Abstract

A parallel femtosecond pulse irradiation method using a computer-generated hologram displayed on a spatial light modulator provides the advantages of high throughput and high energy-use efficiency. Polarization control of the femtosecond pulse enables some unique properties, for example, selective excitation of an anisotropic molecule, focusing at a size beyond the diffraction limit owing to the longitudinal vector component of a radially polarized beam focused by a high-numerical-aperture objective lens, and fabrication of periodic nanostructures with femtosecond laser light. In this study, we propose a parallel femtosecond laser irradiation system with arbitrary polarization distribution control using a pair of spatial light modulators. By using the system, the interval between the diffraction spots was the closest yet reported by avoiding mutual interference among their side lobes. The interval was improved to half compared with our previous work. We also demonstrated the parallel fabrication of periodic nanostructures with orientation control, which, to our knowledge, is the first reported demonstration of its kind.

© 2013 OSA

1. Introduction

Femtosecond laser processing is an important tool for fabricating three-dimensional optical devices in transparent materials [15]. In order to fabricate such optical devices at millimeter-scale, an enormous number of processing points are required, and therefore, the processing throughput must be improved. To overcome this issue, parallel femtosecond laser processing based on an array of spots has been proposed. Several methods have been used to demonstrate parallel laser processing, for example, methods using multi-beam interference, microlens arrays, and diffractive optical elements (DOEs). A computer-generated hologram (CGH) [6] allows arbitrary control of the spatial pulse shape, and a spatial light modulator (SLM) displaying a dynamic CGH has been used to achieve variable spatial shaping of femtosecond pulses [7,8]. Femtosecond laser processing with a CGH, called holographic femtosecond laser processing [922], has the advantages of high-throughput pulsed irradiation and high energy-use efficiency of the pulse and has been widely used in many applications, for example, two-photon polymerization [2328], optical waveguide fabrication [2931], fabrication of volume phase gratings in polymers [32], surface structuring of silicon [33], and cell transfection [34].

In the holographic femtosecond laser processing system, the processing throughput is expressed as the product of the maximum frequency of the SLM, fSLM, and number of parallel pulses, P, produced by the CGH. The maximum P depends on the total number of pixels of the SLM. Actually, however, the interval between the diffraction spots has to be sufficiently larger than the Airy disk diameter of the spots to avoid distortion of the spots caused by mutual interference between their side lobes. We empirically knew that the minimum interval is about three-times larger than the full width at half-maximum (FWHM) of the spot diameter dAiry, according to our previous work [18]. The FWHM is approximately equal to the pixel size on the reconstruction plane. This means that mutual interference prevents effective use of the SLM.

In this study, we propose a novel optical system to solve this issue. The system is based on arbitrary polarization distribution control in parallel femtosecond pulses using a pair of SLMs. Although there have been reports of applying polarization control to single beam [3541], there have not yet been any reports on polarization control of parallel beams. With this system, the interval between the diffraction spots was the closest by avoiding mutual interference. The interval was reduced to half compared with our previous work [18]. We also demonstrated the parallel fabrication of periodic nanostructures [42] with orientation control, which, to our knowledge, is the first reported demonstration of its kind.

2. Principle of polarization control in parallel beams

The optical setup used for polarization distribution control of parallel beams mainly consists of a half wave plate (HWP), a quarter wave plate (QWP), and a pair of SLMs. When the Jones matrixes of these optical elements are defined as H, Q, and S, respectively, the Jones vector of the output beam, Eout, is expressed as

Eout=Qπ4SβHπ8SαEin=2(1+i)exp(iα)[cosβ2+sinβ2cosβ2sinβ2],
where Ein is the Jones vector of an input beam with linear polarization, the subscripts on H and Q are the azimuth angles of the optical axis at the respective wave plates, and the subscripts α and β are the phases applied to the pair of SLMs, respectively. As shown in Eq. (1), the wavefront and polarization of the output beam are independently controlled by the phases α and β, respectively.

