Abstract

The laser-induced periodic surface structure technique was used to form simultaneously dual-scale rough structures (DSRS) with spiral-shaped nanoscale structure inside semi-spherical microscale holes on p-GaN surface to improve the light-extraction efficiency of light-emitting diodes (LEDs). The light output power of DSRS-LEDs was 30% higher than that of conventional LEDs at an injection current of 20 mA. The enhancement in the light output power could be attributed to the increase in the probability of photons to escape from the increased surface area of textured p-GaN surface.

©2012 Optical Society of America

1. Introduction

Gallium–nitride (GaN)-based semiconductors have attracted considerable interest because of their potential application in optoelectronic devices, such as light-emitting diodes (LEDs) and photodiodes [1,2]. GaN-based LEDs are currently used extensively in full-color displays and as high-efficiency light sources for traffic lights. High efficiency nitride-based LEDs are also potentially useful for solid state lighting application. Further improvements to the output efficiency of these LEDs are necessary to approach solid-state lighting. Several parameters affect the output efficiency of LEDs such as light extraction efficiency, internal quantum efficiency, and current distribution in LEDs. The low light extraction efficiency of GaN-based LEDs is due to the large difference in the refractive indices of GaN (2.5) and air (1.0). Theoretically, the critical angle at which light generated in the InGaN–GaN active region can escape is θc ≈23°, limiting the external quantum efficiency of conventional GaN-based LEDs to only a few percent [3]. Several methods such as textured surfaces [4,5], a highly transparent p-contact layer [6], a proper substrate design [7], and flip-chip packaging [8] have demonstrated that the light output of GaN-based LEDs can be enhanced significantly. Among these methods, the textured LED surfaces fabricated by dry or wet etching is most frequently used because of the creation of multiple opportunities for the light generated from the InGaN/GaN multiple quantum well (MQW) active layer to find the escape cone [5,9,10]. Zuo et al. [11] have reported laser patterned micro-scale strip on p-GaN surface by using a pulsed nanosecond UV laser to increase light extraction efficiency of LED. However, the patterning techniques usually limited from nanosecond laser treatment due to the diffraction-limited resolution and significant thermal affect zone. Therefore, we use the non-linear multi-photon absorption of femtosecond laser for subwavelength-processing. In the present work, the periodic surface structures and three-dimensional microstructures on the LED surface were fabricated using laser-induced periodic surface structure (LIPSS) method. Several studies have reported on the surface of semiconductors and dielectrics after irradiation with femtosecond (fs) laser pulses, such as SiC [12,13], ZnSe [14], Si [15,16], and ZnO [17,18]. Jia et al. reported on the formation of highly oriented nanoripples on the surface of 6H-SiC crystals irradiated simultaneously by both 800 and 400 nm fs lasers [12]. Shen et al. studied the formation of conical spikes in silicon [15]. The periodic nanostructures are usually close to the laser wavelength. Several mechanisms have been proposed to elucidate the formation of these induced periodic nanostructures such as interference between the incident laser and the surface scattered waves [19,20], self-organization [21], and Coulomb explosion [22]. Hence, the light output performance and optoelectronic characteristics of GaN-based LEDs with and without dual-scale rough structure (DSRS) on the p-GaN surface will be discussed.

2. Experiments

The The LED structure consisted of a 30 nm thick GaN nucleation layer grown on the c-face (0001), 2 in sapphire substrates in a vertical metal organic chemical vapor deposition system at 560 °C, a 1 μm thick undoped GaN buffer layer, a 2 μm thick Si-doped n-GaN layer (8 × 1018/cm3) grown at 1,000 °C, an active region of undoped MQWs that includes In0.21Ga0.79N/GaN with 10 periods of MQWs (grown at 750 °C), a 0.05 μm thick Mg-doped p-Al0.15Ga0.85N electron blocking layer grown at 1,000 °C, and a 0.6 μm thick Mg-doped p-GaN (3 × 1017/cm3) top contact layer also grown at 1,000 °C. Finally, a heavily Si-doped short-period superlattice (SPS) structure was grown on the p-GaN contact. Then, a regenerative amplified Ti: Sapphire laser system (800 nm, 120 fs, 1 kHz repetition rate) and laser fluence larger than 3.6 J/cm2 were used to etch the p-GaN surface in air. The linearly polarized beam incident produced on a quarter-waveplate emerged as a circularly polarized laser beam. The laser beam was focused via a 50X (0.4 N.A.) microscope objective at normal incidence that was used to irradiate the top surface of LED, with a focus diameter of approximately 2.5 μm. The laser beam shot on the sample moved along the x and y directions stepwise at 2 μm interval. The roughened LED sample was dipped into HCl solution for 5 min to remove the residual Ga and Ga oxide on the p-GaN. Afterward, the conventional LED and the DSRS (nano and micro)-LED were fabricated using the standard process with a mesa area 300 × 300 μm2. First, the 2 μm to 5 μm photoresist was spin-coated onto the sample surface by a spinner. Photolithography was used to define the mesa pattern. Mesa etching was subsequently performed by an inductively coupled plasma (ICP) etcher. The metal contact layers, including the transparent contact layer (TCL) and pad layer, were patterned by a lift-off procedure and deposited onto samples by electron beam evaporation. Cr/Au (50/200 nm) metal contact was deposited on ITO TCL, and the exposed n+-GaN layers to form the p- (anode) and the n- (cathode) type electrodes, respectively.

