Abstract

In present work, we demonstrate an optical cloak and illusion by appropriate design of a cluster of active sources. As pointed out by Vasquez and coworkers, the merit of such proposal with active controls is to overcome the drawback of narrow operating frequency and intrinsic loss inherent in the cloaking device made of metamaterials. Accordingly, the illusion device designed thuswise has a broadband operating frequency. By use of the rigorous multiple scattering theory, we have performed the simulations. It is shown that the active illusion device can be used as an beam rotator. In particular, we have shown that the active sources can even be reduced to dipole ones, which is expected to enable much easier experimental implementation of the cloaking and illusion effect.

© 2012 Optical Society of America

1. Introduction

In nature, due to the refraction and reflection of light in the ambient there appears optical illusion phenomenon. Mirage effect is a typical paradigm, but it is complicate and not easy to be observed. Artificially, optical cloak and illusion can be created with the use of electromagnetic (EM) metamaterial which is a synthetic composite material with delicate structures and capable of molding the flow of light in a flexible manner. Several typical phenomena are realized theoretically and experimentally such as negative refraction [16], cloak [712], and subwavelength propagation [1315] of an EM wave. In the perspective of transformation optics [7, 8, 1618], the variation of EM constitutive parameters forms a curved space for an EM wave and thus guides it in a desired manner. As a result, the EM wave propagating within the meatamaterial manifests exotic behaviors, which can not be observed in the conventional materials.

Cloaking implies that an object is invisible to an observer outside a specified region, indicating that the EM wave undergoes nearly no scattering or absorption. To achieve this purpose, three schemes are proposed, one of which is to design a metamaterial shell so that the EM wave can detour round it, resulting in the cloaking of an object placed inside the shell [912]. Another scheme proposed is to cancel the scattering field from an object to be cloaked by different mechanisms of cancelation. Along this line Alu and Engheta proposed the scattering-cancelation-based plasmonic cloaking [19,20]. The complementary-medium-based cloaking is also proposed, where an “anti-object” is used to cancel the scattering effect of the object to be hidden [21]. Besides the cloaking device made of passive materials, active-source-based cloaking is suggested as well where active sources are introduced to cancel the incident EM wave in a predesigned region [2226]. In this way, any passive object placed in this area is invisible.

Provided that an “anti-object” (active sources) can cancel the scattering effect from an object (incident EM wave) exactly, then ideal cloaking can be achieved. Interestingly, if the “anti-object” (active sources) can simultaneously generate the effect as if another object exists, then optical illusion can also be created. Generally speaking, cloaking is just a special case of the optical illusion. With metamaterials, Lai et al. [27] implemented the optical illusion where an “anti-object” is used to cancel the effect of an object, and meanwhile a “restoring object” is used to create the effect of an illusion object. However, as pointed out by Vasquez and coworkers [24, 25], for the cloaking devices made of passive material an intrinsic drawback is the limitation of its working frequency bandwidth. In addition, material loss is also a big challenge to be conquered in the design of metamaterials. Active cloaking can somehow avoid the above problems. The present work is devoted to designing an optical illusion device based on the lower order active sources. Furthermore, to make the design feasible in the experiment we even reduce the active sources to dipole ones. Our simulation results suggest that with a cluster of dipole active line sources both the cloaking and the illusion effects can be realized. In particular, it is shown that this active illusion device can even be operated as a beam rotator.

2. Theoretical framework

To demonstrate the cloaking and the illusion effects, we have employed the multiple scattering theory [2830] to perform all the simulations. For simplicity, we expatiate the approach in two dimensional case, the idea can also be generalized to three dimensional case in a similar manner. The active sources radiating EM wave of transverse magnetic (TM) mode with its electric field polarized along z direction is considered and used to construct cloaking (illusion) devices. The external source that emanates EM wave outside the cloaking (illusion) device can be a plane wave, a Gaussian beam, or a line source, all of which can be considered as an incident wave. They can be expanded in the form