Figure 1(a) shows the direction of linear polarization of the output beam versus phase β. The direction is linearly rotated with a slope of -β/2 by adjusting the phase β. Figure 1(b) shows an example of polarization distribution control using a combination of α and β in Eq. (1). The phase maps for α and β mean the phase distribution on the SLMs, respectively. The gray scale indicates the phase delay. In the input beam with the linear polarization, a component parallel to an axis of SLM receives the phase delay. When the radially polarized beam shown in case 1 in Fig. 1(b) is tightly focused by an objective lens having a high numerical aperture (NA), the vector sum of each polarization component generates a longitudinal electric field parallel to the optical axis at the center of the focal point. This polarization state, called z-polarization, has been shown to enable selective excitation of anisotropic molecules [35], observation of 3D orientation of a single molecule [36], and focusing to a small spot size beyond the diffraction limit [37]. Furthermore, in the focused irradiation at a sample using the radially and azimuthally polarized beam shown in case 2, each polarization component at the focal point behaves as a pure p- or s-polarization, respectively. The reflectance of light with the s-polarization is usually larger than that with the p-polarization at a large incident angle. In particular, the reflectance drastically differs in laser processing of metal materials. Therefore, the radially polarized beam is useful for effective laser cutting, because the beam interacts with the material while constantly maintaining the p-polarization regardless of the beam sweep direction [38]. The azimuthally polarized beam, on the other hand, is useful for effective laser drilling [39], because the wall of the hole is highly reflective to the s-polarized light and does not absorb the incident beam, allowing most of the power to reach the bottom of the hole. There has also been a report regarding improved trapping efficiency of optical tweezers because the reflectance of the particle to the incident light is decreased [40]. Our proposed system also enables these unique properties in parallel beams.

 

Fig. 1 (a) Direction of linear polarization of output beam versus phase β. (b) Typical output polarization distributions versus input signals α and β to the SLMs. The gray scale indicates the phase delay (black and white indicate 0 and 2π, respectively).

Download Full Size | PPT Slide | PDF

3. Experimental setup

Figure 2(a) shows a parallel femtosecond laser irradiation system with arbitrary polarization distribution control. It is mainly composed of an amplified femtosecond laser system (Coherent, Micra and Legend Elite), liquid-crystal-on-silicon SLMs (LCOS-SLM; Hamamatsu Photonics, X10468-07), laser processing optics, and a personal computer (PC). The incident femtosecond pulse had a center wavelength of 800 nm, a spectral width of 8 nm FWHM, a pulse width of 110 fs, a repetition frequency of 1 kHz, and linear polarization with a p-component. The pulse was radiated onto the first SLM (SLM1) which displayed CGH1 for applying a pure phase delay to the p-component. The HWP was arranged at a rotation angle of π/8 to rotate the linear polarization by π/4. The pulse was also radiated onto the second SLM (SLM2) which displayed CGH2 for applying a phase delay between the p- and s-components. SLM2 was located at the image plane of SLM1. The circular or elliptical polarization reflected from SLM2 was converted to linear polarization using a QWP set at a rotation angle of π/4. The direction of the linear polarization depended on the phase signal applied to SLM2, as shown in Fig. 1(a). Consequently, the reconstructed spot array with a desired intensity and linear polarization distribution was obtained at plane P and was directed to the laser processing optics, containing a 60 × objective lens (OL) with NA = 0.85. To observe laser processing of the sample, the sample was illuminated with a halogen lamp (HL), and a charge coupled device (CCD) image sensor captured images of the sample via a dichroic mirror (DM) and an infrared (IR) cut filter. The sample was an indium tin oxide (ITO) film (thickness of 10 nm) on a glass substrate. In this holographic setup, an optical transmittance from the femtosecond light source to a Fourier plane of SLM1, a Fourier plane of SLM2, a front of the objective and a behind the objective were 24.7, 11.3, 8.0 and 3.7 %, respectively. Therefore, the transmittance of the whole setup was quite low compared with the ordinary setup without the SLMs. In the case of the sub-micro machining with the femtosecond pulse, however, the holographic setup become predominant than the ordinary setup in terms of the energy-use efficiency of the pulse, because there is a large gap between a threshold energy required to process the sample and a total energy owned by the femtosecond light source. Figures 2(b) and 2(c) show CGHs, designed with the optimal-rotation-angle (ORA) method [43], displayed on SLM1 and SLM2, respectively.

