Abstract

We present polymer (PMMA) cladded chalcogenide (As2Se3) hybrid microwires that realize optical parametric four-wave mixing (FWM) with wavelength conversion bandwidth as broad as 190 nm and efficiency as high as 21 dB at peak input power levels as low as 70 mW. This represents 3-30 × increase in bandwidth and 30-50 dB improvement in conversion efficiency over previous demonstrations in tapered and microstructured chalcogenide fibers with the results agreeing well with the simulations. These properties, combined with small foot-print (10 cm length), low loss (<4 dB), ease of fabrication, and the transparency of As2Se3 from near-to-mid-infrared regions make this device a promising building block for lasers, optical instrumentation and optical communication devices.

© 2012 OSA

1. Introduction

The recent development of devices based on novel nonlinear materials like chalcogenides (ChGs), silicon (Si) and other semi-conductors has revolutionized the field of nonlinear photonics [13]. Among the nonlinear effects observed in these materials, four-wave mixing (FWM) is the process that finds the most applications including wavelength conversion [4], optical regeneration [5,6], optical delay [7], time-domain demultiplexing [8], temporal cloaking [9] and negative refraction [10]. Of particular interest is the degenerate form of FWM (DFWM) in which two photons provided by a pump wave convert into a Stokes and an anti-Stokes photon. This leads to the simultaneous process of converting a signal from Stokes (or anti-Stokes) wavelength to the anti-Stokes (or Stokes) wavelength, and the amplification of the input signal. In the best DFWM conditions, the newly generated signal ‒called the idler‒ not only represents a wavelength-converted version of the input signal but it can even be more powerful than the original input signal. Although FWM has been observed in several media including chalcogenides [1114], silicon [15,16], bismuth [17] and silica [1820], there is a continued quest for devices that realize efficient and broadband FWM while offering compactness, low-power consumption and compatibility with optical fibers at low insertion loss. Among the commonly used nonlinear materials, arsenic triselenide (As2Se3) chalcogenide glass boasts the highest nonlinear refractive index coefficient n2 = 2.3 × 10−13cm2/W [21], that is up to 1000 × that of silica, 20 × that of Bi2O3, 4 × that of As2S3, and 3 × that of Si [2123].

Despite the large value of n2 in As2Se3, the material exhibits high normal chromatic dispersion in the 1,550 nm wavelength band which, as explained below, prevents FWM in bulk medium or in large core optical fibers with low refractive index contrast cladding. This can however be remedied by stretching the As2Se3 fibers into microwires for which the anomalous waveguide dispersion overcomes the normal material dispersion. Such microwires also exhibit large values of waveguide nonlinear coefficient γ ( = n2ωP/cAeff, ωP being the pump angular frequency, c being the speed of light and Aeff being the effective mode area in the microwire‒) which lowers the required power threshold for nonlinear processes. The highest reported value of γ in such microwires is more than 5 orders of magnitude larger than in silica fibers [24]. DFWM has been observed in As2S3 (air-clad) microwires but the process had improper phase-matching and led to low conversion efficiency (~20 dB) and narrow FWM gain bandwidth [11]. Incidentally, FWM has never been observed in microwires made of the most nonlinear chalcogenide glass, As2Se3.

In this work, we utilize As2Se3 microwires coated with poly methyl meth acrylate (PMMA) to attain phase-matching and generate the most efficient and broadband DFWM ever reported in such compact and power efficient devices. The PMMA cladding, in addition to optimizing the optical performance, imparts microwires remarkable physical strength [25], which otherwise are extremely fragile. Experiments were performed with wires of various core wire diameters to observe DFWM conversion efficiency as high as 21 dB and a 12 dB wavelength conversion range in extend of 190 nm, limited by the tunability range of available probe lasers. The large nonlinearity, the reduced chromatic dispersion from PMMA cladding and the long effective length (due to low absorption loss α < 1 dB/m ‒ see Appendix at the end, for further details on FWM performance comparison of various materials including silica, bismuth, silicon and chalcogenides ‒) of the hybrid microwires make them the most power efficient FWM devices, providing net broadband gain at peak pump powers as low as 70 mW.

