Abstract

Transformation optics enables one to guide and control light at will using metamaterials. However the designed device is deterministic and not flexible for different objects. Based on force-loaded transformation optics we propose a force-induced transformational device, which can realize dynamic escalator metamorphosing continuously between optical elevator and invisibility cloak. This escalator can visually lift up and down the perceived height of a plane fixed in space by controlling the forces loaded in different directions. Or conversely, the escalator can physically lift up and down a plane while visually maintaining the same height to an outside observer. One can quickly adjust this device to the required demand without changing the background index, while the usual transformation cloak will be detectable due to the lateral shift from mismatched background. The schematic is self-adaptive, multi-functional, and free of metamaterial or nanofabrication. Our work opens a new perspective in controlling light dynamically and continuously, empowering unprecedented applications in military cloak, optic communication, holographic imaging, and phase-involved microtechnique.

© 2013 OSA

1. Introduction

Transformation optics has offered an important approach to control electromagnetic fields [1, 2], which can be used to design various amazing optical devices, including invisibility cloaks [314], beam shifters and splitters [15], wave adapters [16], deep-subwavelength transformers [17] and light concentrators [18, 19]. Despite the extreme values and complicated spatial distribution of electric permittivity and magnetic permeability, those devices can be realized with the help of metamaterials [2022], which guide and control the electromagnetic waves by its structure rather than chemical composition. Metamaterials’ permittivity and permeability can be constructed as desired, from positive to negative values. However, using metamaterials to design optical illusion devices also brings some shortcomings such as very narrow-band operation [1, 10], microscopic size, and requirement of complicated as well as time-consuming nanofabrication [8, 12, 23].

New approaches or materials are required to overcome these limitations. Based on angular spectrum theory, an isotropic dielectric device is proposed to create optical illusions at visible frequencies [24]. Simple isotropic material can also be designed as transformation media [25] to manipulate light. Meanwhile, homogeneous birefringent natural crystals, instead of metamaterials, are used to achieve carpet cloak [26, 27], and subsequent experiments successfully demonstrated macroscopic cloaks at visible frequencies via a naturally available calcite [3, 28] whose fabrication is very easy and simple. What’s more, the limitations of metamaterials, such as energy loss, narrow bandwidth, and size, are eliminated in those devices. These works offer a practical way to realize macroscopic invisibility-cloak.

Nevertheless, once the optical device is designed and fabricated, it is only working for an object of a specific size or shape and not easy to dynamically tune physical parameters. The height of the illusion region is dependent on the thickness of the birefringent layer, which is changeless once fabricated. One has to cut down the layer or stack up more crystal layers to change the perceived height of the elevator. To dynamically control the perceived height (from negative to positive), we introduce force-loaded transformational materials in the escalator, whose index of refraction can be adjusted by loaded stress in different directions [29]. One can easily obtain desired birefringence by varying the strength and direction of external forces without changing the device’s configuration (see Fig. 1 ). This is not attainable even in the use of natural calcite crystals, since the thickness of calcite will require not only new fabrications but also corresponding alteration of the refractive index of the background medium [30].

 

Fig. 1 Illustration of tunable force-induced escalator by changing loaded forces. (a) An image of a flat plate, and force-loaded material loaded with forces along different directions. (b) The middle part keeps the same position after being covered by the escalator loaded with appropriate stresses along x and y directions. The observer will still see a image of a flat plate. (c) After adjusting the loaded stresses, the middle part is “pushed” below the original plane of the plate. (d) The middle part is “floating” above the plane. The movie shows the phase-preserved floating process, which is provided in supplementary information [32].

Download Full Size | PPT Slide | PDF

Based on transformation optics and photoelasticity, the force-loaded transformational device is phase-preserved, broadband at all angles and easy to control. More importantly, during the operation of dynamic elevating or cloaking, it is not necessary to adjust the index of the background. Our schematic eliminates the use of artificially structured metamaterials, hence it is of broadband operation and the metamorphosis from elevator to cloak is only completed via the control of external mechanical force. This demonstration of force-loaded transformation offers new perspective in optical manipulation.