Scanning electron microscopy (SEM) was used to study the surface morphology of periodic holes and those of the laser-induced nanostructures inside the holes that formed on p-GaN. The current–voltage (I–V) characteristics of the experimental LEDs were measured using an HP-4156C semiconductor parameter analyzer, and the output powers of the LEDs without an encapsulated epoxy optical lens were measured with a calibrated integrating sphere at room temperature.

3. Results and discussions

The scheme of a DSRS-LED and an SEM picture of its surface are illustrated in Figs. 1(a) and 1(b), respectively. The inset of Fig. 1(b) shows the enlarged surface morphology inside the laser-induced concave. The periodic concaves were created by the fs laser on the GaN-based LED surface. High-energy fs laser shot on the GaN LED surface decomposed or evaporated the top p-GaN layer resulting in a concave on its surface. The diameter of the semi-spherical concaves and the spacing between nearby concaves were approximately 1.5 to 2 μm and 2 μm, respectively. The depth of the concave created by the fs laser is in range of 350nm~500nm. The surface morphology of the p-GaN exhibits a dual-scale (nano and micro) roughened structure. The spiral periodic ripples are distributed over the sidewall surfaces inside semi-spherical concaves. The surface texture of the laser-induced concave is strongly related to the polarization of the laser beam. The circular polarized laser beam created nondirectional nano-texture inside the concave surface, assisting the random scattering of light imping on the LED surface. Non-linear multi-photon absorption [23,24] on the p-GaN surface plays a role on the nanoripple formation inside the concave. The multi-photon absorption is a nonlinear phenomenon that is observed in the materials irradiated with the combined energy of multi-photons, which matches the transition energy between the ground and excited states. A variety of nonlinear processes occurs in the interaction of fs intense laser pulses with solid materials [25,26]. The nanoripple formation has been explained by Jia et al. [14] as the interference between the incident light field and the electric field of the electron plasma wave in the material.

 figure: Fig. 1

Fig. 1 (a) Schematic diagrams of DSRS-LED (b) Top-view FE-SEM images of p-GaN surface with DSRS.

Download Full Size | PPT Slide | PDF

An analytical expression of the ripple period has been proposed with the following form Λ = λ/2n [14], where λ is the free space wavelength of the incident radiation, and n is the index of refraction. The refractive index n of p-GaN crystal is approximately 2.5, and the period Λ is 160 nm for the 800 nm laser. The period of the spiral-nanoripples inside the concave is approximately 160 nm to 200 nm as shown in the inset of Fig. 1(b). The spiral periodic ripples are considerably shorter than the laser wavelength, which is nearly equal to the wavelength of the second harmonics in the sample. Therefore, the second harmonic of incident lasers is proposed to play an important role in the formation of the nanostructures. Nonlinear optical processes in GaN, such as two-photon (2PA) and three-photon (3PA) absorptions with the fs laser, has been reported [23,27]. Zuo et al. have reported laser patterned micro scale roughness on p-GaN surface by using a pulsed nanosecond UV laser (λ = 355nm). The theorem of ns laser technique is thermal scribing. However, Zuo et al. did not observe the nanostructure from micro-stripes in the p-GaN layer. In our study, the periodic dual scale (micro and nano) structures generated simultaneously on p-GaN surface by using ultra-fast (femtosecond) laser irradiations. The theorem of this phenomenon was due to the non-linear multi-photon absorption that is observed in the materials after fs laser irradiated. Second harmonic generation is also proposed to play several roles in the formation of nanostructures in compound semiconductors [2831]. The intense fs laser pulses excite the dense plasma in the sample surface and rapidly changes the lattice structure [23,25,26].

The current-voltage (I-V) characteristics of the DSRS-LED and the conventional LED were measured at room temperature (Fig. 2 ). The forward voltages at 20 mA were 3.19 and 3.24 V for a conventional LED and DSRS-LED, respectively. The slightly higher forward voltage of the latter could have resulted from the laser etching damage to p-GaN layer, affecting the series resistance and current spreading. In general, dry etching methods, such as ICP and reactive ion etching, can be used to etch GaN materials successfully. However, this type of method induces damages on the p-GaN surface and degrades resultant electrical performances. The electrical properties of GaN-based DSRS-LEDs under appropriate technical processing were not degraded significantly (Fig. 2(a)). The insert in Fig. 2(a) presents the reverse I–V curves of the DSRS-LED and conventional LED. The DSRS-LED did not induce a higher leakage current than the conventional LED. The leakage currents were approximately similar at a reverse voltage of −10 V. The results indicate that the laser etching process does not adversely affect the LED performance. The p-GaN surface and the electrical performance of the resulting LEDs are deduced to be undamaged and undegraded by the laser etching treatment. Figure 2(b) plots the I–V characteristics of the DSRS and conventional p-GaN/ITO as measured by the transmission line method (TLM). The conventional p-GaN sample has better linearity than the DSRS p-GaN sample.

 figure: Fig. 2

Fig. 2 (a) Measurement current–voltage (I–V) characteristics of conventional LED and DSRS-LED, respectively. The inset is the reverse I-V characteristics of both LED samples. (b) I –V characteristics of the DSRS and conventional p-GaN/ITO measured by the transmission line method (TLM).

