Abstract

We present a new approach to subwavelength optical confinement, based on hyperbolic media in planar Fabry-Perot geometry. Unlike higher-order resonance modes in indefinite metamaterial cavities, the predicted resonance corresponds to 0th-order mode and can be observed in planar systems. Our approach combines subwavelength light confinement with strong radiative coupling, enabling a practical planar design of nanolasers and subwavelength waveguides.

© 2013 Optical Society of America

1. Introduction

Hyperbolic optical metamaterials, highly anisotropic nanostructured composites with opposite signs of the dielectric permittivity in two orthogonal directions, represent one of the most active areas of current research [119]. These systems show a wide range of new physical phenomena – from extreme light localization in subwavelength waveguides [2] and resonant cavities [3], to enhanced radiative energy transport [4, 5] and quantum-electrodynamics phenomena [6, 7], and offer many intriguing applications – from far-field imaging with the resolution beyond the diffraction limit [810] to new stealth technology [11].

Generally, this behavior relies on two important aspects of the hyperbolic media – the ability to support propagating waves with the wavenumbers unlimited by the frequency [2] (leading to a broadband “super-singularity” [12] in the phonic density of states), and all-angle negative refraction [2, 1316]. In particular, high-wavenumber modes in hyperbolic media allow for light confinement beyond the diffraction limit and enhanced light-matter interactions in “indefinite” resonant cavities – three-dimensional subwavelength resonators formed by a hyperbolic meta-material (HMM) [3]. However, these are inherently high-order modes with exponentially small radiative coupling in a high-loss environment, making practical applications of such devices a challenging problem.

There is however another aspect of the hyperbolic media which so far received relatively little attention, but which could be just as important: when a given interface of the hyperbolic medium shows positive refraction, the transmitted wave accumulates negative phase, leading to a zeroth-order Fabry-Perot resonance at subwavelength thickness – similarly to resonators based on simultaneously negative permittivity and permeability [20]. As opposed to high-order hyperbolic modes studied earlier [3], such a resonator is refractively coupled to the surrounding medium, and therefore allows an arbitrary degree of radiative coupling (by e.g. forming thin metallic “mirrors” of the required thickness on its surfaces).

In the present work, we introduce the concept and present the theoretical description of the hyperbolic 0th-order resonator. Our approach can combine arbitrary subwavelength resonator dimensions with strong radiative coupling, leading to possible applications in nanolasers and deep subwavelength waveguides.

2. Zeroth-order trasmission resonance in a Fabry-Perot hyperbolic resonator

Consider a plane electromagnetic wave incident on a planar interface between an isotropic dieletric medium (e.g. air) and a hyperbolic medium with negative in-plane dielectric permittivity component εx < 0 and positive normal permittivity component εy > 0 (Fig. 1(a)). For a TM (p-polarized) incident plane wave (represented by the magnetic field B⃗ = B0ei(kxx+kyyωt) with the wavevector k = kx + kyŷ and the angular frequency ω), the associated electric field E and the Poynting vector S can be expressed as

E=B0cω[kxεyy^kyεxx^]exp(ikxx+ikyyiωt),
S=|B0|2c24πω[kxεyx^+kyεxy^].

Figure 1(b) shows the directions of the phase velocity (corresponding to the wave vector k⃗) and the energy flow (given by the Poynting vector S⃗) with respect to the iso-frequency curve of the medium. As refraction at a planar surface preserves the tangential (in-plane) momentum kx and the direction of the energy flux of the transmitted wave S⃗t is away from the boundary, for εx < 0 and εy > 0 the refraction is formally positive[2, 13, 14, 21]. However, in this case the wave vector k⃗t lies in the opposite direction, and a wave propagating in this hyperbolic medium (εx < 0, εy > 0) will accumulate a negative phase – with dramatic consequences for interference and transmission resonances in this system.

 figure: Fig. 1

Fig. 1 (a) The phase velocity and Poynting vector in regular dielectric (y < 0) and in hyperbolic medium (y > 0) with negative in-plane permittivity component (εx < 0). The wave vector k⃗0 and Poynting vector S⃗0 in an isotropic dielectric medium are collinear, while in HMM k⃗t and S⃗t are in two different directions. (b) The iso-frequency curves for an isotropic dieletric medium (circle) and an HMM (open hyperbolic curve) with εx < 0, εy > 0. The corresponding wave vectors (k⃗0, k⃗t) and Poynting vectors (S⃗0, S⃗t) are also shown. Note that refraction from the dielectric into such hyperbolic medium is only possible if the radius of the circle (proportional to the corresponding dielectric permittivity) exceeds the smallest wavenumber supported by the hyperbolic medium.