2. Design and Method

To lift a plane without being noticed by the observer, one must manage to restore both the angle and the position of reflected light [28]. Simply putting a mirror above the plane or using an isotropic lower index medium will cause the reflected light to suffer a lateral shift [28, 30]. This lateral shift is alleviated by using the strategy of quasiconformal mapping [31], which minimizes the anisotropy and replaces it with inhomogeneous isotropic dielectrics. However, the energy propagation fails to be preserved due to omitting the anisotropy and makes the cloak detectable [30]. The proposed optical escalators made by birefringent material cannot only restore the angle and the position of the reflected light, but also preserve the phase since the optical path length is preserved by transformation optics.

As shown in Fig. 1, we can expand or compress the physical space so that the light propagates just as in the virtual space. First we show how to expand the physical space. According to the principle of transformation optics [1, 2], the transformation equations between physical space (x,y,z) and virtual space are,

x=xy=HHhy+HhHhz=z

Then the physical parameters of the material can be obtained

ε=μ=JJTdet(J)=(H-hH000HH-h000H-hH)
where J=(x,y,z)/(x,y,z) is the Jacobian transformation matrix between the physical space and virtual space, εand μ are relative permittivity and relative permeability respectively.

In this Letter, we only consider transverse magnetic (TM) field polarization incident in the x-y plane. Equation (2) is reduced to

εxy=(HhH00HHh),μz=HhH
To deal with nonmagnetic material, μz=1 is enforced. Therefore, the permittivity tensor of the material are scaled accordingly
εxy=((HhH)2001)
For photoelastic materials with σz=0, the index of refraction is given [30]:
nx=n0+Cxσx+Cyσyny=n0+Cxσy+Cyσx
where n0 is the refraction index at unloaded state, Cx and Cyare the stress coefficients along x and y axis directions. σx, σyand σz are the principal stress tensor components along the x, y and z axis. Here, we assume the material refractive index and stress coefficients are independent of wavelength. The photoelastic materials acts as a birefringent material when CxCy . Given the background refractive index n, to fulfill the requirement by transformation optics, we can adjust the principal stress tensor σx and σysuch that nx=n . Then the elevated height is give as
h=CσHn
where C=CyCx is the relative stress coefficient, σ=σxσy is the difference of the principal stress tensor components in x and y axis directions. Similarly, for the compress case the descend amount is h=CσHn(Δn=nynx=Cσ).

Firstly, we discuss how the escalator preserves position and phase. With the help of transformation optics, one can compress or expand a “physical space” into a desired “virtual space” by changing the constitutive parameters, while maintaining the form of homogeneous Maxwell equations [30]. For a transverse magnetic (TM) polarization plane wave (vectors in the x-y plane), the dispersion relation of wave vectors is determined by

kx2εy+ky2εx=ω2μ
The transmitted Poynting vector S can be expressed as
S=H02kx2ωεyex+H02ky2ωεxey
where H0 is the amplitude of incident magnetic field. When light propagates in an expanded space, it appears that light goes through a shorter distance, as if the image were floated by the escalator. As is shown in Fig. 2(a) , the line at kx=k0 represents the phase-preserved condition between the equivalent space and the expanded space, i.e. the escalator. This condition determines the transmitted wave vectors kb and ke in the equivalent space and the expanded space. Note that the Poynting vector is the direction of power propagation, which is different from the direction of the wave vector in anisotropic materials. The light undergoes a smaller refracted angle θe in the expanded space than it does at θb in the equivalent background space. This ensures the reflected light are at the same position, while the phase is preserved in the x direction. The light in compressed space undergoes the similar way, as in shown in Fig. 2(b).

 

Fig. 2 k-surface diagram of the escalator at lift-up states (a) and lift-down states (b). The black circles represent the background medium with equivalent position of mirror. The red and the blue ellipses represent the escalator at lift-up state (expanded space) and lift-down state (compressed space), respectively. kb, keand kcare the wave vectors in background medium, expanded space and compressed space. The transmitted Poynting vector S is along the normal of k surface.