Download Full Size | PPT Slide | PDF

The L–I characteristics of the DSRS-LED and of the conventional LED are shown in Fig. 3 . With an injection current of 20 mA, the light output powers of DSRS-LED are enhanced by 30% compared with the conventional LED. This condition indicates that the increase in light output in the DSRS-LED can be attributed to the function of DSRS that can provide photons multiple chances to radiate from from the textured p-GaN surface. Most of the light generated in the MQWs active layers is trapped inside the device because of the refractive-index difference between the semiconductor and the surrounding medium. The micro- and nano-patterned surfaces are useful advantageous for light extraction because more surfaces of the dual-scale roughened structures can provide additional opportunities for light to escape, and these oblique surfaces also can redirect light. In addition, the periodic dual-scale roughened structures can be conveniently controlled during fabrication.

 figure: Fig. 3

Fig. 3 Intensity–current (L–I) characteristics of DSRS-LED and conventional LED, respectively. The inset shows the EL spectra of both LED samples.

Download Full Size | PPT Slide | PDF

The inset in Fig. 3 shows the room-temperature electroluminescence (EL) spectra of the DSRS-LED and of the conventional LED under an injection current of 20 mA. The EL intensity of the DSRS-LED is higher than that of the conventional oneLED. The peak emission wavelengths are 433.06 and 435.14 nm for the DSRS-LED and the conventional LEDs, respectively. A minor wavelength blue shift of ~2 nm might be caused by the partial reduction of the piezoelectric field by the strain release in the textured p-GaN layer [3234], The blue shift of the peak wavelength can be attributed to the partial reduction of the piezoelectric field by strain release in the textured p-GaN layer, which results in less band-edge tilt and a better spatial alignment of the electrons and holes. In this manner, the enhancement of light output can also be ascribed to the reduction of the piezoelectric field due to pattern etching on p-GaN [34]. The internal efficiency is improved when the strain is relaxed.

To further study the optical effects of textured p-GaN layer, we used ray tracing to simulate light propagation in LEDs. Figures 4(a) and 4(b) shows the cross-sectional ray trajectory tracing images of conventional LED and DSRS-LED, respectively. For simplicity, we adopt a 3-D model without considering light absorption. It can be seen that the light emitted from the active region can easily be extracted out from the DSRS-LED, indicating the scattering effect by DSRS. It was found that only less traveling light inside the conventional LED was emitted out from the smooth p-GaN region because of the Fresnel loss and total reflection angle limit. It was also found that more traveling light inside DSRS-LED could be emitted out of the smooth p-GaN region due to the scattering effect from DSRS. Therefore, the simulated light extraction improvement in DSRS-LED was 80% compared to that in conventional LED. In our case, the 30% output-power enhancement of DSRS-LED from the experimental result can be obtained and realized.

 figure: Fig. 4

Fig. 4 Cross-sectional ray-tracing images of (a) conventional LED, (b) DSRS-LED.

Download Full Size | PPT Slide | PDF

Therefore, fs laser evaporation technique is a promising method for etching p-GaN semiconductor and causes less damage on the p-GaN surface than that of the dry etching methods. The DSRS-LED exhibits higher light extraction efficiency. The optimization of the periodic of the nanostructure and the diameter of hole spacing is necessary to improve further the efficiency of DSRS-LED. In the future, a holographic lithography (interference of multiple laser beams), or laser scanner, or multi-beam technique can be used to produce DSRS-LED in large area. These laser lithographic technique allows maskless patterning to texture the LED surface and performed with the DSRS-LED direct writing system.

4. Conclusion

In summary, the current research has demonstrated the optoelectrical properties of GaN-based DSRS-LEDs formed by LIPSS technique. Experimental results indicate that these GaN-based DSRS-LEDs exhibit an enhanced output power of 30%. This enhancement can be attributed to the fact that a rough LED surface can reduce the photon path length for light extraction. The typical 20 mA-driven forward voltage is only 0.05 V higher than that of conventional LEDs.

Acknowledgments

The authors would like to acknowledge the financial support of the National Science Council for the research Grant Nos. NSC 97-2221-E-006-242-MY3. The present work was also supported in part by the Center for Frontier Materials and Micro/Nano Science and Technology and by the Advanced Optoelectronic Technology Center of the National Cheng Kung University under the projects supervised by the Ministry of Education.

References and links

1. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997). [CrossRef]  

2. M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett. 82(17), 2913–2915 (2003). [CrossRef]  

3. C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys. 93(11), 9383–9385 (2003). [CrossRef]  

4. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004). [CrossRef]  

5. J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett. 88(11), 113505 (2006). [CrossRef]  

6. S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004). [CrossRef]  

7. C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004). [CrossRef]  

8. C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Technol. Lett. 18(1), 274–276 (2006). [CrossRef]  

9. H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology 16(9), 1844–1848 (2005). [CrossRef]  

10. H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17(12), 2998–3001 (2006). [CrossRef]  

11. Z. Zuo, D. Liu, B. Zhang, J. He, H. Liu, and X. Xu, “Increasing the extraction efficiency of blue light emitting diodes via laser patterned Ga-polar p-GaN surface,” Phys. Status Solidi., A Appl. Mater. Sci. 208(9), 2226–2230 (2011). [CrossRef]  

12. T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, Z. Z. Xu, and H. Kuroda, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88(11), 111117 (2006). [CrossRef]  

13. Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004). [CrossRef]  

14. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005). [CrossRef]  

15. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004). [CrossRef]  

16. M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82(11), 1715–1717 (2003). [CrossRef]  

17. X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, B. Lu, and X. W. Sun, “Femtosecond laser-induced periodic surface structure on ZnO,” Mater. Lett. 62(12-13), 1769–1771 (2008). [CrossRef]  

18. L. Museur, J. P. Michel, P. Portes, A. Englezis, A. Stassinopoulos, D. Anglos, and A. V. Kanaev, “Femtosecond UV laser non-ablative surface structuring of ZnO crystal: impact on exciton photoluminescence,” J. Opt. Soc. Am. B 27(3), 531–535 (2010). [CrossRef]  

19. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003). [CrossRef]  

20. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003). [CrossRef]   [PubMed]  

21. J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002). [CrossRef]  

22. Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004). [CrossRef]  

23. Y. Kobayashi, D. Yoshitomi, K. Iwata, H. Takada, and K. Torizuka, “Ultrashort pulse characterization by ultra-thin ZnO, GaN, and AlN crystals,” Opt. Express 15(15), 9748–9754 (2007). [CrossRef]   [PubMed]  

24. V. Pačebutas, A. Krotkus, T. Suski, P. Perlin, and M. Leszczynski, “Photoconductive Z-scan measurement of multiphoton absorption in GaN,” J. Appl. Phys. 92(11), 6930–6932 (2002). [CrossRef]  

25. T. Jia, Z. Xu, X. Li, R. Li, B. Shuai, and F. Zhao, “Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003). [CrossRef]  

26. K. S. Tinten and D. V. D. Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000). [CrossRef]  

27. K. H. Lin, G. W. Chern, Y. C. Huang, S. Keller, S. P. DenBaars, and C. K. Sun, “Observation of huge nonlinear absorption enhancement near exciton resonance in GaN,” Appl. Phys. Lett. 83(15), 3087–3089 (2003). [CrossRef]  

28. D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett. 30(24), 3377–3379 (2005). [CrossRef]   [PubMed]  

29. J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13(23), 9235–9247 (2005). [CrossRef]   [PubMed]  

30. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003). [CrossRef]  

31. C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000). [CrossRef]  

32. M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1242–1249 (2009). [CrossRef]  

33. Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011). [CrossRef]  

34. C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure,” Appl. Phys. Lett. 88(8), 083121 (2006). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
    [Crossref]
  2. M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett. 82(17), 2913–2915 (2003).
    [Crossref]
  3. C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys. 93(11), 9383–9385 (2003).
    [Crossref]
  4. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
    [Crossref]
  5. J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett. 88(11), 113505 (2006).
    [Crossref]
  6. S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
    [Crossref]
  7. C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004).
    [Crossref]
  8. C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Technol. Lett. 18(1), 274–276 (2006).
    [Crossref]
  9. H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology 16(9), 1844–1848 (2005).
    [Crossref]
  10. H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17(12), 2998–3001 (2006).
    [Crossref]
  11. Z. Zuo, D. Liu, B. Zhang, J. He, H. Liu, and X. Xu, “Increasing the extraction efficiency of blue light emitting diodes via laser patterned Ga-polar p-GaN surface,” Phys. Status Solidi., A Appl. Mater. Sci. 208(9), 2226–2230 (2011).
    [Crossref]
  12. T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, Z. Z. Xu, and H. Kuroda, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88(11), 111117 (2006).
    [Crossref]
  13. Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
    [Crossref]
  14. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
    [Crossref]
  15. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
    [Crossref]
  16. M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82(11), 1715–1717 (2003).
    [Crossref]
  17. X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, B. Lu, and X. W. Sun, “Femtosecond laser-induced periodic surface structure on ZnO,” Mater. Lett. 62(12-13), 1769–1771 (2008).
    [Crossref]
  18. L. Museur, J. P. Michel, P. Portes, A. Englezis, A. Stassinopoulos, D. Anglos, and A. V. Kanaev, “Femtosecond UV laser non-ablative surface structuring of ZnO crystal: impact on exciton photoluminescence,” J. Opt. Soc. Am. B 27(3), 531–535 (2010).
    [Crossref]
  19. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
    [Crossref]
  20. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  21. J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
    [Crossref]
  22. Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
    [Crossref]
  23. Y. Kobayashi, D. Yoshitomi, K. Iwata, H. Takada, and K. Torizuka, “Ultrashort pulse characterization by ultra-thin ZnO, GaN, and AlN crystals,” Opt. Express 15(15), 9748–9754 (2007).
    [Crossref] [PubMed]
  24. V. Pačebutas, A. Krotkus, T. Suski, P. Perlin, and M. Leszczynski, “Photoconductive Z-scan measurement of multiphoton absorption in GaN,” J. Appl. Phys. 92(11), 6930–6932 (2002).
    [Crossref]
  25. T. Jia, Z. Xu, X. Li, R. Li, B. Shuai, and F. Zhao, “Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
    [Crossref]
  26. K. S. Tinten and D. V. D. Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
    [Crossref]
  27. K. H. Lin, G. W. Chern, Y. C. Huang, S. Keller, S. P. DenBaars, and C. K. Sun, “Observation of huge nonlinear absorption enhancement near exciton resonance in GaN,” Appl. Phys. Lett. 83(15), 3087–3089 (2003).
    [Crossref]
  28. D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett. 30(24), 3377–3379 (2005).
    [Crossref] [PubMed]
  29. J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13(23), 9235–9247 (2005).
    [Crossref] [PubMed]
  30. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [Crossref]
  31. C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
    [Crossref]
  32. M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1242–1249 (2009).
    [Crossref]
  33. Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011).
    [Crossref]
  34. C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure,” Appl. Phys. Lett. 88(8), 083121 (2006).
    [Crossref]

2011 (2)

Z. Zuo, D. Liu, B. Zhang, J. He, H. Liu, and X. Xu, “Increasing the extraction efficiency of blue light emitting diodes via laser patterned Ga-polar p-GaN surface,” Phys. Status Solidi., A Appl. Mater. Sci. 208(9), 2226–2230 (2011).
[Crossref]

Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011).
[Crossref]

2010 (1)

2009 (1)

M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1242–1249 (2009).
[Crossref]

2008 (1)

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, B. Lu, and X. W. Sun, “Femtosecond laser-induced periodic surface structure on ZnO,” Mater. Lett. 62(12-13), 1769–1771 (2008).
[Crossref]

2007 (1)

2006 (5)

H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17(12), 2998–3001 (2006).
[Crossref]

C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure,” Appl. Phys. Lett. 88(8), 083121 (2006).
[Crossref]

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, Z. Z. Xu, and H. Kuroda, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88(11), 111117 (2006).
[Crossref]

J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett. 88(11), 113505 (2006).
[Crossref]

C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Technol. Lett. 18(1), 274–276 (2006).
[Crossref]

2005 (4)

H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology 16(9), 1844–1848 (2005).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett. 30(24), 3377–3379 (2005).
[Crossref] [PubMed]

J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13(23), 9235–9247 (2005).
[Crossref] [PubMed]

2004 (6)

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
[Crossref]

C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004).
[Crossref]

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

2003 (8)

M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett. 82(17), 2913–2915 (2003).
[Crossref]

C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys. 93(11), 9383–9385 (2003).
[Crossref]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82(11), 1715–1717 (2003).
[Crossref]

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

K. H. Lin, G. W. Chern, Y. C. Huang, S. Keller, S. P. DenBaars, and C. K. Sun, “Observation of huge nonlinear absorption enhancement near exciton resonance in GaN,” Appl. Phys. Lett. 83(15), 3087–3089 (2003).
[Crossref]

T. Jia, Z. Xu, X. Li, R. Li, B. Shuai, and F. Zhao, “Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

2002 (2)

V. Pačebutas, A. Krotkus, T. Suski, P. Perlin, and M. Leszczynski, “Photoconductive Z-scan measurement of multiphoton absorption in GaN,” J. Appl. Phys. 92(11), 6930–6932 (2002).
[Crossref]

J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

2000 (2)

K. S. Tinten and D. V. D. Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[Crossref]

1997 (1)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Anglos, D.

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Carey, J. E.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82(11), 1715–1717 (2003).
[Crossref]

Chang, C. H.

Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011).
[Crossref]

Chang, C. S.

S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
[Crossref]

C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004).
[Crossref]

Chang, C. Y.

C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure,” Appl. Phys. Lett. 88(8), 083121 (2006).
[Crossref]

Chang, S. J.

C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004).
[Crossref]

S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
[Crossref]

M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett. 82(17), 2913–2915 (2003).
[Crossref]

Che, C. M.

Chen, C. P.

M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1242–1249 (2009).
[Crossref]

Chen, H. H.

M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1242–1249 (2009).
[Crossref]

Chen, H. X.

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, Z. Z. Xu, and H. Kuroda, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88(11), 111117 (2006).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Chen, J. F.

C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004).
[Crossref]

Chen, L. Y.

Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011).
[Crossref]

M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1242–1249 (2009).
[Crossref]

Chen, M. G.

M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett. 82(17), 2913–2915 (2003).
[Crossref]

Chen, X.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Cheng, Y. W.

Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011).
[Crossref]

M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1242–1249 (2009).
[Crossref]

Chern, G. W.

K. H. Lin, G. W. Chern, Y. C. Huang, S. Keller, S. P. DenBaars, and C. K. Sun, “Observation of huge nonlinear absorption enhancement near exciton resonance in GaN,” Appl. Phys. Lett. 83(15), 3087–3089 (2003).
[Crossref]

Chi, G. C.

C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Technol. Lett. 18(1), 274–276 (2006).
[Crossref]

M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett. 82(17), 2913–2915 (2003).
[Crossref]

Chiang, H. L.

M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1242–1249 (2009).
[Crossref]

Chu, J. T.

H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17(12), 2998–3001 (2006).
[Crossref]

H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology 16(9), 1844–1848 (2005).
[Crossref]

Chuang, R. W.

S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
[Crossref]

C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004).
[Crossref]

Costache, F.

J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Crouch, C. H.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82(11), 1715–1717 (2003).
[Crossref]

Dai, D. C.

Dai, J. J.

C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure,” Appl. Phys. Lett. 88(8), 083121 (2006).
[Crossref]

DenBaars, S. P.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

K. H. Lin, G. W. Chern, Y. C. Huang, S. Keller, S. P. DenBaars, and C. K. Sun, “Observation of huge nonlinear absorption enhancement near exciton resonance in GaN,” Appl. Phys. Lett. 83(15), 3087–3089 (2003).
[Crossref]

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[Crossref]

Dong, Y.

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

Englezis, A.

Fang, R.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Friend, C. M.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82(11), 1715–1717 (2003).
[Crossref]

Fujii, T.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Gao, Y.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Guo, X. D.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, B. Lu, and X. W. Sun, “Femtosecond laser-induced periodic surface structure on ZnO,” Mater. Lett. 62(12-13), 1769–1771 (2008).
[Crossref]

Hang, Y.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, B. Lu, and X. W. Sun, “Femtosecond laser-induced periodic surface structure on ZnO,” Mater. Lett. 62(12-13), 1769–1771 (2008).
[Crossref]

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

He, J.

Z. Zuo, D. Liu, B. Zhang, J. He, H. Liu, and X. Xu, “Increasing the extraction efficiency of blue light emitting diodes via laser patterned Ga-polar p-GaN surface,” Phys. Status Solidi., A Appl. Mater. Sci. 208(9), 2226–2230 (2011).
[Crossref]

J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13(23), 9235–9247 (2005).
[Crossref] [PubMed]

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Henyk, M.