2. Theory

In theory, the efficiency of DFWM process depends on phase-matching conditions given by [26]

Δk=2γPP  ΔkL
where PP is the peak pump power, ΔkL is the linear phase-mismatch that is chromatic dispersion dependent and is approximated by
ΔkL=β2(Δω)2112β4(Δω)4
where βi is the i- th order dispersion coefficient and Δω is the angular frequency mismatch between the Stokes and anti-Stokes signals. It is well known that only the even order dispersion coefficients contribute to the phase-mismatch because of the symmetry in FWM processes [26]. The DFWM gain coefficient g is then given by [26,27]

g=(γPP)2(Δk/2)2=γPPΔkL(ΔkL/2)2

In the case where the pump depletion is neglected as it transfers energy to the Stokes and anti-Stokes signals, the peak conversion efficiency Gi of the idler wave is given by

Gi=PI,out/PS,in=(γPp/g)2sinh2(gLeff)
where PI, out is the peak idler power at the output, PS, in is the input signal power and Leff is the interaction length. From Eq. (3), the gain is maximized when Δk = 0. This illustrates that in order to observe any DFWM gain, the linear dispersive phase-mismatch ΔkL must lie within the range 0 < ΔkL < 4γPP, where the upper limit is adjusted by the pump induced nonlinear phase shift. Although the influence of β4 is expected to be much smaller than that of β2, it becomes the dominant dispersion term when the pump lies close to zero-dispersion wavelength (ZDW), where β2 ~0. Indeed, the DFWM is optimal both in terms of efficiency and bandwidth when the pump lies at the ZDW [26]. According to Eqs. (1-2) and ref. 26 however, both efficiency and bandwidth are reduced when β4 is large and/or positive at the ZDW. Therefore, in order to get g > 0 over a broad bandwidth, in addition to β2 ~0, the value of β4 must be small and negative so that the Δk approaches 0 with a small input pump power (PP >0). Figures 1(a) and 1(b) show the values of β2 and β4 in As2Se3 microwires surrounded by air or by a PMMA cladding, with a pump laser at λP = 1,536 nm. The β2 and β4 values are derived from the waveguide effective index neff which was numerically calculated from the charactersitic mode equation [28] using the refractive index parameters of As2Se3 provided in ref [29]. and those of PMMA in ref [30].

 

Fig. 1 Dispersion and Nonlinearity curves. Calculated values of second (β2) and fourth (β4) order dispersion profiles at λP = 1536 nm, and the waveguide nonlinear coefficient (γ) as a function of As2Se3 wire diameter for the cases of air and PMMA cladding.

Download Full Size | PPT Slide | PDF

Figures 1(a) and 1(b) show that in both situations whether the microwire is coated with air or PMMA, the β2 profiles have two points where the chromatic dispersion is zero. Those are identified as ZDD 1 and ZDD 2 in order of decreasing wire diameter. Coating the As2Se3 microwire with PMMA (refractive index ~1.467 at λ = 1,536 nm) influences the values of β2 and β4 towards better phase-matching condition and more efficient-broadband DFWM gain with respect to the uncoated case. Comparing the β4 value at larger zero-disperion diameters (ZDD 1Air clad = 1.17 µm and ZDD 1PMMA clad = 1.013 µm), it is found to increase from β4, Air clad = −6.9 × 10−6 ps4/m to β4, PMMA clad = −3.4 × 10−6 ps4/m by the application of a PMMA cladding rather than air. In addition, between the two ZDDs the value of β2 ‒which is the dominant dispersion term in this range‒ advantageously reduces by up to one order of magnitude with the addition of the PMMA cladding. Finally, it is observed in Fig. 1(c) that the value of γ ‒calculated following the procedure ref. 31‒ increases from 76 W−1m−1 (at ZDD 1Air clad) to 98 W−1m−1 (at ZDD 1PMMA clad) from the addition of the PMMA cladding. This amounts to a total reduction in required pump power by 4.1 dB for compensating the linear phase mismatch when the pump lies at ZDD 1 and up to 10 dB when it lies between the two ZDDs ‒ the range where the dispersion is anomalous. The PMMA cladding improves not only the DFWM efficiency of the device but it also lowers the power consumption.