Download Full Size | PPT Slide | PDF

3. Simulation Results

According to the relation between elevated height h and the difference of the principal stress tensor components, we can lift the plane up and down at any level by adjusting the forces in x and y directions. Note that the loaded forces Fx and Fy should satisfy the condition nx=n, which preserves the phase and maintains the index of the background. So for a given lifted height, there is only one pair of forces that can make this device a phase-preserved escalator. As an example, we study the relation between lifted height and the loaded forces for an escalator made of a single piece of photoelastic slab with a size of H = 21mm, W = 21mm, and L = 42mm. The other physical parameters are n0=1.4, n=1.4 the stress coefficients along x and y axis directions are Cx=5×108Pa1 and Cy=1×108Pa1. As shown in Fig. 3 , with appropriate combinations of Fx and Fy, the escalator can shift up or down the plane as much as 3.2mm.

 

Fig. 3 The relations between lifted height and loaded forces. The color bar represents the amount of height that the image is lifted up (h>0) or lifted down (h<0). The positive (or negative) values of the forces mean the forces pulling (or pressing) the device.

Download Full Size | PPT Slide | PDF

Ray tracing is preformed to verify the above results, as is shown in Fig. 4(a) and 4(b). Transverse magnetic (TM) light rays through a stress escalator lifted up or down by h coincide perfectly with that reflected by a mirror fixed at the original height in the background liquid. The dynamic procedure of tuning forces is presented in supplementary information (Fig. S1, [32]).

 

Fig. 4 Ray tracing of light passing through the force-loaded escalator and the equivalent mirror. a): ϕ=45°, nx=1.4, ny=1.2, n=1.4, H = 21mm, h = 3mm, the image is above the plane. b): ϕ=45°, nx=1.4, ny=1.6, n=1.4, H = 21mm, h = 3mm, the image is below the plane. The light from the force-loaded escalator and the one from the reference mirror are identical in the view point of the observer.

Download Full Size | PPT Slide | PDF

The proposed escalator is independent on different incident angles and wavelengths. As shown in Fig. 5 , screen is placed at the position of the observer to show the light spots at three configurations for different incident angles. The light from the escalator and the equivalent mirror experience the same lateral shifts with the reference mirror in the x axis direction, proving that the escalator is valid for all incident angles. Dynamic ray tracing of different incident angles is demonstrated in supplementary information (Fig. S2, [32]). It is worth noticing that the force-loaded escalator preserves the phase within broadband frequencies. To verify this feature, we compared the interference patterns with different light wavelength at various incident angles. A collimated light beam is split into three parts: an object beam passing through the escalator, a parallel beam passing through the equivalent mirror, and the reference beam. The first two beams interfere with reference beam separately. The identical interference pattern indicates the unchanged phase when it passes through the escalator. For simplicity, we only show the patterns at the incident angle 45°. The interference patterns of such escalator with a reference mirror (Fig. 6a , Fig. 6b, Fig. 6c) is in agreement with that between the equivalent mirror to a reference mirror (Fig. 6e, Fig. 6f, Fig. 6g) at the same wavelengths, confirming that the dynamic escalator is phase-preserved in broadband frequencies.

 

Fig. 5 Lights with 2.5 mm diameter are incident on three configurations. A: force-loaded escalator (green), B: equivalent mirror in background material with corresponding highness (red), C: reference mirror in background material at the high of escalator’s bottom (blue). The three configurations are 3 mm apart along the z axis. The other physical parameters are same as in the Fig. 4.

Download Full Size | PPT Slide | PDF

 

Fig. 6 The interference patterns of the proposed escalator (a, b, c) and equivalent mirror (e, f, g) with respect to the reference mirror, respectively. The wavelengths of the light are 488nm, 561nm, and 650 nm, respectively. The other parameters are the same as those in Fig. 4a. The grey contour scale means the intensity of the interference.