 

Fig. 2 (a) Parallel femtosecond laser irradiation system with arbitrary polarization distribution control. (b), (c) CGHs displayed on SLM 1 and SLM2, respectively.

Download Full Size | PPT Slide | PDF

4. Experimental results

Figure 3 shows reconstructed spot arrays using the CGHs shown in Fig. 2(b) and 2(c). The reconstructed spot arrays were captured using the cooled CCD image sensor at plane P in Fig. 2(a). We analyzed the intensity distribution of the reconstructed spot array versus the interval d between the diffraction spots, defined as the distance between the peak intensities. At plane P, the FWHM of the Airy disk pattern in the diffraction spot, dAiry, was theoretically calculated to be 68 μm from dAiry = 0.51 × λ / NA. Figure 3(a)-3(d) show the reconstructed spot arrays of the CGH designed with d = 2.88 × dAiry. The arrows indicate the polarization direction of each diffraction spot. Figure 3(a) shows the optical reconstruction of a parallel spot array without polarization distribution control. A slight distortion in the intensity profile of the diffraction spots was observed due to mutual interference between neighboring spots. Figure 3(b) shows a computational reconstruction without the polarization control. Figure 3(c) shows an optical reconstruction with polarization control. No distortion in the intensity profile was observed because neighboring spots were designed to have mutually orthogonal polarizations. Figure 3(d) shows the reconstructed spot array in Fig. 3(c) captured through a linear polarizer set at two orthogonal angles. It was confirmed that the neighboring spots had mutually orthogonal polarizations. Figure 3(e) shows a spatial frequency analysis of the intensity profiles in Fig. 3(a)-3(c). In Fig. 3(e), the filled circles, solid line, and open circles indicate the spatial frequency spectrum, I(ν), of the intensity profiles in Fig. 3(a), 3(b) and 3(c), respectively. On the horizontal axis in Fig. 3(e), the maximum spatial frequency, νμαξ = 60.2 lp/mm, depends on the pixel size of the cooled CCD image sensor, Ps = 8.3 μm. I(ν) of the optical reconstruction without polarization distribution control (filled circles) agreed well with that of the computational reconstruction without polarization control (solid line). Above ν = 25 lp/mm (d = 0.59 × dAiry), it seems that noise from the CCD image sensor dominated because there was no value in the result for the computational reconstruction (solid line). At ν = 15-25 lp/mm (d = 0.59 × dAiry to 0.98 × dAiry), I(ν) with polarization control (open circles) was decreased compared with that without polarization control (filled circles and solid line). It was assumed that ν = 15-25 lp/mm corresponds to the frequency derived from the mutualinterference between diffraction spots, with dependence on the interval d and NA of the focal spot.

 

Fig. 3 (a) Optical and (b) computational reconstructions without polarization control. (c) Optical reconstruction with polarization control and (d) the reconstructed spot array captured through a polarizer set at two orthogonal angles. The interval between diffraction spots, d, was set to 2.88 × dAiry. (e) Spatial frequency spectrum I(ν) of intensity profiles in the optical (filled circles) and computational (solid line) reconstructions without polarization control and in the optical reconstruction with polarization control (open circles).

Download Full Size | PPT Slide | PDF

Figure 4 shows the reconstruction of the CGH designed with d = 1.44 × dAiry. Figure 4(a) shows the optical reconstruction without polarization distribution control. Considerable distortion in the intensity profile was observed due to mutual interference between neighboring spots. Figure 4(b) shows the computational reconstruction without polarization control. Figure 4(c) shows the optical reconstruction with polarization control. There was some variance in the peak intensities due to slight mutual interference. A smooth intensity profile, however, was maintained. Figure 4(d) shows the reconstruction in Fig. 4(c) captured through a linear polarizer set at two orthogonal angles. In Fig. 4(d), slight distortion was observed due to the mutual interference between spots at d = 2.88 × dAiry. Figure 4(e) shows a spatial frequency analysis of the intensity profiles in Fig. 4(a)-4(c). In Fig. 4(e), the filled circles, solid line, and open circles indicate I(ν) of the intensity profiles in Fig. 4(a), 4(b) and 4(c), respectively. At ν = 15-25 lp/mm (d = 0.59 × dAiry to 0.98 × dAiry), I(ν) of the result with polarization control (open circles) was significantly decreased compared with that without polarization control (filled circles and solid line), like the result of Fig. 3(e).