3. Experiment Design and Results

The hybrid As2Se3-PMMA microwires are fabricated following the procedure described in Ref [24]. The length of the initial As2Se3-PMMA sample was kept short (< 5.5 cm) to preserve a negligibly small DFWM gain compared to that in the 10 cm long uniform microwire section. The microwires pigtailed to standard silica fibers (smf-28) have a total insertion loss of <4 dB. This includes a loss of ~0.8 dB due to the Fresnel reflection of 0.4 dB on each end of the microwire, an As2Se3 and PMMA absorption loss of <1 dB (depending on the mode distribution in the As2Se3 core and the PMMA cladding that varies with the fiber core diameter), and the remaining loss is attributed to the mode mismatch between the microwire and the single-mode silica fiber at both ends of the microwire. This loss is reasonably low compared to that for the comparable waveguide structures [12,15,16], although even lower insertion loss could be achieved by a proper design for a minimum mode mismatch. It is noted that the microwires support higher order fiber modes if the As2Se3 core diameter is greater than ~0.6 µm. However, by observing the modal profile at the output end using a camera and observing the mode interference patterns using an OSA, the input coupling was optimized towards the fundamental mode [32].

The experimental measurement of DFWM in As2Se3-PMMA microwires is performed as follows: A pulsed pump laser centered at a wavelength of λP = 1,536 nm and a co-polarized tunable continuous-wave laser signal were injected into the microwire. The pump laser generated transform limited pulses with a full width at half maximum (FWHM) duration of 5 ns and a repetition rate of 3.3 kHz (duty cylce ~-48 dB). The resulting DFWM was observed at the microwire output using an optical spectrum analyzer (OSA). Figure 2(a) shows the spectra in response to a peak pump power PP = 0.3 W and an average signal power PS,in = −10.5 dBm at the input of a 1.01 µm diameter microwire. Two tunable laser sources with complementary wavelength coverage were used to characterize the idler wavelength conversion efficiency Gi on either side of λP. The two laser sources used for the DFWM measurements had different noise floor level that is evident from the correspondingly generated idler spectra. The combined tuning range of the cw lasers was 1,460-1,650 nm and a corresponding idler was generated in the range 1,621-1,437 nm. It was observed that the pump remained undepleted in the process since the output pump power remained unchanged when the signal was turned on/off. In order to perform wavelength conversion efficiency measurements, the peak idler power PI, out at the output was derived from the average output idler power and the duty cycle of the pump laser. Using the PI, out and the input signal power PS, in, the conversion efficiency was then calculated from the Eq. (4) provided above. The conversion efficiency measurements were performed with microwires of core diameters spreading in the range 0.58-1.05 µm that enabled covering the entire anomalous region between the two ZDDs. Figures 2(b)-2(g) show the experimental results and corresponding simulations for those microwires. As shown in Fig. 2(c), for a core diameter of 1.01 µm which approximately superimposes ZDD 1 and the pump wavelength, the value of Gi reaches up to 10 dB and remains >-2 dB for a signal tuning range of 190 nm. The efficiency is expected to get even more flat with an increase in input pump power [26,27]. The measured DFWM bandwidth is limited by the tuning range of the probe signal. Moreover, engineering of β2 by the PMMA cladding allowed for a wide range of wire diameters, a broadband (≥ 50 nm) and efficient DFWM wavelength conversion (up to 21 dB efficiency) from a low peak power pump (70-370 mW). From a fabrication point of view, this adds tolerance by the DFWM process to a target microwire diameter. And from an application point of view, the bandwidth and gain of the DFWM device compare well with those of commercial fiber amplifiers doped with erbium and/or ytterbium [33]. In each of the conversion efficiency spectra, the impact of Raman scattering is also observed, appearing in the form of gain (loss) at a Stokes (anti-Stokes) wavelength shift of 7 THz or ~53 nm at 1550 nm with respect to the pump wavelength.

 

Fig. 2 DFWM output spectra and idler wavelength conversion efficiencies. (a) Optical spectra of the pump, signal and the generated idler corresponding to the signal tuned in the wavelength range 1460-1650 nm. The As2Se3 wire diameter was 1.01 µm, PP = 0.3 W, PS,in = −10.5 dBm and the microwire length was 10 cm. Only two sampled signal wavelengths are shown for clarity whereas one sample of idler spectrum per nm is given. (b)-(g) Idler conversion efficiencies spectra for a range of As2Se3 microwire diameters and a fixed length of 10 cm. The diameter value and the peak pump power used in the experiments are included as inset in each figure. Red (dotted) curves represent the experimental data, with the simulation fit denoted by the blue (continuous) lines.