Download Full Size | PPT Slide | PDF

4. Conclusions

In conclusion, a macroscopic and broadband escalator has been proposed which achieves smooth and dynamic metamorphosis between optical elevator and invisibility cloak. Hence the natural crystal based macroscopic cloak [3, 28] becomes a very limited subset of the current optical escalator. Only appropriate external forces are needed to be controlled for cloaking different size of macroscopic objects. The functionality of the escalator can be dynamically controlled by varying the strength and direction of external forces without changing the device’s configuration. The range of controllable height is from −3 mm (down) to 3 mm (up) for a device of 21 mm thickness within the visible spectrum, which is far beyond the current capability of metamaterials in terms of that the metamorphosis distance is at the order of 104 wavelength. Throughout the metamorphosis, it restores the angle and the position of the reflected light and preserves the phase within broadband frequencies at all angles. But the conventional method based on natural calcite crystals requires not only new fabrications of the calcite piece but also corresponding change of background refractive index, when there is any change of cloaking size. More importantly, this schematic can even go beyond dynamic fabless cloak. These features ensure the escalator suffer from no detectable lateral shift during and after the metamorphosis. Furthermore, the escalator can be easily expanded to three dimensional optical illusion devices by controlling the principle stress tensor components along z axis. Then the virtual image can be placed everywhere in three-dimensional space by tuning three pairs of force on individual directions. Since the escalator is easy to operate and flexible for various size objects, we anticipate our work will pave an unprecedented way toward the optic manipulator with higher controllability. The macroscopic and flexible operability of the escalator may find applications in military camouflage, holographic imaging, and phase-involved microtechnique.

Acknowledgments

C.W.Q. acknowledges financial support from the Temasek Defence Systems Institute in Republic of Singapore (Grant No. TDSI-/11-004/1A). S.Z. acknowledges partial support by the Engineering and Physical Sciences Research Council of the United Kingdom. L.G. acknowledges support from the National Natural Science Foundation of China under Grant No. 11074183 and the National Basic Research Program under Grant No. 2012CB921501. Supplementary materials have been provided [32].

References and links

1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef]   [PubMed]  

2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef]   [PubMed]  

3. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun 2, 176 (2011). [CrossRef]   [PubMed]  

4. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009). [CrossRef]   [PubMed]  

5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009). [CrossRef]  

6. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat Commun 1(3), 1–6 (2010). [CrossRef]   [PubMed]  

7. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007). [CrossRef]  

8. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef]   [PubMed]  

9. S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009). [CrossRef]   [PubMed]  

10. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef]   [PubMed]  

11. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009). [CrossRef]   [PubMed]  

12. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010). [CrossRef]   [PubMed]  

13. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009). [CrossRef]   [PubMed]  

14. M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, “A carpet cloak for visible light,” Nano Lett. 11(7), 2825–2828 (2011). [CrossRef]   [PubMed]  

15. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008). [CrossRef]   [PubMed]  

16. J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano 5(6), 4359–4364 (2011). [CrossRef]   [PubMed]  

17. S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray Optics at a Deep-Subwavelength Scale: A transformation optics approach,” Nano Lett. 8(12), 4243–4247 (2008). [CrossRef]   [PubMed]  

18. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33(1), 43–45 (2008). [CrossRef]   [PubMed]  

19. W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational b-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008). [CrossRef]  

20. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011). [CrossRef]   [PubMed]  

21. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010). [CrossRef]   [PubMed]  

22. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010). [CrossRef]   [PubMed]  

23. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett. 33(12), 1342–1344 (2008). [CrossRef]   [PubMed]  

24. Q. Cheng, K. Wu, and G. P. Wang, “All dielectric macroscopic cloaks for hiding objects and creating illusions at visible frequencies,” Opt. Express 19(23), 23240–23248 (2011). [CrossRef]   [PubMed]  

25. W. Yan, M. Yan, and M. Qiu, “Manipulation of light with α transformation media,” J. Opt. Soc. Am. A 28(6), 1058–1066 (2011). [CrossRef]   [PubMed]  

26. Y. Luo, J. Zhang, H. Chen, L. Ran, B. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antenn. Propag. 57(12), 3926–3933 (2009). [CrossRef]  

27. T. C. Han and C. W. Qiu, “Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform cloaks,” Opt. Express 18(12), 13038–13043 (2010). [CrossRef]   [PubMed]  

28. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011). [CrossRef]   [PubMed]  

29. Z. Zhu and T. G. Brown, “Stress-induced birefringence in microstructured optical fibers,” Opt. Lett. 28(23), 2306–2308 (2003). [CrossRef]   [PubMed]  