Download Full Size | PPT Slide | PDF

In a planar Fabry-Perot resonator formed by a “core” (of thickness D) bounded by two thin conducting layers (barriers) with negative permittivity εm (Fig. 2(a)), the transmission peak positions can be approximated by

knD+ϕr=πm,
where kn is the normal component of the wavenumber in the core, m = 0, 1,... is an integer, and ϕr is the reflection phase at the core–conducting layer interface. For a regular dielectric, Eq. (3) implies that m > 0 and such Fabry-Perot resonances can only be observed if the thickness D of the dielectric core is on the order of or larger than the light wavelength λ0.

 figure: Fig. 2

Fig. 2 (a) The schematics of a Fabry-Perot resonator with a hyperbolic metamaterial core. Conducting layers (εm < 0) serve as reflective “mirrors” and the wave is incident from the dielectric at the angle θ. (b) Transmission coefficients for a lossless HMM core, with different conducting layer thicknesses: d = 200 nm (red curve), 400 nm (blue curve), 600 nm (green curve) and 800 nm (violet curve). The dielectric permittivities of the HMM core are εx = −2 and εy = 1, and the dielectric permittivity in the conducting barriers is εm = −10. The free-space incident wavelength is λ0 = 10 μm and incident angle θ = 60°. The inset shows the resonance position as a function of conducting layer thickness, with the dashed blue line corresponding to Eq. (4). (c) Transmission coefficients for the resonator with a lossy HMM core, with εx = −2 + 0.002i, εy = 1 + 0.001i (solid green curve), εx = −2 + 0.02, εy = 1 + 0.01i (dotted blue curve), and εx = −2 + 0.2i, εy = 1 + 0.1i (dashed red curve), while the conducting layer thickness d in this example is 600 nm. The inset shows the variation of the peak transmission with the loss in the metal barries Im[εm], for the core permittivity εx = −2 + 0.2i, εy = 1 + 0.1i.

Download Full Size | PPT Slide | PDF

However, if the resonator core is formed by a hyperbolic medium with negative in-plane permittivity, we find that kn < 0, and the resonance condition Eq. (3) allows a zeroth-order (m = 0) resonance. When the metal barrier thickness d is on the order of or larger than the corresponding penetration depth, for this resonance we obtain

Dλ0|res=12πεxεxεyεd(sinθ)2Arg[εmεxεxεyεd(sinθ)2+εxεmεd(sinθ)2εmεxεxεyεd(sinθ)2+εxεmεd(sinθ)2],
which leads to transmission resonances at deeply subwavelength geometry. This behavior is illustrated in Figs. 2(b) and 2(c), where the transmission is shown as a function of D (in units of λ0) calculated for the parameters typical for mid-IR hyperbolic metamaterials based on semi-conductor components [16]. Figure 2(b) corresponds to the lossless limit, showing the shift of resonance position with the change of the conducting barrier thickness d. The inset in panel (b) illustrates the resonance position as a function of d, with the dashed blue line corresponding to the approximation of Eq. (4). As expected, with the increase of the conducting barrier thickness d, the resonance peak position is quickly approaching the theoretical prediction by Eq. (4). Figure 2(c) incorporates the effect of material losses in both the hyperbolic metamaterial core (see the main panel of Fig. 2(c)) and in the surrounding metal barriers (inset to Fig. 2(c)), as substantial absorption is inherent to all existing types of hyperbolic metamaterials. While absorption certainly reduces the transmission intensity, Fig. 2(c) clearly shows a pronounced 0th-order peak, with its position virtually unchanged with respect to the corresponding “lossless” value.