Eext(k,r)=E0m=mcmcpmJm(kr)eimϕez,
where E0 is the amplitude, k is the wavenumber in background medium, r is the position vector with ϕ its polar angle, mc is the cut-off angular momentum index, Jm(kr) is the m-th order cylindrical Bessel function, and pm is the expansion coefficients. For N active sources located at r1, r2, ···, rN, the corresponding electric field can be measured as
Eact(k,r)=E0n=1Nm=mcmcqn,mHm(1)(k|rrn|)eimϕnez,
where mc is the order of the active sources, Hm(1)(k|rrn|) is the m-th order cylindrical Hankel function of the first kind, ϕn is the polar angle of the position vector rrn, and qn,mE0 is the amplitude of the m-th order of the n-th active source. From translational addition theorem [31], we have
Hv(1)(krj)eivϕj=m=Gmv(k,rij)Jm(kri)eimϕi,
for |ri| < |rij|, where ri (rj) is the position vector of the i-th (j-th) active source, rij = rjri with rij and ϕij the corresponding modulus and polar angle, respectively, the prefactor Gu(k,r)=Hu(1)(kr)eiuϕ. With Eq. (3) in hand, we have expanded all the EM waves incident on any cylindrical object in its own coordinate and its scattering properties can be considered within the Mie theory [32]. Combining with the multiple scattering theory, the scattering effect of any configuration consisting of cylindrical objects can be examined by solving the following equations
bm(i)=tm(i)[p˜m(i)jinSmn(i,j)bn(j)],
where bm(i) is the scattering coefficient expanded around the i-th cylindrical object, p˜m(i) is the initial incident coefficient including the corresponding m-th order coefficient of the external source and all the active sources, tm(i) is the Mie scattering coefficient of the i-th cylindrical object, and Smn(i, j) is the structure factor that transforms the scattered wave from the j-th cylindrical object into the incident wave of the i-th cylindrical object. Here the multiple scattering effect is only considered for that occurring between the constituent cylinders of the object to be cloaked. It should be pointed out that in the experiment each active source itself is also an object. Speaking rigorously, the cloaking (illusion) effect should also consider the scattering of active sources themselves. One feasible approach is to use two-dimensional structure with the radius much less than the wavelength to design the active source in order that its scattering effect is negligible. As a proof-of-principle demonstration of the active cloaking and illusion we do not consider the scattering effect between the active sources in Eqs. (4), as done in previous works [2326]. Therefore, the scattered electric field of the whole configuration can be written as
Esca=E0imbm(i)Hm(1)(kri)eimϕiez.
To mimic an object with an illusion device, we should also calculate the scattered EM field from this object for an external source, which is
Escaillu=E0imbm(i,ext)Hm(1)(kri)eimϕiez,
where bm(i,ext) is the scattering coefficient when only the external source is considered.

The scenarios to realize the cloaking and illusion with a cluster of active sources are as follows. Suppose the size of the cloaking (illusion) device is Rd. Then, to cloak an object the scattering field outside Rd must vanish or nearly vanish. A cluster of N active sources can achieve this purpose by creating a “quiet region” (the total EM field in this area equals to 0) with the radius Rc. In this “quiet region”, the EM field from the active sources is just the minus of the external field, so that they can cancel each other exactly. Accordingly, any object placed in the area is subject to no scattering. Simultaneously, if the EM field from all the active sources is zero outside Rd, then cloaking is realized. To achieve an illusion effect, besides the “quiet region” that conceal the object A, the active sources should simultaneously generate the EM field identical to that scattered from a disguised object B. In this manner, the illusion device can transform object A into another object B. Concretely, the active source based device can cloak a real object A by creating a “quiet region”. Meanwhile, it generates the scattering field that mimics the illusory object B, which determines what an observer can “see”. Accordingly, the key point in designing the active cloaking (illusion) device is to obtain the coefficient qn,m of each active source in Eq. (2), which can be determined by the conditions on the circle r = Rc and r = Rd.