30. B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010). [CrossRef]   [PubMed]  

31. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008). [CrossRef]   [PubMed]  

32. Supplementary materials: http://www.ece.nus.edu.sg/stfpage/eleqc/suppl_info.ppt

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  3. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011).
    [CrossRef] [PubMed]
  4. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
    [CrossRef] [PubMed]
  5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
    [CrossRef]
  6. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat Commun1(3), 1–6 (2010).
    [CrossRef] [PubMed]
  7. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007).
    [CrossRef]
  8. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
    [CrossRef] [PubMed]
  9. S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett.103(10), 103905 (2009).
    [CrossRef] [PubMed]
  10. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  11. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009).
    [CrossRef] [PubMed]
  12. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
    [CrossRef] [PubMed]
  13. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett.102(21), 213901 (2009).
    [CrossRef] [PubMed]
  14. M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, “A carpet cloak for visible light,” Nano Lett.11(7), 2825–2828 (2011).
    [CrossRef] [PubMed]
  15. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett.100(6), 063903 (2008).
    [CrossRef] [PubMed]
  16. J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano5(6), 4359–4364 (2011).
    [CrossRef] [PubMed]
  17. S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray Optics at a Deep-Subwavelength Scale: A transformation optics approach,” Nano Lett.8(12), 4243–4247 (2008).
    [CrossRef] [PubMed]
  18. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett.33(1), 43–45 (2008).
    [CrossRef] [PubMed]
  19. W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational b-spline surfaces,” Appl. Phys. Lett.92(26), 264101 (2008).
    [CrossRef]
  20. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett.11(8), 3232–3238 (2011).
    [CrossRef] [PubMed]
  21. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
    [CrossRef] [PubMed]
  22. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
    [CrossRef] [PubMed]
  23. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett.33(12), 1342–1344 (2008).
    [CrossRef] [PubMed]
  24. Q. Cheng, K. Wu, and G. P. Wang, “All dielectric macroscopic cloaks for hiding objects and creating illusions at visible frequencies,” Opt. Express19(23), 23240–23248 (2011).
    [CrossRef] [PubMed]
  25. W. Yan, M. Yan, and M. Qiu, “Manipulation of light with α transformation media,” J. Opt. Soc. Am. A28(6), 1058–1066 (2011).
    [CrossRef] [PubMed]
  26. Y. Luo, J. Zhang, H. Chen, L. Ran, B. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antenn. Propag.57(12), 3926–3933 (2009).
    [CrossRef]
  27. T. C. Han and C. W. Qiu, “Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform cloaks,” Opt. Express18(12), 13038–13043 (2010).
    [CrossRef] [PubMed]
  28. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011).
    [CrossRef] [PubMed]
  29. Z. Zhu and T. G. Brown, “Stress-induced birefringence in microstructured optical fibers,” Opt. Lett.28(23), 2306–2308 (2003).
    [CrossRef] [PubMed]
  30. B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett.104(23), 233903 (2010).
    [CrossRef] [PubMed]
  31. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
    [CrossRef] [PubMed]
  32. Supplementary materials: http://www.ece.nus.edu.sg/stfpage/eleqc/suppl_info.ppt

2011 (7)

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011).
[CrossRef] [PubMed]

M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, “A carpet cloak for visible light,” Nano Lett.11(7), 2825–2828 (2011).
[CrossRef] [PubMed]

J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano5(6), 4359–4364 (2011).
[CrossRef] [PubMed]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett.11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Q. Cheng, K. Wu, and G. P. Wang, “All dielectric macroscopic cloaks for hiding objects and creating illusions at visible frequencies,” Opt. Express19(23), 23240–23248 (2011).
[CrossRef] [PubMed]

W. Yan, M. Yan, and M. Qiu, “Manipulation of light with α transformation media,” J. Opt. Soc. Am. A28(6), 1058–1066 (2011).
[CrossRef] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011).
[CrossRef] [PubMed]

2010 (6)

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett.104(23), 233903 (2010).
[CrossRef] [PubMed]