J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hong, C. S.

C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure,” Appl. Phys. Lett. 88(8), 083121 (2006).
[Crossref]

Hseuh, T. H.

H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology 16(9), 1844–1848 (2005).
[Crossref]

Hsieh, C. K.

C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Technol. Lett. 18(1), 274–276 (2006).
[Crossref]

Hsieh, M. Y.

M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1242–1249 (2009).
[Crossref]

Hsu, Y. P.

S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
[Crossref]

Hu, C. C.

C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Technol. Lett. 18(1), 274–276 (2006).
[Crossref]

Hu, E. L.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Huang, H. W.

H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17(12), 2998–3001 (2006).
[Crossref]

H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology 16(9), 1844–1848 (2005).
[Crossref]

Huang, J. J.

Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011).
[Crossref]

M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1242–1249 (2009).
[Crossref]

Huang, M.

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, Z. Z. Xu, and H. Kuroda, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88(11), 111117 (2006).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Huang, Y. C.

K. H. Lin, G. W. Chern, Y. C. Huang, S. Keller, S. P. DenBaars, and C. K. Sun, “Observation of huge nonlinear absorption enhancement near exciton resonance in GaN,” Appl. Phys. Lett. 83(15), 3087–3089 (2003).
[Crossref]

Huang, Y. Y.

Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011).
[Crossref]

Huh, C.

C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys. 93(11), 9383–9385 (2003).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Iwata, K.

Ji, W.

Jia, T.

T. Jia, Z. Xu, X. Li, R. Li, B. Shuai, and F. Zhao, “Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Jia, T. Q.

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, Z. Z. Xu, and H. Kuroda, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88(11), 111117 (2006).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Kanaev, A. V.

Kang, E. J.

C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys. 93(11), 9383–9385 (2003).
[Crossref]

Kao, C. C.

H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17(12), 2998–3001 (2006).
[Crossref]

H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology 16(9), 1844–1848 (2005).
[Crossref]

Kao, C. J.

M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett. 82(17), 2913–2915 (2003).
[Crossref]

Kao, F. J.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[Crossref]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Ke, J. C.

S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
[Crossref]

Ke, M. Y.

Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011).
[Crossref]

M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1242–1249 (2009).
[Crossref]

Keller, S.

K. H. Lin, G. W. Chern, Y. C. Huang, S. Keller, S. P. DenBaars, and C. K. Sun, “Observation of huge nonlinear absorption enhancement near exciton resonance in GaN,” Appl. Phys. Lett. 83(15), 3087–3089 (2003).
[Crossref]

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[Crossref]

Kiyoku, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Kobayashi, Y.

Krotkus, A.

V. Pačebutas, A. Krotkus, T. Suski, P. Perlin, and M. Leszczynski, “Photoconductive Z-scan measurement of multiphoton absorption in GaN,” J. Appl. Phys. 92(11), 6930–6932 (2002).
[Crossref]

Kuo, C. H.

S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
[Crossref]

C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004).
[Crossref]

Kuo, H. C.

H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17(12), 2998–3001 (2006).
[Crossref]

H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology 16(9), 1844–1848 (2005).
[Crossref]

Kuroda, H.

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, Z. Z. Xu, and H. Kuroda, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88(11), 111117 (2006).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Lai, C. F.

H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17(12), 2998–3001 (2006).
[Crossref]

Lai, W. C.

J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett. 88(11), 113505 (2006).
[Crossref]

C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004).
[Crossref]

S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
[Crossref]

M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett. 82(17), 2913–2915 (2003).
[Crossref]

Lai, Z. X.

C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure,” Appl. Phys. Lett. 88(8), 083121 (2006).
[Crossref]

Lee, K. S.

C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys. 93(11), 9383–9385 (2003).
[Crossref]

Lee, M. L.

J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett. 88(11), 113505 (2006).
[Crossref]

C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Technol. Lett. 18(1), 274–276 (2006).
[Crossref]

M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett. 82(17), 2913–2915 (2003).
[Crossref]

Lee, M. Y.

C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Technol. Lett. 18(1), 274–276 (2006).
[Crossref]

Leszczynski, M.

V. Pačebutas, A. Krotkus, T. Suski, P. Perlin, and M. Leszczynski, “Photoconductive Z-scan measurement of multiphoton absorption in GaN,” J. Appl. Phys. 92(11), 6930–6932 (2002).
[Crossref]

Li, C. K.

Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011).
[Crossref]

Li, H.

Li, R.

T. Jia, Z. Xu, X. Li, R. Li, B. Shuai, and F. Zhao, “Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Li, R. X.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, B. Lu, and X. W. Sun, “Femtosecond laser-induced periodic surface structure on ZnO,” Mater. Lett. 62(12-13), 1769–1771 (2008).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Li, X.

T. Jia, Z. Xu, X. Li, R. Li, B. Shuai, and F. Zhao, “Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Liang, J. C.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[Crossref]

Liao, Y.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Lin, C. F.

H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17(12), 2998–3001 (2006).
[Crossref]

C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure,” Appl. Phys. Lett. 88(8), 083121 (2006).
[Crossref]

Lin, D. Y.

C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure,” Appl. Phys. Lett. 88(8), 083121 (2006).
[Crossref]

Lin, K. H.

K. H. Lin, G. W. Chern, Y. C. Huang, S. Keller, S. P. DenBaars, and C. K. Sun, “Observation of huge nonlinear absorption enhancement near exciton resonance in GaN,” Appl. Phys. Lett. 83(15), 3087–3089 (2003).
[Crossref]

Lin, Y. C.