 

Fig. 4 (a) Optical and (b) computational reconstructions without polarization control. (c) Optical reconstruction with polarization control and (d) the reconstructed spot array captured through a polarizer. The spot interval d was set to 1.44 × dAiry. (e) Spatial frequency spectrum I(ν) of intensity profiles in the optical (filled circles) and computational (solid line) reconstruction without polarization control and in the optical reconstruction with polarization control (open circles).

Download Full Size | PPT Slide | PDF

We quantitatively analyzed the influence of the mutual interference between the diffraction spots by comparing the sum of I(ν) versus the interval d (Fig. 5). In the calculation of the sum of I(ν), I(0) was removed. In Fig. 5, the filled and open circles indicate the results of the optical reconstruction without and with polarization control, respectively. In the result without polarization control (filled circles), the influence of the mutual interference began to appear at d = 2.88 × dAiry, because the sum of I(ν) was larger than that with polarization control (open circles). This result agreed well with our previous research [18]. In the result with polarization control (open circles), on the other hand, there was no remarkable influence of the mutual interference at d = 1.72 × dAiry. The sum of I(ν) increased at d = 1.44 × dAiry due to the slight distortion of the intensity profile, as shown in Fig. 4(c); however, a smooth intensity profile was maintained. As shown in the inset of Fig. 5, it was difficult to avoid the mutual interference at d = 1.15 × dAiry. By employing the polarization distribution control ofthe parallel beams, the interval d was reduced by half (1.44 × dAiry / 2.88 × dAiry) compared with our previous work [18].

 

Fig. 5 Sum of spatial frequency spectrum I(ν) in the intensity profile versus interval d between diffraction spots. The filled circles and open circles are the results without and with polarization control, respectively.

Download Full Size | PPT Slide | PDF

Finally, laser processing of an ITO film using parallel beams with arbitrary polarization distribution control was performed. Figure 6(a) shows the reconstruction with polarization distribution control. The interval d was set to d = 5.76 × dAiry. Figure 6(b) shows a scanning electron microscope (SEM) image of nano-gratings processed using the reconstructed spot array. The processing was performed while irradiating the sample with the reconstructed spot array using a fluence of 1.26 μJ, and scanning the sample at a speed of 20 μm/s. The fluence means the single pulse fluence per spot. From the SEM image, the structures were aligned perpendicularly to the polarization direction of each diffraction beam and had a grating pitch of 140 nm. This is the first demonstration of parallel femtosecond laser processing with arbitrary polarization distribution control.

 

Fig. 6 (a) Optical reconstruction with polarization control. (b) SEM images of structures processed by scanning the reconstructed spot array on an ITO film on a glass substrate.

Download Full Size | PPT Slide | PDF

5. Conclusion

We have proposed a parallel femtosecond pulse irradiation system with arbitrary polarization distribution control using a pair of SLMs. The proposed system is based on the simultaneous control of the wavefront and polarization of a femtosecond pulse. By using the system, the interval between the diffraction spots was the closest by avoiding mutual interference. The closest interval was improved to half compared with our previous work. We also demonstrated parallel fabrication of periodic nanostructures with orientation control, which, to our knowledge, is the first demonstration of its kind. Our proposed system will be useful for not only high-speed fabrication of periodic nanostructures with femtosecond laser processing systems, but also imaging of the three-dimensional (3D) orientation of molecules in nonlinear optical microscope systems.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (B) and a Grant-in-Aid for Challenging Exploratory Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and links

1. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994). [CrossRef]  

2. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994). [CrossRef]  

3. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996). [CrossRef]  

4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef]   [PubMed]  

5. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996). [CrossRef]   [PubMed]  

6. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12(9), 1908–1915 (2004). [CrossRef]   [PubMed]  

7. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005). [CrossRef]  

8. N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett. 30(12), 1479–1481 (2005). [CrossRef]   [PubMed]  

9. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006). [CrossRef]   [PubMed]  

10. H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt. 46(23), 5917–5923 (2007). [CrossRef]   [PubMed]  

11. S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator,” Opt. Rev. 14(4), 208–213 (2007). [CrossRef]  

12. M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008). [CrossRef]  

13. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008). [CrossRef]  

14. S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34(1), 22–24 (2009). [CrossRef]   [PubMed]  

15. S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys. 48(9), 09LE03 (2009). [CrossRef]  

16. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009). [CrossRef]  

17. S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett. 36(15), 2943–2945 (2011). [CrossRef]   [PubMed]  

18. Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process. 107(2), 357–362 (2012). [CrossRef]  

19. M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys. 111(8), 083107 (2012). [CrossRef]  

20. Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci. 258(19), 7601–7606 (2012). [CrossRef]  

21. G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia 39, 650–660 (2012). [CrossRef]  

22. S. Hasegawa and Y. Hayasaki, “Nonlinear sharpening of holographically processed sub-microstructures,” Appl. Phys., A Mater. Sci. Process. (2012), doi:. [CrossRef]  

23. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express 15(22), 14488–14497 (2007). [CrossRef]   [PubMed]  

24. H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008). [PubMed]  

25. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express 18(11), 11754–11762 (2010). [CrossRef]   [PubMed]  

26. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010). [CrossRef]   [PubMed]  

27. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011). [CrossRef]   [PubMed]  

28. Y. C. Li, L. C. Cheng, C. Y. Chang, C. H. Lien, P. J. Campagnola, and S. J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express 20(17), 19030–19038 (2012). [CrossRef]   [PubMed]  

29. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17(5), 3531–3542 (2009). [CrossRef]   [PubMed]  

30. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009). [CrossRef]  

31. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18(12), 12136–12143 (2010). [CrossRef]   [PubMed]  

32. D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.) 101(4), 817–823 (2010). [CrossRef]  

33. H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett. 36(7), 1176–1178 (2011). [CrossRef]   [PubMed]  

34. M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophotonics 3(10-11), 696–705 (2010). [CrossRef]   [PubMed]  

35. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001). [CrossRef]   [PubMed]  

36. K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44(34), L1066–L1068 (2005). [CrossRef]  

37. B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34(13), 1918–1920 (2009). [CrossRef]   [PubMed]  

38. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999). [CrossRef]  

39. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007). [CrossRef]  

40. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18(10), 10828–10833 (2010). [CrossRef]   [PubMed]  

41. O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012). [CrossRef]  

42. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003). [CrossRef]   [PubMed]  