T. C. Han and C. W. Qiu, “Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform cloaks,” Opt. Express18(12), 13038–13043 (2010).
[CrossRef] [PubMed]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat Commun1(3), 1–6 (2010).
[CrossRef] [PubMed]

2009 (7)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett.103(10), 103905 (2009).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett.102(21), 213901 (2009).
[CrossRef] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009).
[CrossRef] [PubMed]

Y. Luo, J. Zhang, H. Chen, L. Ran, B. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antenn. Propag.57(12), 3926–3933 (2009).
[CrossRef]

2008 (6)

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett.33(12), 1342–1344 (2008).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett.100(6), 063903 (2008).
[CrossRef] [PubMed]

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray Optics at a Deep-Subwavelength Scale: A transformation optics approach,” Nano Lett.8(12), 4243–4247 (2008).
[CrossRef] [PubMed]

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett.33(1), 43–45 (2008).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational b-spline surfaces,” Appl. Phys. Lett.92(26), 264101 (2008).
[CrossRef]

2007 (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007).
[CrossRef]

2006 (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

2003 (1)

Alitalo, P.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett.103(10), 103905 (2009).
[CrossRef] [PubMed]

Alù, A.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009).
[CrossRef] [PubMed]

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Barbastathis, G.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray Optics at a Deep-Subwavelength Scale: A transformation optics approach,” Nano Lett.8(12), 4243–4247 (2008).
[CrossRef] [PubMed]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Brown, T. G.

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007).
[CrossRef]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Chan, T.

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett.104(23), 233903 (2010).
[CrossRef] [PubMed]

Chen, H.

Y. Luo, J. Zhang, H. Chen, L. Ran, B. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antenn. Propag.57(12), 3926–3933 (2009).
[CrossRef]

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011).
[CrossRef] [PubMed]

Cheng, Q.

Q. Cheng, K. Wu, and G. P. Wang, “All dielectric macroscopic cloaks for hiding objects and creating illusions at visible frequencies,” Opt. Express19(23), 23240–23248 (2011).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational b-spline surfaces,” Appl. Phys. Lett.92(26), 264101 (2008).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007).
[CrossRef]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational b-spline surfaces,” Appl. Phys. Lett.92(26), 264101 (2008).
[CrossRef]

Cui, T. J.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat Commun1(3), 1–6 (2010).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational b-spline surfaces,” Appl. Phys. Lett.92(26), 264101 (2008).
[CrossRef]

Cummer, S. A.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett.100(6), 063903 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Davis, C. C.

Edwards, B.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009).
[CrossRef] [PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Engheta, N.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009).
[CrossRef] [PubMed]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Genov, D.

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray Optics at a Deep-Subwavelength Scale: A transformation optics approach,” Nano Lett.8(12), 4243–4247 (2008).
[CrossRef] [PubMed]

Gharghi, M.

M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, “A carpet cloak for visible light,” Nano Lett.11(7), 2825–2828 (2011).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Gladden, C.

M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, “A carpet cloak for visible light,” Nano Lett.11(7), 2825–2828 (2011).
[CrossRef] [PubMed]

Han, S.

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray Optics at a Deep-Subwavelength Scale: A transformation optics approach,” Nano Lett.8(12), 4243–4247 (2008).
[CrossRef] [PubMed]

Han, T. C.

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Hung, Y. J.

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011).
[CrossRef] [PubMed]

Jiang, W. X.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational b-spline surfaces,” Appl. Phys. Lett.92(26), 264101 (2008).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Kildishev, A. V.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett.102(21), 213901 (2009).
[CrossRef] [PubMed]

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett.33(1), 43–45 (2008).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007).
[CrossRef]

Kong, J. A.

Y. Luo, J. Zhang, H. Chen, L. Ran, B. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antenn. Propag.57(12), 3926–3933 (2009).
[CrossRef]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Li, D.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett.11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational b-spline surfaces,” Appl. Phys. Lett.92(26), 264101 (2008).
[CrossRef]

Liu, X.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011).
[CrossRef] [PubMed]

Liu, Y.

M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, “A carpet cloak for visible light,” Nano Lett.11(7), 2825–2828 (2011).
[CrossRef] [PubMed]

Liu, Z.