Eact(r)={Einc(r)r=RcEscaillu(r)r=Rd,
In Eq. (7), Escaillu(Rd)=0 corresponds to the cloaking case. To realize the illusion, Escaillu(Rd) should be equal to the scattering field from an illusory object B. By discreting the condition in Eq. (7) into the conditions at the points uniformly sampled on the corresponding circles, a set of overdetermined linear equations can be established. By solving this overdetermined linear equations, the coefficient qn,m in the least squares sense can be acquired. The details on the mathematical algorithm are referred to Refs. [24,25], we will not discuss more about the issue. Different from the device made of passive metamaterials, the design of active-source-based cloaking (illusion) device needs to be aware of field from the external source in advance. In the realistic experiment, the setup used to detect the external EM field at the sampling points can also lead to the scattering of the external incident field. To avoid this, the experimental setup should be put in the “quiet zone” created by the active device. We can first detect the field at the sampling points, and then switch on the cloaking (illusion) device so that both the object and the experimental setup can be hidden. Accordingly, there exists a delay for the active device, which is the intrinsic shortcoming of this approach. It should be also pointed out that with the multiple scattering theory the scattering problem can be solved efficiently and reliable result can be obtained.

3. Result and discussion

It has already been shown that the active source based cloak can be realized with the high order active sources [24, 25]. But from Eq. (2) we can find that for each active source we must determine 2mc + 1 coefficients qn,m. Therefore, for the high order active source it is a really tough job to decide all the coefficients simultaneously in the experiment. If we can reduce the order of the active source to a much lower degree, then the theoretical design could be a feasible one for the experimentalist. For this purpose, we have calculated the necessary order mc and the corresponding number N of the active sources to realize cloak for a plane wave incident upon the device. In Fig. 1, we present the result where the active source order mc is plotted as the function of the number N of the active sources. The size of the cloak device is Rd = 20λ and the effective cloaking region (quite region) is Rc = 2λ. The active sources are arranged uniformly around a circle with the radius r = 10λ. The scheme used to determine the number of the active sources and the corresponding order is as follows. First, we specify the order of the active sources; Second, we fix the initial number of the active sources as less as possible and then determine the number of the sampling points, which are used to obtain the overdetermined linear equations according to Eq. (7); Third, solve this linear equations and judge (i) whether the result is convergent and (ii) whether the cloak effect is realized. If the conditions are satisfied, the number of the active sources is what we want. If the conditions are not satisfied, we have to increase the number of the active sources and then repeat step 2–3 until the minimal number of the active sources satisfying the conditions are obtained. It can be found that when the order is 58, the source number should be 3 in order to realize the cloaking effect. This is the case considered in the literature [24, 25]. It can be seen from Fig. 1 that with the increase of the source number, the order of the active source can be reduced rapidly at first to a value less than 10, and then with further increase of the source number to 94, we can even reduce the source order to mc = 1, suggesting that a cluster of dipole line sources can be operated as a cloaking device. It should be noted that the result given in Fig. 1 is also workable for the other external sources such as a line source or a Gaussian beam.

 figure: Fig. 1

Fig. 1 The order mc and the corresponding number N of the active sources to realize cloak for an incident plane wave. The size of the device is Rd = 20λ, the size of the “quite region” is Rc = 2λ, they are marked in Fig. 2(a) and Fig. 2(c) by red solid line and white solid line, respectively. The active sources are arranged uniformly around a circle r = 10λ.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2

Fig. 2 Cloaking an object with 3 higher order active sources of mc = 58 (a), (b) and 94 lower order active sources of mc = 1 (c), (d). Panels (a) and (c) correspond to the total electric field patterns and panels (b) and (d) correspond to the electric patterns of EtotEext. The incident TM Gaussian beam has the working wavelength λ, the waist radius 2λ, and the beam center located at (0,0). The cloaking objects are the perfect electric conductance (PEC) film with the length l = 5λ for (a), (b) and the length l′ = 10λ for (c), (d), respectively. The red solid circles and the white solid circles in panels (a) and (c) denote, respectively, the size of the cloak devices Rd = 20λ and the size of the “quiet region” Rc = 2λ.