43. J. Bengtsson, “Kinoform design with an optimal-rotation-angle method,” Appl. Opt. 33(29), 6879–6884 (1994). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
    [CrossRef]
  2. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
    [CrossRef]
  3. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
    [CrossRef]
  4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  5. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21(24), 2023–2025 (1996).
    [CrossRef] [PubMed]
  6. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express12(9), 1908–1915 (2004).
    [CrossRef] [PubMed]
  7. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
    [CrossRef]
  8. N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30(12), 1479–1481 (2005).
    [CrossRef] [PubMed]
  9. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006).
    [CrossRef] [PubMed]
  10. H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt.46(23), 5917–5923 (2007).
    [CrossRef] [PubMed]
  11. S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator,” Opt. Rev.14(4), 208–213 (2007).
    [CrossRef]
  12. M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008).
    [CrossRef]
  13. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
    [CrossRef]
  14. S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett.34(1), 22–24 (2009).
    [CrossRef] [PubMed]
  15. S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys.48(9), 09LE03 (2009).
    [CrossRef]
  16. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
    [CrossRef]
  17. S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett.36(15), 2943–2945 (2011).
    [CrossRef] [PubMed]
  18. Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
    [CrossRef]
  19. M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
    [CrossRef]
  20. Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
    [CrossRef]
  21. G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
    [CrossRef]
  22. S. Hasegawa and Y. Hayasaki, “Nonlinear sharpening of holographically processed sub-microstructures,” Appl. Phys., A Mater. Sci. Process. (2012), doi:.
    [CrossRef]
  23. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express15(22), 14488–14497 (2007).
    [CrossRef] [PubMed]
  24. H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express16(21), 16592–16599 (2008).
    [PubMed]
  25. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express18(11), 11754–11762 (2010).
    [CrossRef] [PubMed]
  26. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express18(16), 17193–17200 (2010).
    [CrossRef] [PubMed]
  27. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express2(11), 3167–3178 (2011).
    [CrossRef] [PubMed]
  28. Y. C. Li, L. C. Cheng, C. Y. Chang, C. H. Lien, P. J. Campagnola, and S. J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express20(17), 19030–19038 (2012).
    [CrossRef] [PubMed]
  29. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17(5), 3531–3542 (2009).
    [CrossRef] [PubMed]
  30. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys.48(12), 126507 (2009).
    [CrossRef]
  31. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express18(12), 12136–12143 (2010).
    [CrossRef] [PubMed]
  32. D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
    [CrossRef]
  33. H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett.36(7), 1176–1178 (2011).
    [CrossRef] [PubMed]
  34. M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophotonics3(10-11), 696–705 (2010).
    [CrossRef] [PubMed]
  35. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
    [CrossRef] [PubMed]
  36. K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44(34), L1066–L1068 (2005).
    [CrossRef]
  37. B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett.34(13), 1918–1920 (2009).
    [CrossRef] [PubMed]
  38. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D32(13), 1455–1461 (1999).
    [CrossRef]
  39. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
    [CrossRef]
  40. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express18(10), 10828–10833 (2010).
    [CrossRef] [PubMed]
  41. O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
    [CrossRef]
  42. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
    [CrossRef] [PubMed]
  43. J. Bengtsson, “Kinoform design with an optimal-rotation-angle method,” Appl. Opt.33(29), 6879–6884 (1994).
    [CrossRef] [PubMed]

2012 (7)

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Nonlinear sharpening of holographically processed sub-microstructures,” Appl. Phys., A Mater. Sci. Process. (2012), doi:.
[CrossRef]

Y. C. Li, L. C. Cheng, C. Y. Chang, C. H. Lien, P. J. Campagnola, and S. J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express20(17), 19030–19038 (2012).
[CrossRef] [PubMed]

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
[CrossRef]

2011 (3)

2010 (6)

2009 (6)

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17(5), 3531–3542 (2009).
[CrossRef] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys.48(12), 126507 (2009).
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett.34(1), 22–24 (2009).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys.48(9), 09LE03 (2009).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett.34(13), 1918–1920 (2009).
[CrossRef] [PubMed]

2008 (3)

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express16(21), 16592–16599 (2008).
[PubMed]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

2007 (4)

H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt.46(23), 5917–5923 (2007).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator,” Opt. Rev.14(4), 208–213 (2007).
[CrossRef]

L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express15(22), 14488–14497 (2007).
[CrossRef] [PubMed]

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

2006 (1)

2005 (3)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30(12), 1479–1481 (2005).
[CrossRef] [PubMed]

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44(34), L1066–L1068 (2005).
[CrossRef]

2004 (1)

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D32(13), 1455–1461 (1999).
[CrossRef]

1996 (3)

1994 (3)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

J. Bengtsson, “Kinoform design with an optimal-rotation-angle method,” Appl. Opt.33(29), 6879–6884 (1994).
[CrossRef] [PubMed]

Allegre, O. J.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
[CrossRef]

Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Antkowiak, M.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophotonics3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

Araki, T.

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44(34), L1066–L1068 (2005).
[CrossRef]

Audouard, E.

Baum, A.

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Bengtsson, J.

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Callan, J. P.

Campagnola, P. J.

Chang, C. Y.

Chen, S. J.

Cheng, G.

Cheng, L. C.

Chichkov, B. N.