Download Full Size | PPT Slide | PDF

Figure 3(a) depicts the idler conversion efficiency of the DFWM process in a microwire with 1.01 µm core diameter. The input signal power and the wavelength were maintained at −10.5 dBm and 1,540.8 nm, respectively. The plot shows an almost quadratic dependence (slope = 1.98) of the conversion efficiency on peak pump power which corresponds to theory. There is no sign of saturation due to multiphoton absorption up to 0.3 W of input peak pump power which corresponds to the peak intensity of 37 MW-cm−2. The slight deviation of the slopes of idler conversion efficiency with the input pump power is expected to be leading from the departure from exact phase matching condition at a given wavelength when the pump power is increased, as stated quantitatively by the Eqs. (3) and (4). Figure 3(b) shows the dependence of the idler (peak) output power on the input signal power for a fixed (peak) pump power of 0.3 W. In this case, the idler output power increases linearly (slope = 0.99) with the input signal power which again confirms the theoretical prediction. Since there is no sign of saturation, the conversion efficiency is expected to increase further from raising the input pump power. Likewise, the wavelength conversion efficiency can be enhanced further by employing longer microwires.

 

Fig. 3 DFWM device performance characteristics. (a) Measured idler conversion efficiency plotted as a function of the peak input pump power for a microwire with 1.01 µm diameter. (b) Measured idler peak power plotted as a function of input signal power for the same microwire.

Download Full Size | PPT Slide | PDF

4. Summary

In summary, the addition of a PMMA cladding to an As2Se3 microwire advantageously enabled engineering the waveguide dispersion towards an optimization of DFWM process. This dispersion engineering accompanied by an enhanced nonlinear coefficient γ of the microwire (~105 × that of silica fibers) led to an efficient and broadband DFWM in 10 cm long microwires at peak power levels as low as 70 mW. The next step is the introduction of resonant feedback [34] to realize a compact and low-threshold all-chalcogenide parametric oscillator, which will be a first distributed feedback (DFB) parametric oscillator in χ(3) medium. Such a compact and efficient device will find a wide-range of applications in telecommunication systems, mid-infrared spectroscopy and free-space communications [35].

Appendix

This Appendix contains a detailed and quantitative comparison of the FWM performance of various optical materials including silica, bismuth, silicon, and chalcogenides (As2S3 and As2Se3). The Table. 1 shows the values of nonlinear coefficient γ, propagation loss α and the calculated effective lengths for DFWM devices of the same foot-print (actual length L = 10 cm) but different materials including highly nonlinear (HNL) silica and bismuth fibers, As2S3 and Si waveguides and As2Se3 microwires. The large γ and low α values in As2Se3 microwires (and hence longer Leff) leads to a much higher idler conversion efficiency Gi (and parametric gain GS) from the DFWM process, assuming a zero phase-mismatch (Δk=0). The values of Gi and GS are plotted in Apendix Fig. AF1 for 10 cm long (fiber or planar) waveguides made from silica, bismuth, silicon and chalcogenides, under the assumption of perfect phase matching. This figure shows that As2Se3, because of lower absorption loss and high nonlinearity, is the best choice for realizing compact, power efficient FWM related devices.

 

Appendix Fig. AF1. Calculated (a) idler conversion efficiency and (b) signal gian for phase matched DFWM process in 10 cm long chalcogenides (As2Se3, As2S3), silicon, bismuth and silica fibers/waveguides. The low propagation loss with a high nonlinear coefficient in As2Se3 microwires allows the maximum conversion efficiency/signal gain in a compact scheme. The parameters used in these simulations are provided in the Table 1 given above.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Comparison of highly nonlinear fibers made from silica and bismuth, waveguide made from As2S3 chalcogenide and silicon and the microwires made from As2Se3 for a given foot-print of the devices.

Acknowledgments

The authors gratefully acknowledge the support from Profs. Nicolas Godbout and Suzanne Lacroix at Ecole Polytechnique, Université de Montreal, Canada, for lending the pump laser used in experiments. We are also grateful to Dr. Phillippe de Sandro and Mr. Stephane Chatigny at Coractive High Tech inc, for providing chalcogenide fibers. This work was financially supported by FQRNT (Le Fonds Quebecois de la Recherche sur la Nature et les Technologies) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

References and links

1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5, 141 (2011).