3. Zeroth-order resonance in a multilayer HMM core

In contrast to 3D optical metamaterials where unit cell size is on the order of the wavelength in the component materials [2225], planar metamaterials take advantage of fabrication technologies such as molecular-beam epitaxy [26] and chemical-vapor deposition [27] leading to the unit size on the scale of less than one-tenth of the wavelength [16]. As a result, such planar hyperbolic metamaterials (especially in the mid-IR range [16]) generally closely approach the predictions of the effective medium theory (EMT) [28] based of the effective dielectric permittivity tensor in terms of its conductive (permittivity εc) and dielectric (permittivity εd) components. In particlar, the tangential (in-plane) permittivty (εn) and normal permittivty (ετ) for a planar HMM with 1:1 conducting and dielectric layer thickness ratio can be expressed by

εn(ω)=εc(ω)+εd(ω)2,
ετ(ω)=2εc(ω)εd(ω)εc(ω)+εd(ω).

However, even in this limit, the fact that the total thickness of the resonator is also subwavelength and may thus only contain ∼ 10 individual layers, can still put the predictions of the EMT in question. To address this issue, we also calculate the transmission coefficient of the system using the T -matrix method, taking into account the actual geometry of the metamaterial using layer cells – see Figs. 3(b) and 3(c). Our results clearly confirm the existence of 0th-order transmission resonance even for a deeply subwavelength resonator core dimension (D ≈ 0.02 λ0) and a relatively large metal barrier thickness d = 50 nm. Furthermore, the agreement with our theoretical description remains not only qualitative but quantitative.

 figure: Fig. 3

Fig. 3 (a) The schematic structure of a 1:1 alternating Au-Al2O3 multilayer HMM resonator core with the single layer thickness d0λ0. (b) Transmission coefficients using the HMM core in (a) with different metal barrier thicknesses: d = 30 nm (solid red curve), 35 nm (blue dashed curve), 40 nm nm (green dashed curve) and 45 nm nm (violet dashed curve). The free-space incident wavelength is λ0 = 4 μm and the incident angle θ = 60°. (c) Comparison of the calculated transmission coefficients using the EMT and T -matrix methods. The EMT result is shown by solid red curve and the T -matrix results are shown by dashed curves with different single layer thicknesses of HMM core: d0 = 2 nm (dashed blue), d0 = 5 nm (dashed green), d0 = 8 nm (dashed black), and d0 = 10 nm (dashed violet). In this example, the metal barrier thickness d is set as 30 nm.

Download Full Size | PPT Slide | PDF

Note that the zeroth-order resonance described in the current work can only be observed in the HMM core with a negative in-plane permittivity εn. In the opposite case of εn > 0 and ετ < 0, the system does not support such zeroth-order resonance.

4. Conclusions

In conclusion, we have presented a new approach to subwavelength light confinement – based on a novel zeroth-order resonance due to negative phase velocity in hyperbolic metamaterials. Our approach is robust to losses, is compatible with planar semiconductor metamaterial technology, and when necessary allows strong radiative coupling.

5. Acknowledgements

This work was partially supported by NSF Center for Photonic and Multiscale Nanomaterials, ARO MURI and Gordon and Betty Moore Foundation.

References and links

1. I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW media – media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001) [CrossRef]  .

2. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101(R), (2005) [CrossRef]  .

3. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nature Photonics 6, 450 (2012) [CrossRef]  .

4. E. E. Narimanov and I. I. Smolyaninov, “Beyond Stefan-Boltzmann law: thermal hyper-conductivity,” arXiv:1109.5444.

5. Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101, 131106 (2012) [CrossRef]  .

6. Z. Jacob, J.Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” App. Phys. B 100, 215 (2010) [CrossRef]  .

7. M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).

8. Z. Jacob, L. V. Alekseyev, and E. E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247 (2006) [CrossRef]   [PubMed]  .

9. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 75103 (2006) [CrossRef]  .