Download Full Size | PPT Slide | PDF

To exemplify the result shown in Fig. 1, we have compared the cloaking effects for two different cloaking devices. The first one consists of 3 higher order active sources with mc = 58 and the other one consists of 94 lower order active sources with mc = 1. The results are shown, respectively, in Figs. 2(a), 2(b) and Figs. 2(c), 2(d) where the red solid circles denote the boundary of the devices with the size Rd = 20λ and the white solid circles denote boundary of the “quiet region” with the size Rc = 2λ. It can be seen that the external incident TM Gaussian beam experiences no scattering after passing through the cloaking devices as indicated by the total field patterns in panels (a) and (c), resulting in a good cloaking effects. By observing the electric field patterns EtotEext shown in panels (b) and (d), we can explain the cloaking effect clearly. In the center region of the cloaking devices, the active sources create the field patterns of a Gaussian beam, but with a π phase difference compared to the external incident one so that they can cancel each other exactly, leading to the appearance of the “quiet region”. Compared to the high order active sources, the low order ones are easy to be implemented and convenient to operate in the experiment. Another negative aspect of the high order active device is the strong field around it, which can’t be ignored since it possibly cause the damage of the materials which make up of the active sources. While for the lower order case, the strong field only exists in the region close to the active sources. It should be pointed out that although the “quiet region” is only a circular area with the radius Rc = 2λ, outside the region the field is also very weak. Accordingly, the object with a larger size can be cloaked as can be seen in Fig. 2(a) and Fig. 2(b) where the object has a length l = 5λ. For the cloaking device made of lower order active sources, an even larger object can be cloaked as can be observed in Fig. 2(c) and Fig. 2(d) where the object has a length l′ = 10λ. As a result, it can be found out that the lower order active sources are more appropriate in designing the cloaking device. In what follows, all the simulations are to be performed with this dipole-source-based device.

Now let’s turn to examine the illusion effect created by the dipole-source-based device, which consists of 94 dipole line sources arranged uniformly on a circle with the radius r = 10λ. The object concerned is still a PEC film consisting of the nearly touched cylinders with the length 10λ, which is arranged in vertical and horizontal configuration as shown in Fig. 3. When the illusion device is switched off, the only EM wave incident on the object is the external source. In our case, the external source is a line source located at r0 = (−14λ, 0), which radiates the TM wave with Eext (k, r) = H0[k|rr0|]. It is certain that when the PEC film is placed vertically the scattering cross section is larger so that a wider shadow region can be formed as shown in Fig. 3(a). While for the case when the PEC film is placed horizontally, only a small shadow region appears as can be observed in Fig. 3(b). The corresponding scattering fields are also presented, respectively, in Fig. 3(c) and Fig. 3(d) where we can find a remarkable difference. Then, we switch on the illusion device. It can be observed from Fig. 3(e) that for the vertical case the shadow region is turned into the smaller one as shown in Fig. 3(b). While for the horizontal case a large shadow region nearly identical to Fig. 3(a) appears as can be observed in Fig. 3(f). Therefore, with the illusion device we can turn one object into another one. To understand the illusion effect, we have presented the electric field patterns of EtotEext corresponding to Fig. 3(e) and Fig. 3(f). The results are shown in Fig. 3(g) and Fig. 3(h), respectively. It can be observed that in the area around the object the electric field patterns are nearly the same as that of the line source but with a π phase difference, which leads to the form of the “quiet region” inside the illusion device as shown in Fig. 3(e) and Fig. 3(f). Therefore, the illusion device shields the scattering effect from the object placed inside the “quiet region”. At the same time, outside the device (r > Rd) the active sources can create the same electric field pattern as that scattered from another object. This can be corroborated by comparing the electric field patterns in panels (g), (h) with those in panels (d), (c), respectively. Since the illusion device can be tuned dynamically by adjusting the coefficients qnm, it is capable of transforming one object into arbitrary other ones as we want, which makes it very useful in the practical situations.

 figure: Fig. 3

Fig. 3 The total electric field patterns for a PEC object of the length 10λ arranged vertically (a) and horizontally (b) under the radiation of a TM line source. Panels (c) and (d) are the corresponding scattering field patterns for the cases in (a) and (b), respectively. Panels (e) and (f) are the electric field patterns when the illusion devices are switched on. Panel (g) and (h) are the corresponding electric field patterns of EtotEext for the cases shown in panels (e) and (f), respectively.