2. J. Leuthold, C. Koos, and W. Freude, “Nonlinear Silicon Photonics,” Nat. Photonics 4(8), 535–544 (2010). [CrossRef]  

3. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999). [CrossRef]   [PubMed]  

4. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992). [CrossRef]  

5. E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 12(7), 849–851 (2000). [CrossRef]  

6. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008). [CrossRef]  

7. J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. Willner, and A. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005). [CrossRef]   [PubMed]  

8. P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Fiber four-wave mixing demultiplexing with inherent parametric amplification,” J. Lightwave Technol. 15(11), 2051–2058 (1997). [CrossRef]  

9. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012). [CrossRef]   [PubMed]  

10. S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011). [CrossRef]   [PubMed]  

11. M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008). [CrossRef]   [PubMed]  

12. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008). [CrossRef]   [PubMed]  

13. S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011). [CrossRef]   [PubMed]  

14. C.-S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express 19(26), B621–B627 (2011). [CrossRef]   [PubMed]  

15. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, and S.-I. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005). [CrossRef]   [PubMed]  

16. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). [CrossRef]   [PubMed]  

17. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005). [CrossRef]  

18. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308 (1974). [CrossRef]  

19. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008). [CrossRef]  

20. A. Pasquazi, R. Ahmad, M. Rochette, M. Lamont, B. E. Little, S. T. Chu, R. Morandotti, and D. J. Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010). [CrossRef]   [PubMed]  

21. J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002). [CrossRef]   [PubMed]  

22. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Third-order optical nonlinearities and their ultrafast response in Bi2O3–B2O3–SiO2 glasses,” J. Opt. Soc. Am. B 16(11), 1904–1908 (1999). [CrossRef]  

23. G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004). [CrossRef]  

24. C. Baker and M. Rochette, “Highly nonlinear hybrid AsSe-PMMA microtapers,” Opt. Express 18(12), 12391–12398 (2010). [CrossRef]   [PubMed]  

25. R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As2Se3 chalcogenide microwires,” Appl. Phys. Lett. 99(6), 0611091 (2011). [CrossRef]  

26. G. P. Agrawal, Nonlinear Fiber Optics 4th Ed. (Academic Press, 2007).

27. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002). [CrossRef]  

28. J. A. Buck, Fundamentals of Optical Fibers, 2nd Edition (Wiley, 2004).

29. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Fiber-based optical parametric amplifiers and their applications,” J. Opt. Soc. Am. B 21, 1146–1155 (2004). [CrossRef]  

30. J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977). [CrossRef]  

31. V. Tzolov, M. Fontaine, N. Godbout, and S. Lacroix, “Nonlinear modal parameters of optical fibers: a full-vectorial approach,” J. Opt. Soc. Am. B 12(10), 1933–1941 (1995). [CrossRef]  

32. C. Baker, R. Ahmad, and M. Rochette, “Simultaneous Measurement of the Core Diameter and the Numerical Aperture in Dual-Mode Step-Index Optical Fibers,” J. Lightwave Technol. 29(24), 3834–3837 (2011). [CrossRef]  

33. R. Ahmad, S. Chatigny, and M. Rochette, “Broadband amplification of high power 40 Gb/s channels using multimode Er-Yb doped fiber,” Opt. Express 18(19), 19983–19993 (2010). [CrossRef]   [PubMed]  

34. R. Ahmad, M. Rochette, and C. Baker, “Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires,” Opt. Lett. 36(15), 2886–2888 (2011). [CrossRef]   [PubMed]  

35. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications 1st Ed (Springer, 2007).

36. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-Based Nonlinear Fiber With a High SBS Threshold and Its Application to Four-Wave-Mixing Wavelength Conversion Using a Pure Continuous-Wave Pump,” J. Lightwave Technol. 24(1), 22–28 (2006). [CrossRef]  

37. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008). [CrossRef]   [PubMed]  

38. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5, 141 (2011).
  2. J. Leuthold, C. Koos, and W. Freude, “Nonlinear Silicon Photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [Crossref]
  3. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
    [Crossref] [PubMed]
  4. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
    [Crossref]
  5. E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 12(7), 849–851 (2000).
    [Crossref]
  6. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
    [Crossref]
  7. J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. Willner, and A. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005).
    [Crossref] [PubMed]
  8. P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Fiber four-wave mixing demultiplexing with inherent parametric amplification,” J. Lightwave Technol. 15(11), 2051–2058 (1997).
    [Crossref]
  9. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
    [Crossref] [PubMed]
  10. S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
    [Crossref] [PubMed]
  11. M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
    [Crossref] [PubMed]
  12. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
    [Crossref] [PubMed]
  13. S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
    [Crossref] [PubMed]
  14. C.-S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express 19(26), B621–B627 (2011).
    [Crossref] [PubMed]
  15. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, and S.-I. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
    [Crossref] [PubMed]
  16. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [Crossref] [PubMed]
  17. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005).
    [Crossref]
  18. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308 (1974).
    [Crossref]
  19. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
    [Crossref]
  20. A. Pasquazi, R. Ahmad, M. Rochette, M. Lamont, B. E. Little, S. T. Chu, R. Morandotti, and D. J. Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
    [Crossref] [PubMed]
  21. J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
    [Crossref] [PubMed]
  22. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Third-order optical nonlinearities and their ultrafast response in Bi2O3–B2O3–SiO2 glasses,” J. Opt. Soc. Am. B 16(11), 1904–1908 (1999).
    [Crossref]
  23. G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
    [Crossref]
  24. C. Baker and M. Rochette, “Highly nonlinear hybrid AsSe-PMMA microtapers,” Opt. Express 18(12), 12391–12398 (2010).
    [Crossref] [PubMed]
  25. R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As2Se3 chalcogenide microwires,” Appl. Phys. Lett. 99(6), 0611091 (2011).
    [Crossref]
  26. G. P. Agrawal, Nonlinear Fiber Optics 4th Ed. (Academic Press, 2007).
  27. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
    [Crossref]
  28. J. A. Buck, Fundamentals of Optical Fibers, 2nd Edition (Wiley, 2004).
  29. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Fiber-based optical parametric amplifiers and their applications,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
    [Crossref]
  30. J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977).
    [Crossref]
  31. V. Tzolov, M. Fontaine, N. Godbout, and S. Lacroix, “Nonlinear modal parameters of optical fibers: a full-vectorial approach,” J. Opt. Soc. Am. B 12(10), 1933–1941 (1995).
    [Crossref]
  32. C. Baker, R. Ahmad, and M. Rochette, “Simultaneous Measurement of the Core Diameter and the Numerical Aperture in Dual-Mode Step-Index Optical Fibers,” J. Lightwave Technol. 29(24), 3834–3837 (2011).
    [Crossref]
  33. R. Ahmad, S. Chatigny, and M. Rochette, “Broadband amplification of high power 40 Gb/s channels using multimode Er-Yb doped fiber,” Opt. Express 18(19), 19983–19993 (2010).
    [Crossref] [PubMed]
  34. R. Ahmad, M. Rochette, and C. Baker, “Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires,” Opt. Lett. 36(15), 2886–2888 (2011).
    [Crossref] [PubMed]
  35. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications 1st Ed (Springer, 2007).
  36. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-Based Nonlinear Fiber With a High SBS Threshold and Its Application to Four-Wave-Mixing Wavelength Conversion Using a Pure Continuous-Wave Pump,” J. Lightwave Technol. 24(1), 22–28 (2006).
    [Crossref]
  37. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
    [Crossref] [PubMed]
  38. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
    [Crossref] [PubMed]

2012 (1)

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

2011 (7)

2010 (4)

2008 (6)

2006 (2)

2005 (3)

2004 (2)

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[Crossref]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Fiber-based optical parametric amplifiers and their applications,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
[Crossref]

2002 (2)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
[Crossref]

J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
[Crossref] [PubMed]

2000 (1)

E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 12(7), 849–851 (2000).
[Crossref]

1999 (2)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Third-order optical nonlinearities and their ultrafast response in Bi2O3–B2O3–SiO2 glasses,” J. Opt. Soc. Am. B 16(11), 1904–1908 (1999).
[Crossref]

1997 (1)

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Fiber four-wave mixing demultiplexing with inherent parametric amplification,” J. Lightwave Technol. 15(11), 2051–2058 (1997).
[Crossref]

1995 (1)

1992 (1)

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[Crossref]

1977 (1)

J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977).
[Crossref]

1974 (1)

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308 (1974).
[Crossref]

Aggarwal, I. D.

Ahmad, R.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
[Crossref]

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Fiber four-wave mixing demultiplexing with inherent parametric amplification,” J. Lightwave Technol. 15(11), 2051–2058 (1997).
[Crossref]

Ashkin, A.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308 (1974).
[Crossref]

Baker, C.

Bartal, G.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

Bjorkholm, J. E.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308 (1974).
[Crossref]

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Bramerie, L.

Brès, C.-S.

Brilland, L.

Chartier, T.

Chatigny, S.

Choi, D.-Y.

Chu, S.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Chu, S. T.

Ciaramella, E.

E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 12(7), 849–851 (2000).
[Crossref]

Costa e Silva, M.