Chilkoti, A.

Clark, R. L.

Davis, K. M.

Dearden, G.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
[CrossRef]

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Dholakia, K.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophotonics3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Edwardson, S.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Edwardson, S. P.

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
[CrossRef]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Fearon, E.

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Finlay, R. J.

Fitzsimons, P.

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

Gittard, S. D.

Glezer, E. N.

Gu, M.

Gunn-Moore, F.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophotonics3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

Hasegawa, S.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Nonlinear sharpening of holographically processed sub-microstructures,” Appl. Phys., A Mater. Sci. Process. (2012), doi:.
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett.36(15), 2943–2945 (2011).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett.34(1), 22–24 (2009).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys.48(9), 09LE03 (2009).
[CrossRef]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express16(21), 16592–16599 (2008).
[PubMed]

H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt.46(23), 5917–5923 (2007).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator,” Opt. Rev.14(4), 208–213 (2007).
[CrossRef]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006).
[CrossRef] [PubMed]

Hashimoto, M.

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44(34), L1066–L1068 (2005).
[CrossRef]

Hayasaki, Y.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Nonlinear sharpening of holographically processed sub-microstructures,” Appl. Phys., A Mater. Sci. Process. (2012), doi:.
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett.36(15), 2943–2945 (2011).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett.34(1), 22–24 (2009).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys.48(9), 09LE03 (2009).
[CrossRef]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express16(21), 16592–16599 (2008).
[PubMed]

H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt.46(23), 5917–5923 (2007).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator,” Opt. Rev.14(4), 208–213 (2007).
[CrossRef]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

Her, T.-H.

Hertel, I. V.

Hill, R. T.

Hinze, U.

Hirao, K.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett.36(7), 1176–1178 (2011).
[CrossRef] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express18(12), 12136–12143 (2010).
[CrossRef] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys.48(12), 126507 (2009).
[CrossRef]

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express12(9), 1908–1915 (2004).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Huang, L.

Hucknall, A.

Huignard, J. P.

Huot, N.

Imamoto, H.

Jenness, N. J.

Jia, B.

Kametani, K.

Kanehira, S.

Kang, H.

Kawashima, H.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Kelemen, L.

Koch, J.

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Koroleva, A.

Kozawa, Y.

Kuang, Z.

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Kumagai, H.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

Kuroiwa, Y.

Larat, C.

Leach, J.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Li, J.

Li, Y. C.

Lien, C. H.

Liu, D.

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Loiseaux, B.

Mauclair, C.

Mazur, E.

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Midorikawa, K.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

Milosavljevic, M.

Miura, K.

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Nakamura, S.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

Narayan, R. J.

Narita, Y.

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D32(13), 1455–1461 (1999).
[CrossRef]

Nguyen, A.

Nishida, N.

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

Nishitani, M.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D32(13), 1455–1461 (1999).
[CrossRef]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Obara, M.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

Obata, K.

Okamoto, T.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

Ormos, P.

Padgett, M.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Perrie, W.

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
[CrossRef]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Rosenfeld, A.

Sakakura, M.

Sanner, N.

Sato, S.

Sawano, T.

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express18(12), 12136–12143 (2010).
[CrossRef] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys.48(12), 126507 (2009).
[CrossRef]

Scully, P. J.

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Sharp, M.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Shimizu, M.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

Shimotsuma, Y.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett.36(7), 1176–1178 (2011).
[CrossRef] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express18(12), 12136–12143 (2010).
[CrossRef] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys.48(12), 126507 (2009).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Stoian, R.

Sugimoto, N.

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

Suzuki, D.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

Suzuki, J.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008).
[CrossRef]

Takahashi, H.

Takeshima, N.

Takita, A.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express16(21), 16592–16599 (2008).
[PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

Tanaka, S.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008).
[CrossRef]

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express12(9), 1908–1915 (2004).
[CrossRef] [PubMed]

Torres-Mapa, M. L.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophotonics3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

Toyoda, K.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Valkai, S.

Wang, X.