10. Z. Liu, H Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686(2007) [CrossRef]   [PubMed]  .

11. E. E. Narimanov, M. A. Noginov, H. Li, and Y. Barnakov, “Darker than black: Radiation-absorbing metamaterial,” Proceedings of Quantum Electronics and Laser Science Conference, San Jose, 16–21 May, EQPDA6 (2010).

12. I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett. 105, 067402 (2010) [CrossRef]   [PubMed]  .

13. P. A. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microw. Opt. Technol. Lett. 37, 259 (2003) [CrossRef]  .

14. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 77405 (2003) [CrossRef]  .

15. D. R. Smith, D. Schurig, and P. Kolinko, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032 (2004) [CrossRef]  .

16. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater . 6, 946 (2007) [CrossRef]  .

17. L. Hu and S. T. Chui, “Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials,” Phys. Rev. B 66, 085108 (2002) [CrossRef]  .

18. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006) [CrossRef]  .

19. M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009) [CrossRef]  .

20. N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,”IEEE Trans. Antennas Propag. 1, 10 (2002) [CrossRef]  .

21. V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nature Mater. 5, 759 (2006) [CrossRef]  .

22. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005) [CrossRef]  .

23. V. M. Shalaev, “Opical negative refractive-index metamaterials,” Nature Photonics 1, 41 (2007) [CrossRef]  .

24. J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. Soukoulis, “Experimental demonstration of negative index of refraction,” App. Phys. Lett. 88, 221103 (2006) [CrossRef]  .

25. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 10, 1038 (2008).

26. A. Y. Cho and J. R. Arthur, “Molecular beam epitaxy,” Prog. Solid State Chem. 10, 157 (1975) [CrossRef]  .

27. D. M. Dobkin and M. K. Zuraw, Principles of Chemical Vapor Deposition (Kluwer Academic, the Netherlands, 2003) [CrossRef]  .

28. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2009).

References

  • View by:
  • |
  • |
  • |

  1. I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW media – media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001).
    [Crossref]
  2. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101(R), (2005).
    [Crossref]
  3. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nature Photonics 6, 450 (2012).
    [Crossref]
  4. E. E. Narimanov and I. I. Smolyaninov, “Beyond Stefan-Boltzmann law: thermal hyper-conductivity,” arXiv:1109.5444.
  5. Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101, 131106 (2012).
    [Crossref]
  6. Z. Jacob, J.Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” App. Phys. B 100, 215 (2010).
    [Crossref]
  7. M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).
  8. Z. Jacob, L. V. Alekseyev, and E. E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247 (2006).
    [Crossref] [PubMed]
  9. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 75103 (2006).
    [Crossref]
  10. Z. Liu, H Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686(2007).
    [Crossref] [PubMed]
  11. E. E. Narimanov, M. A. Noginov, H. Li, and Y. Barnakov, “Darker than black: Radiation-absorbing metamaterial,” Proceedings of Quantum Electronics and Laser Science Conference, San Jose, 16–21 May, EQPDA6 (2010).
  12. I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett. 105, 067402 (2010).
    [Crossref] [PubMed]
  13. P. A. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microw. Opt. Technol. Lett. 37, 259 (2003).
    [Crossref]
  14. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 77405 (2003).
    [Crossref]
  15. D. R. Smith, D. Schurig, and P. Kolinko, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032 (2004).
    [Crossref]
  16. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater.  6, 946 (2007).
    [Crossref]
  17. L. Hu and S. T. Chui, “Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials,” Phys. Rev. B 66, 085108 (2002).
    [Crossref]
  18. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
    [Crossref]
  19. M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
    [Crossref]
  20. N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,”IEEE Trans. Antennas Propag. 1, 10 (2002).
    [Crossref]
  21. V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nature Mater. 5, 759 (2006).
    [Crossref]
  22. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
    [Crossref]
  23. V. M. Shalaev, “Opical negative refractive-index metamaterials,” Nature Photonics 1, 41 (2007).
    [Crossref]
  24. J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. Soukoulis, “Experimental demonstration of negative index of refraction,” App. Phys. Lett. 88, 221103 (2006).
    [Crossref]
  25. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 10, 1038 (2008).
  26. A. Y. Cho and J. R. Arthur, “Molecular beam epitaxy,” Prog. Solid State Chem. 10, 157 (1975).
    [Crossref]
  27. D. M. Dobkin and M. K. Zuraw, Principles of Chemical Vapor Deposition (Kluwer Academic, the Netherlands, 2003).
    [Crossref]
  28. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2009).