Download Full Size | PPT Slide | PDF

With a Gaussian beam as an external incident wave, we can demonstrate the illusion reflection and refraction in a clearer manner. Both the illusion device and the object to be considered are the same as those used in Fig. 3. Only the coefficients of each active dipole line source need to be adjusted accordingly. As we know, when a Gaussian beam is incident on a PEC film it will be totally reflected as can be observed from the simulation results shown in Fig. 4(a) and Fig. 4(b) where the white (yellow) solid arrows denote the incident (outgoing) Gaussian beam. If the illusion device is switched on, we can find that the total reflection to the left upward is turned into a total transmission to the right downward as can be seen in Fig. 4(c), which is actually the result shown in Fig. 4(b). This suggests that the PEC film with the vertical configuration behaves as the horizonal one. The illusion device used in Fig. 4(c) and Fig. 4(d) has the same function as that of an array of dielectric particles in a recent work [33]. Actually, with the active illusion device we can mimic the situation when the PEC film is placed in any orientation. In this way, the outgoing beam at any desired direction can be realized. Accordingly, the illusion device with this function is a beam rotator. If the illusion device in Fig. 4(b) is switched on, a similar transition from total reflection to total transmission occurs. By comparing the results shown in panels (a) and (b) with those in panels (d) and (c), we can find that the illusion device just transforms the reflection behavior of one object into that of another one. To understand our results, we present the corresponding electric field patterns of EtotEext in panels (e) and (f), respectively, for the cases shown in panels (c) and (d). It can be seen that inside the illusion device the active sources create a Gaussian beam like field patterns for both cases but with a π phase difference compared to the incident Gaussian beam. Therefore, a “quiet region” is formed, resulting in the cloak of the object. At the same time, the active sources can generate the outgoing Gaussian beams as those in Fig. 4(a) and Fig. 4(b). By adjusting the coefficients qnm, the outgoing Gaussian beam at any other direction can be achieved.

 figure: Fig. 4

Fig. 4 The electric field patterns for a TM Gaussian beam incident on a PEC film of the length 10λ placed vertically (a) and horizontally (b). Panels (c) and (d) correspond to the electric field patterns when the illusion device is switched on. Panels (e) and (f) are the electric field patterns of EtotEext that correspond to the cases in (c) and (d), respectively. The white solid arrows in panels (a)–(d) denote the direction of the incident Gaussian beam, while the yellow solid arrows in panels (a)–(d) denote the direction of the outgoing Gaussian beam. The positions of the active dipole line sources and the size of the illusion device are the same as those in Fig. 3.

Download Full Size | PPT Slide | PDF

With the paradigms given above, we have demonstrated that the active-source-based cloaking (illusion) device is very flexible in controlling the cloaking (illusion) phenomena. It can avoid the loss issue occurring in the metamaterials based cloaking (illusion) device. Besides, the active-source-based cloaking (illusion) device can even overcome the drawback of narrow working frequency band inherent in the cloaking (illusion) device made of metamaterials, complementary media, or plasmonic media.

4. Conclusion

In summary, we have shown theoretically in present work that the optical cloaking (illusion) can be realized by appropriately arranging a cluster of active dipole line sources, which possibly makes the design realizable in the experiment. Our simulation suggests that with this active-dipole-line-source-based illusion device we can transform one object into another one. Besides, a beam rotator that capable of controlling the outgoing beam at any direction can also be implemented with the active illusion device. The flexibility and feasibility of our design makes the illusion device potentially applicable.

Acknowledgments

This work was supported by the 973 Project ( 2011CB922004), NNSFC ( 10904020, 11174059, 11104305), and the open project of SKLSP in Fudan University ( KL2011_8). Liu is also supported by ZPNSFC ( Y12A040009) and the program for innovative research team in Zhejiang Normal University. The authors are grateful for the helpful discussions with H. H. Zheng and Professor C. T. Chan.

References and links

1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]   [PubMed]  

2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]   [PubMed]  

3. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008). [CrossRef]   [PubMed]  

4. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006). [CrossRef]   [PubMed]  

5. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007). [CrossRef]  

6. S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101, 157407 (2008). [CrossRef]   [PubMed]  

7. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef]   [PubMed]  

8. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]   [PubMed]  

9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef]   [PubMed]  

10. J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008). [CrossRef]   [PubMed]  

11. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010). [CrossRef]   [PubMed]  

12. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007). [CrossRef]  

13. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003). [CrossRef]   [PubMed]  

14. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef]   [PubMed]  

15. J. J. Du, S. Y. Liu, Z. F. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011). [CrossRef]  

16. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006). [CrossRef]   [PubMed]  

17. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008). [CrossRef]   [PubMed]  

18. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33, 43–45 (2008). [CrossRef]  

19. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005). [CrossRef]  

20. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008). [CrossRef]   [PubMed]  

21. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009). [CrossRef]   [PubMed]  

22. D. A. B. Miller, “On perfect cloaking,” Opt. Express 14, 12457–12466 (2006). [CrossRef]   [PubMed]  

23. N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15, 6314–6323 (2007). [CrossRef]   [PubMed]  

24. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Opt. Express 17, 14800–14805 (2009). [CrossRef]   [PubMed]  

25. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103, 073901 (2009). [CrossRef]   [PubMed]  

26. H. H. Zheng, J. J. Xiao, Y. Lai, and C. T. Chan, “Exterior optical cloaking and illusions by using active sources: A boundary element perspective,” Phys. Rev. B 81, 195116 (2010). [CrossRef]  

27. Y. Lai, Jack Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009). [CrossRef]   [PubMed]  

28. X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple scattering theory for electromagnetic waves,” Phys. Rev. B 47, 4161–4167 (1993). [CrossRef]  

29. S. Y. Liu and Z. F. Lin, “Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres,” Phys. Rev. E 73, 066609 (2006). [CrossRef]  

30. S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84, 045425 (2011). [CrossRef]  

31. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995).

32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).

33. J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011). [CrossRef]   [PubMed]  

References

  • View by:

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref] [PubMed]
  3. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
    [Crossref] [PubMed]
  4. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
    [Crossref] [PubMed]
  5. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
    [Crossref]
  6. S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101, 157407 (2008).
    [Crossref] [PubMed]
  7. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [Crossref] [PubMed]
  8. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref] [PubMed]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref] [PubMed]
  10. J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
    [Crossref] [PubMed]
  11. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
    [Crossref] [PubMed]
  12. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
    [Crossref]
  13. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
    [Crossref] [PubMed]
  14. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [Crossref] [PubMed]
  15. J. J. Du, S. Y. Liu, Z. F. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
    [Crossref]
  16. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
    [Crossref] [PubMed]
  17. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
    [Crossref] [PubMed]
  18. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33, 43–45 (2008).
    [Crossref]
  19. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
    [Crossref]
  20. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
    [Crossref] [PubMed]
  21. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
    [Crossref] [PubMed]
  22. D. A. B. Miller, “On perfect cloaking,” Opt. Express 14, 12457–12466 (2006).
    [Crossref] [PubMed]
  23. N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15, 6314–6323 (2007).
    [Crossref] [PubMed]
  24. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Opt. Express 17, 14800–14805 (2009).
    [Crossref] [PubMed]
  25. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103, 073901 (2009).
    [Crossref] [PubMed]
  26. H. H. Zheng, J. J. Xiao, Y. Lai, and C. T. Chan, “Exterior optical cloaking and illusions by using active sources: A boundary element perspective,” Phys. Rev. B 81, 195116 (2010).
    [Crossref]
  27. Y. Lai, Jack Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
    [Crossref] [PubMed]
  28. X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple scattering theory for electromagnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
    [Crossref]
  29. S. Y. Liu and Z. F. Lin, “Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres,” Phys. Rev. E 73, 066609 (2006).
    [Crossref]
  30. S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84, 045425 (2011).
    [Crossref]
  31. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995).
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).
  33. J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
    [Crossref] [PubMed]

2011 (3)

J. J. Du, S. Y. Liu, Z. F. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
[Crossref]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84, 045425 (2011).
[Crossref]

J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

2010 (2)

H. H. Zheng, J. J. Xiao, Y. Lai, and C. T. Chan, “Exterior optical cloaking and illusions by using active sources: A boundary element perspective,” Phys. Rev. B 81, 195116 (2010).
[Crossref]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[Crossref] [PubMed]

2009 (4)

Y. Lai, Jack Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[Crossref] [PubMed]

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Opt. Express 17, 14800–14805 (2009).
[Crossref] [PubMed]

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103, 073901 (2009).
[Crossref] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[Crossref] [PubMed]

2008 (6)

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33, 43–45 (2008).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101, 157407 (2008).
[Crossref] [PubMed]

2007 (3)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15, 6314–6323 (2007).
[Crossref] [PubMed]

2006 (7)

S. Y. Liu and Z. F. Lin, “Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres,” Phys. Rev. E 73, 066609 (2006).
[Crossref]

D. A. B. Miller, “On perfect cloaking,” Opt. Express 14, 12457–12466 (2006).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

2005 (2)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

1993 (1)

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple scattering theory for electromagnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
[Crossref]

Alù, A.