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray Optics at a Deep-Subwavelength Scale: A transformation optics approach,” Nano Lett.8(12), 4243–4247 (2008).
[CrossRef] [PubMed]

Luo, Y.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011).
[CrossRef] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011).
[CrossRef] [PubMed]

Y. Luo, J. Zhang, H. Chen, L. Ran, B. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antenn. Propag.57(12), 3926–3933 (2009).
[CrossRef]

Luukkonen, O.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett.103(10), 103905 (2009).
[CrossRef] [PubMed]

Ma, H. F.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat Commun1(3), 1–6 (2010).
[CrossRef] [PubMed]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Mortensen, N. A.

J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano5(6), 4359–4364 (2011).
[CrossRef] [PubMed]

Pendry, J. B.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett.100(6), 063903 (2008).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Peng, B.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett.11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Qiu, C. W.

Qiu, M.

Rahm, M.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett.100(6), 063903 (2008).
[CrossRef] [PubMed]

Ran, L.

Y. Luo, J. Zhang, H. Chen, L. Ran, B. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antenn. Propag.57(12), 3926–3933 (2009).
[CrossRef]

Schurig, D.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett.100(6), 063903 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett.102(21), 213901 (2009).
[CrossRef] [PubMed]

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett.33(1), 43–45 (2008).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007).
[CrossRef]

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009).
[CrossRef] [PubMed]

Simovski, C.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett.103(10), 103905 (2009).
[CrossRef] [PubMed]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett.100(6), 063903 (2008).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational b-spline surfaces,” Appl. Phys. Lett.92(26), 264101 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett.102(21), 213901 (2009).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett.33(12), 1342–1344 (2008).
[CrossRef] [PubMed]

Smolyaninova, V. N.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett.102(21), 213901 (2009).
[CrossRef] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Tretyakov, S.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett.103(10), 103905 (2009).
[CrossRef] [PubMed]

Valentine, J.

M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, “A carpet cloak for visible light,” Nano Lett.11(7), 2825–2828 (2011).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Wang, G. P.

Wang, S.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett.11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Wong, L. M.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett.11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Wu, B.

Y. Luo, J. Zhang, H. Chen, L. Ran, B. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antenn. Propag.57(12), 3926–3933 (2009).
[CrossRef]

Wu, B. I.

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett.104(23), 233903 (2010).
[CrossRef] [PubMed]

Wu, K.

Wubs, M.

J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano5(6), 4359–4364 (2011).
[CrossRef] [PubMed]

Xiao, S.

J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano5(6), 4359–4364 (2011).
[CrossRef] [PubMed]

Xiong, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett.11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Xiong, Y.

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray Optics at a Deep-Subwavelength Scale: A transformation optics approach,” Nano Lett.8(12), 4243–4247 (2008).
[CrossRef] [PubMed]

Xu, X.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett.11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Yan, M.

Yan, W.

Yang, X. M.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational b-spline surfaces,” Appl. Phys. Lett.92(26), 264101 (2008).
[CrossRef]

Yin, X.

M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, “A carpet cloak for visible light,” Nano Lett.11(7), 2825–2828 (2011).
[CrossRef] [PubMed]

Zentgraf, T.

M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, “A carpet cloak for visible light,” Nano Lett.11(7), 2825–2828 (2011).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, B.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011).
[CrossRef] [PubMed]

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett.104(23), 233903 (2010).
[CrossRef] [PubMed]

Zhang, J.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett.11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011).
[CrossRef] [PubMed]

J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano5(6), 4359–4364 (2011).
[CrossRef] [PubMed]

Y. Luo, J. Zhang, H. Chen, L. Ran, B. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antenn. Propag.57(12), 3926–3933 (2009).
[CrossRef]

Zhang, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett.11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Zhang, S.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011).
[CrossRef] [PubMed]

Zhang, X.

M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, “A carpet cloak for visible light,” Nano Lett.11(7), 2825–2828 (2011).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray Optics at a Deep-Subwavelength Scale: A transformation optics approach,” Nano Lett.8(12), 4243–4247 (2008).
[CrossRef] [PubMed]

Zhu, Z.