2012 (2)

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nature Photonics 6, 450 (2012).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101, 131106 (2012).
[Crossref]

2010 (2)

Z. Jacob, J.Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” App. Phys. B 100, 215 (2010).
[Crossref]

I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett. 105, 067402 (2010).
[Crossref] [PubMed]

2009 (1)

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

2008 (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 10, 1038 (2008).

2007 (3)

V. M. Shalaev, “Opical negative refractive-index metamaterials,” Nature Photonics 1, 41 (2007).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater.  6, 946 (2007).
[Crossref]

Z. Liu, H Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686(2007).
[Crossref] [PubMed]

2006 (5)

Z. Jacob, L. V. Alekseyev, and E. E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247 (2006).
[Crossref] [PubMed]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 75103 (2006).
[Crossref]

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. Soukoulis, “Experimental demonstration of negative index of refraction,” App. Phys. Lett. 88, 221103 (2006).
[Crossref]

V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nature Mater. 5, 759 (2006).
[Crossref]

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

2005 (2)

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101(R), (2005).
[Crossref]

2004 (1)

2003 (2)

P. A. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microw. Opt. Technol. Lett. 37, 259 (2003).
[Crossref]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 77405 (2003).
[Crossref]

2002 (2)

L. Hu and S. T. Chui, “Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials,” Phys. Rev. B 66, 085108 (2002).
[Crossref]

N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,”IEEE Trans. Antennas Propag. 1, 10 (2002).
[Crossref]

2001 (1)

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW media – media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001).
[Crossref]

1975 (1)

A. Y. Cho and J. R. Arthur, “Molecular beam epitaxy,” Prog. Solid State Chem. 10, 157 (1975).
[Crossref]

1863 (1)

M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater.  6, 946 (2007).
[Crossref]

Alekseyev, L. V.

Arthur, J. R.

A. Y. Cho and J. R. Arthur, “Molecular beam epitaxy,” Prog. Solid State Chem. 10, 157 (1975).
[Crossref]

Barnakov, A.

M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).

Barnakov, Y.

E. E. Narimanov, M. A. Noginov, H. Li, and Y. Barnakov, “Darker than black: Radiation-absorbing metamaterial,” Proceedings of Quantum Electronics and Laser Science Conference, San Jose, 16–21 May, EQPDA6 (2010).

Barnakov, Y. A.

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 10, 1038 (2008).

Belov, P. A.

P. A. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microw. Opt. Technol. Lett. 37, 259 (2003).
[Crossref]

Boltasseva, A.

Z. Jacob, J.Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” App. Phys. B 100, 215 (2010).
[Crossref]

Bonner, C. E

M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).

Cai, W.

Chettiar, U. K.

Cho, A. Y.

A. Y. Cho and J. R. Arthur, “Molecular beam epitaxy,” Prog. Solid State Chem. 10, 157 (1975).
[Crossref]

Chui, S. T.

L. Hu and S. T. Chui, “Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials,” Phys. Rev. B 66, 085108 (2002).
[Crossref]

Cortes, C. L.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101, 131106 (2012).
[Crossref]

Dobkin, D. M.

D. M. Dobkin and M. K. Zuraw, Principles of Chemical Vapor Deposition (Kluwer Academic, the Netherlands, 2003).
[Crossref]

Drachev, V. P.

Dryden, D.

M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).

Elser, J.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 75103 (2006).
[Crossref]

N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,”IEEE Trans. Antennas Propag. 1, 10 (2002).
[Crossref]

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater.  6, 946 (2007).
[Crossref]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 10, 1038 (2008).

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater.  6, 946 (2007).
[Crossref]

Guo, Y.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101, 131106 (2012).
[Crossref]

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater.  6, 946 (2007).
[Crossref]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater.  6, 946 (2007).
[Crossref]

Hu, L.