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).

Botten, L. C.

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[Crossref] [PubMed]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Chan, C. T.

H. H. Zheng, J. J. Xiao, Y. Lai, and C. T. Chan, “Exterior optical cloaking and illusions by using active sources: A boundary element perspective,” Phys. Rev. B 81, 195116 (2010).
[Crossref]

Y. Lai, Jack Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[Crossref] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[Crossref] [PubMed]

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101, 157407 (2008).
[Crossref] [PubMed]

Chen, H. Y.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[Crossref] [PubMed]

Y. Lai, Jack Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[Crossref] [PubMed]

Chen, W. K.

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101, 157407 (2008).
[Crossref] [PubMed]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995).

Chui, S. T.

J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84, 045425 (2011).
[Crossref]

J. J. Du, S. Y. Liu, Z. F. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
[Crossref]

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101, 157407 (2008).
[Crossref] [PubMed]

Cummer, S. A.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Du, J. J.

J. J. Du, S. Y. Liu, Z. F. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
[Crossref]

J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101, 157407 (2008).
[Crossref] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[Crossref] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Gan, F. W.

J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Han, D. Z.

Y. Lai, Jack Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[Crossref] [PubMed]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Harmon, B. N.

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple scattering theory for electromagnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Kildishev, A. V.

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33, 43–45 (2008).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Lai, Y.

H. H. Zheng, J. J. Xiao, Y. Lai, and C. T. Chan, “Exterior optical cloaking and illusions by using active sources: A boundary element perspective,” Phys. Rev. B 81, 195116 (2010).
[Crossref]

Y. Lai, Jack Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[Crossref] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[Crossref] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

Li, H.

J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Li, J.

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref] [PubMed]

Lin, Z. F.

J. J. Du, S. Y. Liu, Z. F. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
[Crossref]

J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84, 045425 (2011).
[Crossref]

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101, 157407 (2008).
[Crossref] [PubMed]

S. Y. Liu and Z. F. Lin, “Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres,” Phys. Rev. E 73, 066609 (2006).
[Crossref]

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Liu, S. Y.

J. J. Du, S. Y. Liu, Z. F. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
[Crossref]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84, 045425 (2011).
[Crossref]

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101, 157407 (2008).
[Crossref] [PubMed]

S. Y. Liu and Z. F. Lin, “Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres,” Phys. Rev. E 73, 066609 (2006).
[Crossref]

Lu, W. L.

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84, 045425 (2011).
[Crossref]

J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

McPhedran, R. C.

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Miller, D. A. B.

Milton, G. W.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Ng, Jack

Y. Lai, Jack Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[Crossref] [PubMed]

Nicorovici, N. A. P.

Onofrei, D.

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Opt. Express 17, 14800–14805 (2009).
[Crossref] [PubMed]

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103, 073901 (2009).
[Crossref] [PubMed]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[Crossref] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Rahm, M.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Shalaev, V. M.

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33, 43–45 (2008).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Sheng, Z.

J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Smith, D. R.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[Crossref] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Vasquez, F. G.

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103, 073901 (2009).
[Crossref] [PubMed]

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Opt. Express 17, 14800–14805 (2009).
[Crossref] [PubMed]

Wang, X.

J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Wang, X. D.

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple scattering theory for electromagnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
[Crossref]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Wu, A. M.

J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Xiao, J. J.

H. H. Zheng, J. J. Xiao, Y. Lai, and C. T. Chan, “Exterior optical cloaking and illusions by using active sources: A boundary element perspective,” Phys. Rev. B 81, 195116 (2010).
[Crossref]

Y. Lai, Jack Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[Crossref] [PubMed]

Yu, Q. L.

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple scattering theory for electromagnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
[Crossref]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Zhang, X. G.

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple scattering theory for electromagnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
[Crossref]

Zhang, Z. Q.

Y. Lai, Jack Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[Crossref] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[Crossref] [PubMed]

Zheng, H. H.