Watkins, K.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Watkins, K. G.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
[CrossRef]

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Yamaji, M.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008).
[CrossRef]

Yamamoto, H.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

Yoshiki, K.

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44(34), L1066–L1068 (2005).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. (Berl.) (1)

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (4)

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Nonlinear sharpening of holographically processed sub-microstructures,” Appl. Phys., A Mater. Sci. Process. (2012), doi:.
[CrossRef]

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Appl. Surf. Sci. (3)

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Biomed. Opt. Express (1)

J Biophotonics (1)

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophotonics3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

J. Opt. (1)

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
[CrossRef]

J. Phys. D (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D32(13), 1455–1461 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (3)

S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys.48(9), 09LE03 (2009).
[CrossRef]

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44(34), L1066–L1068 (2005).
[CrossRef]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys.48(12), 126507 (2009).
[CrossRef]

Opt. Express (9)

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express18(12), 12136–12143 (2010).
[CrossRef] [PubMed]

Y. C. Li, L. C. Cheng, C. Y. Chang, C. H. Lien, P. J. Campagnola, and S. J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express20(17), 19030–19038 (2012).
[CrossRef] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17(5), 3531–3542 (2009).
[CrossRef] [PubMed]

L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express15(22), 14488–14497 (2007).
[CrossRef] [PubMed]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express16(21), 16592–16599 (2008).
[PubMed]

N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express18(11), 11754–11762 (2010).
[CrossRef] [PubMed]

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express18(16), 17193–17200 (2010).
[CrossRef] [PubMed]

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express12(9), 1908–1915 (2004).
[CrossRef] [PubMed]

Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express18(10), 10828–10833 (2010).
[CrossRef] [PubMed]

Opt. Lett. (8)

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett.34(1), 22–24 (2009).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett.36(15), 2943–2945 (2011).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21(24), 2023–2025 (1996).
[CrossRef] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30(12), 1479–1481 (2005).
[CrossRef] [PubMed]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006).
[CrossRef] [PubMed]

H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett.36(7), 1176–1178 (2011).
[CrossRef] [PubMed]

B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett.34(13), 1918–1920 (2009).
[CrossRef] [PubMed]

Opt. Rev. (1)

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator,” Opt. Rev.14(4), 208–213 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Physics Procedia (1)

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Direction of linear polarization of output beam versus phase β. (b) Typical output polarization distributions versus input signals α and β to the SLMs. The gray scale indicates the phase delay (black and white indicate 0 and 2π, respectively).

Fig. 2
Fig. 2

(a) Parallel femtosecond laser irradiation system with arbitrary polarization distribution control. (b), (c) CGHs displayed on SLM 1 and SLM2, respectively.

Fig. 3
Fig. 3

(a) Optical and (b) computational reconstructions without polarization control. (c) Optical reconstruction with polarization control and (d) the reconstructed spot array captured through a polarizer set at two orthogonal angles. The interval between diffraction spots, d, was set to 2.88 × dAiry. (e) Spatial frequency spectrum I(ν) of intensity profiles in the optical (filled circles) and computational (solid line) reconstructions without polarization control and in the optical reconstruction with polarization control (open circles).

Fig. 4
Fig. 4

(a) Optical and (b) computational reconstructions without polarization control. (c) Optical reconstruction with polarization control and (d) the reconstructed spot array captured through a polarizer. The spot interval d was set to 1.44 × dAiry. (e) Spatial frequency spectrum I(ν) of intensity profiles in the optical (filled circles) and computational (solid line) reconstruction without polarization control and in the optical reconstruction with polarization control (open circles).

Fig. 5
Fig. 5

Sum of spatial frequency spectrum I(ν) in the intensity profile versus interval d between diffraction spots. The filled circles and open circles are the results without and with polarization control, respectively.

Fig. 6
Fig. 6

(a) Optical reconstruction with polarization control. (b) SEM images of structures processed by scanning the reconstructed spot array on an ITO film on a glass substrate.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E out = Q π 4 S β H π 8 S α E in = 2 (1+i)exp(iα)[ cos β 2 +sin β 2 cos β 2 sin β 2 ],

Metrics