L. Hu and S. T. Chui, “Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials,” Phys. Rev. B 66, 085108 (2002).
[Crossref]

Ilvonen, S.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW media – media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001).
[Crossref]

Jacob, Z.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101, 131106 (2012).
[Crossref]

Z. Jacob, J.Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” App. Phys. B 100, 215 (2010).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247 (2006).
[Crossref] [PubMed]

M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).

Kildishev, A. V.

Kim, J.Y.

Z. Jacob, J.Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” App. Phys. B 100, 215 (2010).
[Crossref]

Kolinko, P.

Koschny, T.

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. Soukoulis, “Experimental demonstration of negative index of refraction,” App. Phys. Lett. 88, 221103 (2006).
[Crossref]

Lee, H

Z. Liu, H Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686(2007).
[Crossref] [PubMed]

Li, H.

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).

E. E. Narimanov, M. A. Noginov, H. Li, and Y. Barnakov, “Darker than black: Radiation-absorbing metamaterial,” Proceedings of Quantum Electronics and Laser Science Conference, San Jose, 16–21 May, EQPDA6 (2010).

Lindell, I. V.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW media – media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001).
[Crossref]

Liu, Z.

Z. Liu, H Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686(2007).
[Crossref] [PubMed]

Mayy, M.

M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).

Molesky, S.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101, 131106 (2012).
[Crossref]

Naik, G. V.

Z. Jacob, J.Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” App. Phys. B 100, 215 (2010).
[Crossref]

Narimanov, E. E.

Z. Jacob, J.Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” App. Phys. B 100, 215 (2010).
[Crossref]

I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett. 105, 067402 (2010).
[Crossref] [PubMed]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater.  6, 946 (2007).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247 (2006).
[Crossref] [PubMed]

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nature Mater. 5, 759 (2006).
[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101(R), (2005).
[Crossref]

M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).

E. E. Narimanov and I. I. Smolyaninov, “Beyond Stefan-Boltzmann law: thermal hyper-conductivity,” arXiv:1109.5444.

E. E. Narimanov, M. A. Noginov, H. Li, and Y. Barnakov, “Darker than black: Radiation-absorbing metamaterial,” Proceedings of Quantum Electronics and Laser Science Conference, San Jose, 16–21 May, EQPDA6 (2010).

Nataraj, G.

M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).

Nikoskinen, K. I.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW media – media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001).
[Crossref]

Noginov, M. A.

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).

E. E. Narimanov, M. A. Noginov, H. Li, and Y. Barnakov, “Darker than black: Radiation-absorbing metamaterial,” Proceedings of Quantum Electronics and Laser Science Conference, San Jose, 16–21 May, EQPDA6 (2010).

Podolskiy, V. A.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater.  6, 946 (2007).
[Crossref]

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101(R), (2005).
[Crossref]

Rho, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nature Photonics 6, 450 (2012).
[Crossref]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 75103 (2006).
[Crossref]

Sarychev, A. K.

Schurig, D.

D. R. Smith, D. Schurig, and P. Kolinko, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032 (2004).
[Crossref]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 77405 (2003).
[Crossref]

Shalaev, V.

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2009).

Shalaev, V. M.

Z. Jacob, J.Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” App. Phys. B 100, 215 (2010).
[Crossref]

V. M. Shalaev, “Opical negative refractive-index metamaterials,” Nature Photonics 1, 41 (2007).
[Crossref]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
[Crossref]

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater.  6, 946 (2007).
[Crossref]

Smith, D. R.

D. R. Smith, D. Schurig, and P. Kolinko, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032 (2004).
[Crossref]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 77405 (2003).
[Crossref]

Smolyaninov, I. I.

I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett. 105, 067402 (2010).
[Crossref] [PubMed]

E. E. Narimanov and I. I. Smolyaninov, “Beyond Stefan-Boltzmann law: thermal hyper-conductivity,” arXiv:1109.5444.

Soukoulis, C.