H. H. Zheng, J. J. Xiao, Y. Lai, and C. T. Chan, “Exterior optical cloaking and illusions by using active sources: A boundary element perspective,” Phys. Rev. B 81, 195116 (2010).
[Crossref]

Zi, J.

J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

J. J. Du, S. Y. Liu, Z. F. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
[Crossref]

Zou, S. C.

J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Nat. Photonics (2)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (1)

J. J. Du, S. Y. Liu, Z. F. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
[Crossref]

Phys. Rev. B (3)

H. H. Zheng, J. J. Xiao, Y. Lai, and C. T. Chan, “Exterior optical cloaking and illusions by using active sources: A boundary element perspective,” Phys. Rev. B 81, 195116 (2010).
[Crossref]

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple scattering theory for electromagnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
[Crossref]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84, 045425 (2011).
[Crossref]

Phys. Rev. E (2)

S. Y. Liu and Z. F. Lin, “Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres,” Phys. Rev. E 73, 066609 (2006).
[Crossref]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Phys. Rev. Lett. (9)

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[Crossref] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[Crossref] [PubMed]

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103, 073901 (2009).
[Crossref] [PubMed]

Y. Lai, Jack Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[Crossref] [PubMed]

J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101, 157407 (2008).
[Crossref] [PubMed]

Science (7)

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Other (2)

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The order mc and the corresponding number N of the active sources to realize cloak for an incident plane wave. The size of the device is Rd = 20λ, the size of the “quite region” is Rc = 2λ, they are marked in Fig. 2(a) and Fig. 2(c) by red solid line and white solid line, respectively. The active sources are arranged uniformly around a circle r = 10λ.
Fig. 2
Fig. 2 Cloaking an object with 3 higher order active sources of mc = 58 (a), (b) and 94 lower order active sources of mc = 1 (c), (d). Panels (a) and (c) correspond to the total electric field patterns and panels (b) and (d) correspond to the electric patterns of EtotEext. The incident TM Gaussian beam has the working wavelength λ, the waist radius 2λ, and the beam center located at (0,0). The cloaking objects are the perfect electric conductance (PEC) film with the length l = 5λ for (a), (b) and the length l′ = 10λ for (c), (d), respectively. The red solid circles and the white solid circles in panels (a) and (c) denote, respectively, the size of the cloak devices Rd = 20λ and the size of the “quiet region” Rc = 2λ.
Fig. 3
Fig. 3 The total electric field patterns for a PEC object of the length 10λ arranged vertically (a) and horizontally (b) under the radiation of a TM line source. Panels (c) and (d) are the corresponding scattering field patterns for the cases in (a) and (b), respectively. Panels (e) and (f) are the electric field patterns when the illusion devices are switched on. Panel (g) and (h) are the corresponding electric field patterns of EtotEext for the cases shown in panels (e) and (f), respectively.
Fig. 4
Fig. 4 The electric field patterns for a TM Gaussian beam incident on a PEC film of the length 10λ placed vertically (a) and horizontally (b). Panels (c) and (d) correspond to the electric field patterns when the illusion device is switched on. Panels (e) and (f) are the electric field patterns of EtotEext that correspond to the cases in (c) and (d), respectively. The white solid arrows in panels (a)–(d) denote the direction of the incident Gaussian beam, while the yellow solid arrows in panels (a)–(d) denote the direction of the outgoing Gaussian beam. The positions of the active dipole line sources and the size of the illusion device are the same as those in Fig. 3.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ext ( k , r ) = E 0 m = m c m c p m J m ( k r ) e i m ϕ e z ,
E act ( k , r ) = E 0 n = 1 N m = m c m c q n , m H m ( 1 ) ( k | r r n | ) e i m ϕ n e z ,
H v ( 1 ) ( k r j ) e i v ϕ j = m = G m v ( k , r i j ) J m ( k r i ) e i m ϕ i ,
b m ( i ) = t m ( i ) [ p ˜ m ( i ) j i n S m n ( i , j ) b n ( j ) ] ,
E sca = E 0 i m b m ( i ) H m ( 1 ) ( k r i ) e i m ϕ i e z .
E sca illu = E 0 i m b m ( i , ext ) H m ( 1 ) ( k r i ) e i m ϕ i e z ,
E act ( r ) = { E inc ( r ) r = R c E sca illu ( r ) r = R d ,

Metrics