsu, A. Bjarklev, and P. E. Andersen, “Swept-wavelength sources for optical coherence tomography in the 1 μm range,” Proc. SPIE 5861, 58610H, 58610H-8 (2005).
[Crossref]

P. Peterka, P. Navrátil, B. Dussardier, R. Slavík, P. Honzátko, and V. Kubecek, “Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities,” Proc. SPIE 8433, 843309, 843309-8 (2012).
[Crossref]

P. Navrátil, P. Vojtisek, P. Peterka, P. Honzátko, and V. Kubeček, “Self-induced laser line sweeping and self-pulsing in rare-earth doped fiber lasers,” Proc. SPIE 8697, 86971M, 86971M-6 (2012).
[Crossref]

Sov. J. Quant. Electron. (1)

V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quant. Electron. 3(3), 211–215 (1973).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Setup of Tm-Ho co-doped self-sweeping fiber laser system. PC: polarization controller; WDM: wavelength division multiplexer; T-HDF: Tm-Ho co-doped fiber; SMF: single-mode fiber; ISO: Isolator.
Fig. 2
Fig. 2 Self-pulsation shape (a) and the intermode beating in one pulse (b) when the fiber laser’s wavelength is self-sweeping.
Fig. 3
Fig. 3 Spectrum of Tm-Ho co-doped self-sweeping fiber laser in a wide range.
Fig. 4
Fig. 4 Static output spectra of the Tm-Ho co-doped self-sweeping fiber laser at different time.
Fig. 5
Fig. 5 Temporal dynamics of the self-sweeping fiber laser’s wavelength at different pump powers. (a) 275 mW; (b) 291 mW; (c) 310 mW; (d) 333 mW.
Fig. 6
Fig. 6 Sweep range of the Tm-Ho co-doped fiber laser at different pump powers (a) and sketch of gain contours versus wavelengths of the Tm-Ho co-doped laser at different pump powers (b).
Fig. 7
Fig. 7 Sweep rate (a) and self-pulsation frequency (b) of the Tm-Ho co-doped fiber laser at different pump powers.

Metrics