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. Soukoulis, “Experimental demonstration of negative index of refraction,” App. Phys. Lett. 88, 221103 (2006).
[Crossref]

Sun, C.

Z. Liu, H Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686(2007).
[Crossref] [PubMed]

Tretyakov, S. A.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW media – media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001).
[Crossref]

Tumkur, T.

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

Tuttle, G.

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. Soukoulis, “Experimental demonstration of negative index of refraction,” App. Phys. Lett. 88, 221103 (2006).
[Crossref]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 10, 1038 (2008).

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 10, 1038 (2008).

Veselago, V. G.

V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nature Mater. 5, 759 (2006).
[Crossref]

Wangberg, R.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater.  6, 946 (2007).
[Crossref]

Xiong, Y.

Z. Liu, H Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686(2007).
[Crossref] [PubMed]

Yang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nature Photonics 6, 450 (2012).
[Crossref]

Yao, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nature Photonics 6, 450 (2012).
[Crossref]

Yin, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nature Photonics 6, 450 (2012).
[Crossref]

Yu, H

M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).

Yuan, H.-K.

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 10, 1038 (2008).

Zhang, L.

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. Soukoulis, “Experimental demonstration of negative index of refraction,” App. Phys. Lett. 88, 221103 (2006).
[Crossref]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 10, 1038 (2008).

Zhang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nature Photonics 6, 450 (2012).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 10, 1038 (2008).

Z. Liu, H Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686(2007).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. Soukoulis, “Experimental demonstration of negative index of refraction,” App. Phys. Lett. 88, 221103 (2006).
[Crossref]

Zhu, G.

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).

Zuraw, M. K.

D. M. Dobkin and M. K. Zuraw, Principles of Chemical Vapor Deposition (Kluwer Academic, the Netherlands, 2003).
[Crossref]

App. Phys. B (1)

Z. Jacob, J.Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” App. Phys. B 100, 215 (2010).
[Crossref]

App. Phys. Lett. (1)

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. Soukoulis, “Experimental demonstration of negative index of refraction,” App. Phys. Lett. 88, 221103 (2006).
[Crossref]

Appl. Phys. Lett. (3)

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101, 131106 (2012).
[Crossref]

IEEE Trans. Antennas Propag. (1)

N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,”IEEE Trans. Antennas Propag. 1, 10 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett (1)

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW media – media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001).
[Crossref]

Microw. Opt. Technol. Lett. (1)

P. A. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microw. Opt. Technol. Lett. 37, 259 (2003).
[Crossref]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 10, 1038 (2008).

Nature Mater (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater.  6, 946 (2007).
[Crossref]

Nature Mater. (1)

V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nature Mater. 5, 759 (2006).
[Crossref]

Nature Photonics (2)

V. M. Shalaev, “Opical negative refractive-index metamaterials,” Nature Photonics 1, 41 (2007).
[Crossref]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nature Photonics 6, 450 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

M. A. Noginov, H. Li, H Yu, A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Control of spontaneous emission with metamaterials,” Opt. Lett. 35, 1863 (2010).

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
[Crossref]

Phys. Rev. B (3)

L. Hu and S. T. Chui, “Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials,” Phys. Rev. B 66, 085108 (2002).
[Crossref]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 75103 (2006).
[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101(R), (2005).
[Crossref]

Phys. Rev. Lett. (2)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 77405 (2003).
[Crossref]

I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett. 105, 067402 (2010).
[Crossref] [PubMed]

Prog. Solid State Chem. (1)

A. Y. Cho and J. R. Arthur, “Molecular beam epitaxy,” Prog. Solid State Chem. 10, 157 (1975).
[Crossref]

Science (1)

Z. Liu, H Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686(2007).
[Crossref] [PubMed]

Other (4)

E. E. Narimanov, M. A. Noginov, H. Li, and Y. Barnakov, “Darker than black: Radiation-absorbing metamaterial,” Proceedings of Quantum Electronics and Laser Science Conference, San Jose, 16–21 May, EQPDA6 (2010).