S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
[Crossref]

Linde, D. V. D.

K. S. Tinten and D. V. D. Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

Liu, D.

Z. Zuo, D. Liu, B. Zhang, J. He, H. Liu, and X. Xu, “Increasing the extraction efficiency of blue light emitting diodes via laser patterned Ga-polar p-GaN surface,” Phys. Status Solidi., A Appl. Mater. Sci. 208(9), 2226–2230 (2011).
[Crossref]

Liu, H.

Z. Zuo, D. Liu, B. Zhang, J. He, H. Liu, and X. Xu, “Increasing the extraction efficiency of blue light emitting diodes via laser patterned Ga-polar p-GaN surface,” Phys. Status Solidi., A Appl. Mater. Sci. 208(9), 2226–2230 (2011).
[Crossref]

Lo, H. M.

S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
[Crossref]

C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004).
[Crossref]

Lu, B.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, B. Lu, and X. W. Sun, “Femtosecond laser-induced periodic surface structure on ZnO,” Mater. Lett. 62(12-13), 1769–1771 (2008).
[Crossref]

Lu, T. C.

H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17(12), 2998–3001 (2006).
[Crossref]

H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology 16(9), 1844–1848 (2005).
[Crossref]

Ma, H. L.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, B. Lu, and X. W. Sun, “Femtosecond laser-induced periodic surface structure on ZnO,” Mater. Lett. 62(12-13), 1769–1771 (2008).
[Crossref]

Ma, Y.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Mack, M. P.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[Crossref]

Matsushita, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Mazur, E.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82(11), 1715–1717 (2003).
[Crossref]

Mi, J.

Michel, J. P.

Mishra, U.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[Crossref]

Molian, P.

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

Museur, L.

Nagahama, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Nakamura, S.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Pacebutas, V.

V. Pačebutas, A. Krotkus, T. Suski, P. Perlin, and M. Leszczynski, “Photoconductive Z-scan measurement of multiphoton absorption in GaN,” J. Appl. Phys. 92(11), 6930–6932 (2002).
[Crossref]

Pandelov, S.

J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Park, S. J.

C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys. 93(11), 9383–9385 (2003).
[Crossref]

Perlin, P.

V. Pačebutas, A. Krotkus, T. Suski, P. Perlin, and M. Leszczynski, “Photoconductive Z-scan measurement of multiphoton absorption in GaN,” J. Appl. Phys. 92(11), 6930–6932 (2002).
[Crossref]

Pong, B. J.

C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Technol. Lett. 18(1), 274–276 (2006).
[Crossref]

Portes, P.

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Qiu, J. R.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Qu, Y.

Reif, J.

J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Senoh, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Sharma, R.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Sheehy, M.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82(11), 1715–1717 (2003).
[Crossref]

Shei, S. C.

J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett. 88(11), 113505 (2006).
[Crossref]

S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
[Crossref]

Shen, M. Y.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82(11), 1715–1717 (2003).
[Crossref]

Sheu, J. K.

C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Technol. Lett. 18(1), 274–276 (2006).
[Crossref]

J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett. 88(11), 113505 (2006).
[Crossref]

C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004).
[Crossref]

S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
[Crossref]

M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett. 82(17), 2913–2915 (2003).
[Crossref]

Shi, S. L.

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Shuai, B.

T. Jia, Z. Xu, X. Li, R. Li, B. Shuai, and F. Zhao, “Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Stassinopoulos, A.

Su, Y. K.

S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
[Crossref]

C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004).
[Crossref]

M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett. 82(17), 2913–2915 (2003).
[Crossref]

Sugimoto, Y.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Sun, C. K.

K. H. Lin, G. W. Chern, Y. C. Huang, S. Keller, S. P. DenBaars, and C. K. Sun, “Observation of huge nonlinear absorption enhancement near exciton resonance in GaN,” Appl. Phys. Lett. 83(15), 3087–3089 (2003).
[Crossref]

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[Crossref]

Sun, X. W.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, B. Lu, and X. W. Sun, “Femtosecond laser-induced periodic surface structure on ZnO,” Mater. Lett. 62(12-13), 1769–1771 (2008).
[Crossref]

Sun, Y. H.

Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011).
[Crossref]

Suski, T.

V. Pačebutas, A. Krotkus, T. Suski, P. Perlin, and M. Leszczynski, “Photoconductive Z-scan measurement of multiphoton absorption in GaN,” J. Appl. Phys. 92(11), 6930–6932 (2002).
[Crossref]

Takada, H.

Tinten, K. S.

K. S. Tinten and D. V. D. Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

Torizuka, K.

Tsai, C. M.

J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett. 88(11), 113505 (2006).
[Crossref]

Tsai, J. M.

C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004).
[Crossref]

M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett. 82(17), 2913–2915 (2003).
[Crossref]

Tsai, R. J.

H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17(12), 2998–3001 (2006).
[Crossref]

Tun, C. J.

C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Technol. Lett. 18(1), 274–276 (2006).
[Crossref]

Wang, C. Y.

M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1242–1249 (2009).
[Crossref]

Wang, J. C.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[Crossref]

Wang, K.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Wang, S. C.

Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011).
[Crossref]

H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17(12), 2998–3001 (2006).
[Crossref]

H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology 16(9), 1844–1848 (2005).
[Crossref]

Wu, L. W.

C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004).
[Crossref]

Wu, Q.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Wu, Y. R.

Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011).
[Crossref]

Xie, M. H.

Xu, S. J.

Xu, X.

Z. Zuo, D. Liu, B. Zhang, J. He, H. Liu, and X. Xu, “Increasing the extraction efficiency of blue light emitting diodes via laser patterned Ga-polar p-GaN surface,” Phys. Status Solidi., A Appl. Mater. Sci. 208(9), 2226–2230 (2011).
[Crossref]

Xu, Z.

T. Jia, Z. Xu, X. Li, R. Li, B. Shuai, and F. Zhao, “Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Xu, Z. Z.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, B. Lu, and X. W. Sun, “Femtosecond laser-induced periodic surface structure on ZnO,” Mater. Lett. 62(12-13), 1769–1771 (2008).
[Crossref]

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, Z. Z. Xu, and H. Kuroda, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88(11), 111117 (2006).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Yamada, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Yang, S. C.

Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011).
[Crossref]

Yang, Z. J.

C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure,” Appl. Phys. Lett. 88(8), 083121 (2006).
[Crossref]

Yoshitomi, D.

Younkin, R.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82(11), 1715–1717 (2003).
[Crossref]

Yu, B. K.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, B. Lu, and X. W. Sun, “Femtosecond laser-induced periodic surface structure on ZnO,” Mater. Lett. 62(12-13), 1769–1771 (2008).
[Crossref]

Yu, C. C.

H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17(12), 2998–3001 (2006).
[Crossref]

H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology 16(9), 1844–1848 (2005).
[Crossref]

Yu, Q.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Zhang, B.

Z. Zuo, D. Liu, B. Zhang, J. He, H. Liu, and X. Xu, “Increasing the extraction efficiency of blue light emitting diodes via laser patterned Ga-polar p-GaN surface,” Phys. Status Solidi., A Appl. Mater. Sci. 208(9), 2226–2230 (2011).
[Crossref]

Zhang, J.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zhao, F.

T. Jia, Z. Xu, X. Li, R. Li, B. Shuai, and F. Zhao, “Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Zhao, F. L.

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, Z. Z. Xu, and H. Kuroda, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88(11), 111117 (2006).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zheng, J. H.

C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure,” Appl. Phys. Lett. 88(8), 083121 (2006).
[Crossref]

Zuo, Z.

Z. Zuo, D. Liu, B. Zhang, J. He, H. Liu, and X. Xu, “Increasing the extraction efficiency of blue light emitting diodes via laser patterned Ga-polar p-GaN surface,” Phys. Status Solidi., A Appl. Mater. Sci. 208(9), 2226–2230 (2011).
[Crossref]

Appl. Phys. Lett. (15)

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett. 88(11), 113505 (2006).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett. 82(17), 2913–2915 (2003).
[Crossref]

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, Z. Z. Xu, and H. Kuroda, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88(11), 111117 (2006).
[Crossref]

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82(11), 1715–1717 (2003).
[Crossref]

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

T. Jia, Z. Xu, X. Li, R. Li, B. Shuai, and F. Zhao, “Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

K. H. Lin, G. W. Chern, Y. C. Huang, S. Keller, S. P. DenBaars, and C. K. Sun, “Observation of huge nonlinear absorption enhancement near exciton resonance in GaN,” Appl. Phys. Lett. 83(15), 3087–3089 (2003).
[Crossref]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[Crossref]

C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure,” Appl. Phys. Lett. 88(8), 083121 (2006).
[Crossref]

Appl. Surf. Sci. (1)

J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

IEEE Electron Device Lett. (1)

Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-Type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1242–1249 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16(4), 1002–1004 (2004).
[Crossref]

C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Technol. Lett. 18(1), 274–276 (2006).
[Crossref]

J. Appl. Phys. (2)

C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys. 93(11), 9383–9385 (2003).
[Crossref]

V. Pačebutas, A. Krotkus, T. Suski, P. Perlin, and M. Leszczynski, “Photoconductive Z-scan measurement of multiphoton absorption in GaN,” J. Appl. Phys. 92(11), 6930–6932 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Mater. Lett. (1)

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, B. Lu, and X. W. Sun, “Femtosecond laser-induced periodic surface structure on ZnO,” Mater. Lett. 62(12-13), 1769–1771 (2008).
[Crossref]

Mater. Sci. Eng. B (1)

C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B 106(1), 69–72 (2004).
[Crossref]

Nanotechnology (2)

H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology 16(9), 1844–1848 (2005).
[Crossref]

H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17(12), 2998–3001 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

K. S. Tinten and D. V. D. Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

Z. Zuo, D. Liu, B. Zhang, J. He, H. Liu, and X. Xu, “Increasing the extraction efficiency of blue light emitting diodes via laser patterned Ga-polar p-GaN surface,” Phys. Status Solidi., A Appl. Mater. Sci. 208(9), 2226–2230 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic diagrams of DSRS-LED (b) Top-view FE-SEM images of p-GaN surface with DSRS.
Fig. 2
Fig. 2 (a) Measurement current–voltage (I–V) characteristics of conventional LED and DSRS-LED, respectively. The inset is the reverse I-V characteristics of both LED samples. (b) I –V characteristics of the DSRS and conventional p-GaN/ITO measured by the transmission line method (TLM).
Fig. 3
Fig. 3 Intensity–current (L–I) characteristics of DSRS-LED and conventional LED, respectively. The inset shows the EL spectra of both LED samples.
Fig. 4
Fig. 4 Cross-sectional ray-tracing images of (a) conventional LED, (b) DSRS-LED.

Metrics