ACS Nano (1)

J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano5(6), 4359–4364 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational b-spline surfaces,” Appl. Phys. Lett.92(26), 264101 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

Y. Luo, J. Zhang, H. Chen, L. Ran, B. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antenn. Propag.57(12), 3926–3933 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (5)

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett.11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray Optics at a Deep-Subwavelength Scale: A transformation optics approach,” Nano Lett.8(12), 4243–4247 (2008).
[CrossRef] [PubMed]

M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, “A carpet cloak for visible light,” Nano Lett.11(7), 2825–2828 (2011).
[CrossRef] [PubMed]

Nat Commun (2)

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011).
[CrossRef] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat Commun1(3), 1–6 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Nat. Photonics (2)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007).
[CrossRef]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (7)

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett.100(6), 063903 (2008).
[CrossRef] [PubMed]

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett.102(21), 213901 (2009).
[CrossRef] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009).
[CrossRef] [PubMed]

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett.103(10), 103905 (2009).
[CrossRef] [PubMed]

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett.104(23), 233903 (2010).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011).
[CrossRef] [PubMed]

Science (5)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Other (1)

Supplementary materials: http://www.ece.nus.edu.sg/stfpage/eleqc/suppl_info.ppt

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of tunable force-induced escalator by changing loaded forces. (a) An image of a flat plate, and force-loaded material loaded with forces along different directions. (b) The middle part keeps the same position after being covered by the escalator loaded with appropriate stresses along x and y directions. The observer will still see a image of a flat plate. (c) After adjusting the loaded stresses, the middle part is “pushed” below the original plane of the plate. (d) The middle part is “floating” above the plane. The movie shows the phase-preserved floating process, which is provided in supplementary information [32].

Fig. 2
Fig. 2

k-surface diagram of the escalator at lift-up states (a) and lift-down states (b). The black circles represent the background medium with equivalent position of mirror. The red and the blue ellipses represent the escalator at lift-up state (expanded space) and lift-down state (compressed space), respectively. k b , k e and k c are the wave vectors in background medium, expanded space and compressed space. The transmitted Poynting vector S is along the normal of k surface.

Fig. 3
Fig. 3

The relations between lifted height and loaded forces. The color bar represents the amount of height that the image is lifted up (h>0) or lifted down (h<0). The positive (or negative) values of the forces mean the forces pulling (or pressing) the device.

Fig. 4
Fig. 4

Ray tracing of light passing through the force-loaded escalator and the equivalent mirror. a): ϕ=45° , n x =1.4 , n y =1.2 , n =1.4 , H = 21mm, h = 3mm, the image is above the plane. b): ϕ=45° , n x =1.4 , n y =1.6 , n =1.4 , H = 21mm, h = 3mm, the image is below the plane. The light from the force-loaded escalator and the one from the reference mirror are identical in the view point of the observer.

Fig. 5
Fig. 5

Lights with 2.5 mm diameter are incident on three configurations. A: force-loaded escalator (green), B: equivalent mirror in background material with corresponding highness (red), C: reference mirror in background material at the high of escalator’s bottom (blue). The three configurations are 3 mm apart along the z axis. The other physical parameters are same as in the Fig. 4.

Fig. 6
Fig. 6

The interference patterns of the proposed escalator (a, b, c) and equivalent mirror (e, f, g) with respect to the reference mirror, respectively. The wavelengths of the light are 488nm, 561nm, and 650 nm, respectively. The other parameters are the same as those in Fig. 4a. The grey contour scale means the intensity of the interference.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

x= x y= H Hh y + H hH h z= z
ε=μ= J J T det(J) =( H-h H 0 0 0 H H-h 0 0 0 H-h H )
ε xy =( Hh H 0 0 H Hh ), μ z = Hh H
ε xy =( ( Hh H ) 2 0 0 1 )
n x = n 0 + C x σ x + C y σ y n y = n 0 + C x σ y + C y σ x
h= CσH n
k x 2 ε y + k y 2 ε x = ω 2 μ
S= H 0 2 k x 2ω ε y e x + H 0 2 k y 2ω ε x e y

Metrics