E. E. Narimanov and I. I. Smolyaninov, “Beyond Stefan-Boltzmann law: thermal hyper-conductivity,” arXiv:1109.5444.

D. M. Dobkin and M. K. Zuraw, Principles of Chemical Vapor Deposition (Kluwer Academic, the Netherlands, 2003).
[Crossref]

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) The phase velocity and Poynting vector in regular dielectric (y < 0) and in hyperbolic medium (y > 0) with negative in-plane permittivity component (εx < 0). The wave vector k⃗0 and Poynting vector S⃗0 in an isotropic dielectric medium are collinear, while in HMM k⃗t and S⃗t are in two different directions. (b) The iso-frequency curves for an isotropic dieletric medium (circle) and an HMM (open hyperbolic curve) with εx < 0, εy > 0. The corresponding wave vectors (k⃗0, k⃗t) and Poynting vectors (S⃗0, S⃗t) are also shown. Note that refraction from the dielectric into such hyperbolic medium is only possible if the radius of the circle (proportional to the corresponding dielectric permittivity) exceeds the smallest wavenumber supported by the hyperbolic medium.
Fig. 2
Fig. 2 (a) The schematics of a Fabry-Perot resonator with a hyperbolic metamaterial core. Conducting layers (εm < 0) serve as reflective “mirrors” and the wave is incident from the dielectric at the angle θ. (b) Transmission coefficients for a lossless HMM core, with different conducting layer thicknesses: d = 200 nm (red curve), 400 nm (blue curve), 600 nm (green curve) and 800 nm (violet curve). The dielectric permittivities of the HMM core are εx = −2 and εy = 1, and the dielectric permittivity in the conducting barriers is εm = −10. The free-space incident wavelength is λ0 = 10 μm and incident angle θ = 60°. The inset shows the resonance position as a function of conducting layer thickness, with the dashed blue line corresponding to Eq. (4). (c) Transmission coefficients for the resonator with a lossy HMM core, with εx = −2 + 0.002i, εy = 1 + 0.001i (solid green curve), εx = −2 + 0.02, εy = 1 + 0.01i (dotted blue curve), and εx = −2 + 0.2i, εy = 1 + 0.1i (dashed red curve), while the conducting layer thickness d in this example is 600 nm. The inset shows the variation of the peak transmission with the loss in the metal barries Im[εm], for the core permittivity εx = −2 + 0.2i, εy = 1 + 0.1i.
Fig. 3
Fig. 3 (a) The schematic structure of a 1:1 alternating Au-Al2O3 multilayer HMM resonator core with the single layer thickness d0λ0. (b) Transmission coefficients using the HMM core in (a) with different metal barrier thicknesses: d = 30 nm (solid red curve), 35 nm (blue dashed curve), 40 nm nm (green dashed curve) and 45 nm nm (violet dashed curve). The free-space incident wavelength is λ0 = 4 μm and the incident angle θ = 60°. (c) Comparison of the calculated transmission coefficients using the EMT and T -matrix methods. The EMT result is shown by solid red curve and the T -matrix results are shown by dashed curves with different single layer thicknesses of HMM core: d0 = 2 nm (dashed blue), d0 = 5 nm (dashed green), d0 = 8 nm (dashed black), and d0 = 10 nm (dashed violet). In this example, the metal barrier thickness d is set as 30 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E = B 0 c ω [ k x ε y y ^ k y ε x x ^ ] exp ( i k x x + i k y y i ω t ) ,
S = | B 0 | 2 c 2 4 π ω [ k x ε y x ^ + k y ε x y ^ ] .
k n D + ϕ r = π m ,
D λ 0 | res = 1 2 π ε x ε x ε y ε d ( sin θ ) 2 Arg [ ε m ε x ε x ε y ε d ( sin θ ) 2 + ε x ε m ε d ( sin θ ) 2 ε m ε x ε x ε y ε d ( sin θ ) 2 + ε x ε m ε d ( sin θ ) 2 ] ,
ε n ( ω ) = ε c ( ω ) + ε d ( ω ) 2 ,
ε τ ( ω ) = 2 ε c ( ω ) ε d ( ω ) ε c ( ω ) + ε d ( ω ) .

Metrics