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Duchesne, D.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Eggleton, B. J.

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Farsi, A.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

Ferrera, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Fischer, J.

J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977).
[Crossref]

Fontaine, M.

Foster, M. A.

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear Silicon Photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Fridman, M.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

Fujiwara, S.

Fukuda, H.

Gaeta, A.

Gaeta, A. L.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Gai, X.

Gay, M.

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Godbout, N.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
[Crossref]

Harbold, J. M.

Hasegawa, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-Based Nonlinear Fiber With a High SBS Threshold and Its Application to Four-Wave-Mixing Wavelength Conversion Using a Pure Continuous-Wave Pump,” J. Lightwave Technol. 24(1), 22–28 (2006).
[Crossref]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005).
[Crossref]

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
[Crossref]

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Fiber four-wave mixing demultiplexing with inherent parametric amplification,” J. Lightwave Technol. 15(11), 2051–2058 (1997).
[Crossref]

Hirao, K.

Hodelin, J.

Ilday, F. Ö.

Inoue, K.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[Crossref]

Itabashi, S.-I.

Kanbara, H.

Karlsson, M.

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Fiber four-wave mixing demultiplexing with inherent parametric amplification,” J. Lightwave Technol. 15(11), 2051–2058 (1997).
[Crossref]

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Kikuchi, K.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-Based Nonlinear Fiber With a High SBS Threshold and Its Application to Four-Wave-Mixing Wavelength Conversion Using a Pure Continuous-Wave Pump,” J. Lightwave Technol. 24(1), 22–28 (2006).
[Crossref]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005).
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear Silicon Photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Lacroix, S.

Lamont, M.

Lamont, M. R.

Le, S. D.

Lee, J. H.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-Based Nonlinear Fiber With a High SBS Threshold and Its Application to Four-Wave-Mixing Wavelength Conversion Using a Pure Continuous-Wave Pump,” J. Lightwave Technol. 24(1), 22–28 (2006).
[Crossref]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005).
[Crossref]

Lenglé, K.

Lenz, G.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear Silicon Photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
[Crossref]

Lipson, M.

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Little, B. E.

A. Pasquazi, R. Ahmad, M. Rochette, M. Lamont, B. E. Little, S. T. Chu, R. Morandotti, and D. J. Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
[Crossref] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Luan, F.

Luther-Davies, B.

Madden, S.

Magi, E.

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Méchin, D.

Morandotti, R.

A. Pasquazi, R. Ahmad, M. Rochette, M. Lamont, B. E. Little, S. T. Chu, R. Morandotti, and D. J. Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
[Crossref] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Moss, D. J.

Nagashima, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-Based Nonlinear Fiber With a High SBS Threshold and Its Application to Four-Wave-Mixing Wavelength Conversion Using a Pure Continuous-Wave Pump,” J. Lightwave Technol. 24(1), 22–28 (2006).
[Crossref]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005).
[Crossref]

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Nguyen, D. M.

Nguyen, V. Q.

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-Based Nonlinear Fiber With a High SBS Threshold and Its Application to Four-Wave-Mixing Wavelength Conversion Using a Pure Continuous-Wave Pump,” J. Lightwave Technol. 24(1), 22–28 (2006).
[Crossref]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005).
[Crossref]

Okawachi, Y.

Palomba, S.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

Park, Y.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

Pasquazi, A.

Pelusi, M. D.

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Radic, S.

Razzari, L.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5, 141 (2011).

Rieger, G. W.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[Crossref]

Rochette, M.

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Sanghera, J.

Sanghera, J. S.

Santo, R.

J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977).
[Crossref]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Sharping, J.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Shaw, L. B.

Shimizugawa, Y.

Shoji, T.

Sipe, J. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Slusher, R. E.

Stolen, R. H.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308 (1974).
[Crossref]

Sugimoto, N.

Swalen, J.

J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977).
[Crossref]

Tacke, M.

J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977).
[Crossref]

Takahashi, J.-I.

Takahashi, M.

Tanaka, K.

Thual, M.

Toba, H.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[Crossref]

Toupin, P.

Trillo, S.

E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 12(7), 849–851 (2000).
[Crossref]

Troles, J.

Tsuchizawa, T.

Turner, A. C.

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Tzolov, V.

van Howe, J.

Virk, K. S.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[Crossref]

Wang, Y.

Watanabe, T.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
[Crossref]

Wiberg, A. O. J.

Willner, A.

Wise, F. W.

Xu, C.

Yamada, K.

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Yin, X.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

Young, J. F.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[Crossref]

Zhang, S.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

Zhang, X.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

Zlatanovic, S.

Appl. Phys. Lett. (3)

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308 (1974).
[Crossref]

R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As2Se3 chalcogenide microwires,” Appl. Phys. Lett. 99(6), 0611091 (2011).
[Crossref]

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[Crossref]

IBM J. Res. Develop. (1)

J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977).
[Crossref]

IEEE Photon. Technol. Lett. (3)

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[Crossref]

E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 12(7), 849–851 (2000).
[Crossref]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005).
[Crossref]

IEEE, J. Sel. Top. Quantum. Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (3)

Nat. Mater. (1)

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

Nat. Photonics (4)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5, 141 (2011).

J. Leuthold, C. Koos, and W. Freude, “Nonlinear Silicon Photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Nature (2)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

Opt. Express (11)

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, and S.-I. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
[Crossref] [PubMed]

J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. Willner, and A. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005).
[Crossref] [PubMed]

C.-S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express 19(26), B621–B627 (2011).
[Crossref] [PubMed]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[Crossref] [PubMed]

M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[Crossref] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[Crossref] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[Crossref] [PubMed]

A. Pasquazi, R. Ahmad, M. Rochette, M. Lamont, B. E. Little, S. T. Chu, R. Morandotti, and D. J. Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
[Crossref] [PubMed]

C. Baker and M. Rochette, “Highly nonlinear hybrid AsSe-PMMA microtapers,” Opt. Express 18(12), 12391–12398 (2010).
[Crossref] [PubMed]

R. Ahmad, S. Chatigny, and M. Rochette, “Broadband amplification of high power 40 Gb/s channels using multimode Er-Yb doped fiber,” Opt. Express 18(19), 19983–19993 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Science (1)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics 4th Ed. (Academic Press, 2007).

J. A. Buck, Fundamentals of Optical Fibers, 2nd Edition (Wiley, 2004).

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications 1st Ed (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dispersion and Nonlinearity curves. Calculated values of second (β2) and fourth (β4) order dispersion profiles at λP = 1536 nm, and the waveguide nonlinear coefficient (γ) as a function of As2Se3 wire diameter for the cases of air and PMMA cladding.

Fig. 2
Fig. 2

DFWM output spectra and idler wavelength conversion efficiencies. (a) Optical spectra of the pump, signal and the generated idler corresponding to the signal tuned in the wavelength range 1460-1650 nm. The As2Se3 wire diameter was 1.01 µm, PP = 0.3 W, PS,in = −10.5 dBm and the microwire length was 10 cm. Only two sampled signal wavelengths are shown for clarity whereas one sample of idler spectrum per nm is given. (b)-(g) Idler conversion efficiencies spectra for a range of As2Se3 microwire diameters and a fixed length of 10 cm. The diameter value and the peak pump power used in the experiments are included as inset in each figure. Red (dotted) curves represent the experimental data, with the simulation fit denoted by the blue (continuous) lines.

Fig. 3
Fig. 3

DFWM device performance characteristics. (a) Measured idler conversion efficiency plotted as a function of the peak input pump power for a microwire with 1.01 µm diameter. (b) Measured idler peak power plotted as a function of input signal power for the same microwire.

Appendix
Appendix

Fig. AF1. Calculated (a) idler conversion efficiency and (b) signal gian for phase matched DFWM process in 10 cm long chalcogenides (As2Se3, As2S3), silicon, bismuth and silica fibers/waveguides. The low propagation loss with a high nonlinear coefficient in As2Se3 microwires allows the maximum conversion efficiency/signal gain in a compact scheme. The parameters used in these simulations are provided in the Table 1 given above.

Tables (1)

Tables Icon

Table 1 Comparison of highly nonlinear fibers made from silica and bismuth, waveguide made from As2S3 chalcogenide and silicon and the microwires made from As2Se3 for a given foot-print of the devices.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ k = 2 γ P P     Δ k L
Δ k L = β 2 ( Δ ω ) 2 1 12 β 4 ( Δ ω ) 4
g = ( γ P P ) 2 ( Δ k / 2 ) 2 = γ P P Δ k L ( Δ k L / 2 ) 2
G i = P I , o u t / P S , i n = ( γ P p / g ) 2 sinh 2 ( g L e f f )

Metrics