Abstract

A low-cost terahertz beam-splitter is fabricated using ultra-thin LDPE plastic sheeting coated with a conducting silver layer. The beam splitting ratio is determined as a function of the thickness of the silver layer—thus any required splitting ratio can be printed on demand with a suitable rapid prototyping technology. The low-cost aspect is a consequence of the fact that ultra-thin LDPE sheeting is readily obtainable, known more commonly as domestic plastic wrap or cling wrap. The proposed beam-splitter has numerous advantages over float zone silicon wafers commonly used within the terahertz frequency range. These advantages include low-cost, ease of handling, ultra-thin thickness, and any required beam splitting ratio can be readily fabricated. Furthermore, as the beam-splitter is ultra-thin, it presents low loss and does not suffer from Fabry-Pérot effects. Measurements performed on manufactured prototypes with different splitting ratios demonstrate a good agreement with our theoretical model in both P and S polarizations, exhibiting nearly frequency-independent splitting ratios in the terahertz frequency range.

© 2012 OSA

Connection Failure

References

  • View by:
  • |
  • |
  • |

  1. R. Bakunov, R. Mikhaylovskiy, M. Tani, and C. Que, “A structure for enhanced terahertz emission from a photoexcited semiconductor surface,” Appl. Phys. B-Lasers Opt. 100, 695–698 (2010).
    [CrossRef]
  2. B. Clough, J. Liu, and X.-C. Zhang, ““All air-plasma” terahertz spectroscopy,” Opt. Lett. 36(13), 2399–2401 (2011).
    [CrossRef] [PubMed]
  3. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25(16), 1210–1212 (2000).
    [CrossRef]
  4. J. Dai, X. Xie, and X.-C. Zhang, “Terahertz wave amplification in gases with the excitation of femtosecond laser pulses,” Appl. Phys. Lett. 91(21), 211102 (2007).
    [CrossRef]
  5. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
    [CrossRef] [PubMed]
  6. M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D-Appl. Phys. 44(8), 083001 (2011).
    [CrossRef]
  7. P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
    [CrossRef]
  8. K. Kawase, S. Ichino, K. Suizu, and T. Shibuya, “Half cycle terahertz pulse generation by prism-coupled Cherenkov phase-matching method,” J. Infrared Millim. Terahertz Waves 32, 1168–1177 (2011).
    [CrossRef]
  9. A. K. Malik, H. K. Malik, and S. Kawata, “Investigations on terahertz radiation generated by two superposed femtosecond laser pulses,” J. Appl. Phys. 107(11), 113105 (2010).
    [CrossRef]
  10. K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70 (10), 1597 (2007).
    [CrossRef]
  11. A. M. Weiner, A. M. Kan’an, and D. E. Leaird, “High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal,” Opt. Lett. 23(18), 1441–1443 (1998).
    [CrossRef]
  12. X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90(14), 141104 (2007).
    [CrossRef]
  13. N. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103–3 (2006).
    [CrossRef]
  14. C. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves 32(12), 1–4 (2011).
    [CrossRef]
  15. C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Opt. 46, 7884–7888 (2007).
    [CrossRef] [PubMed]
  16. J.-S. Li, D.-G. Xu, and J.-Q. Yao, “Compact terahertz wave polarizing beam splitter,” Appl. Opt. 49(24), 4494–4497 (2010).
    [CrossRef] [PubMed]
  17. Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express 16(20), 15991–15998 (2008).
    [CrossRef] [PubMed]
  18. B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19(5), 4528–4535 (2011).
    [CrossRef] [PubMed]
  19. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
    [CrossRef] [PubMed]
  20. A. Siemion, A. Siemion, M. Makowski, M. Sypek, E. Hrault, F. Garet, and J.-L. Coutaz, “Off-axis metallic diffractive lens for terahertz beams,” Opt. Lett. 36(11), 1960–1962 (2011).
    [CrossRef] [PubMed]
  21. B. Voisiat, A. Bi?iu?nas, I. Kašalynas, and G. Ra?iukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A-Matt. Sci. Process. 104(3), 953–958 (2011).
    [CrossRef]
  22. S. Atakaramians, S. Asfar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
    [CrossRef]
  23. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17(17), 14839–14850 (2009).
    [CrossRef] [PubMed]
  24. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  25. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
    [CrossRef]
  26. C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319 (1997).
    [CrossRef]
  27. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  28. N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93(5), 051105 (2008).
    [CrossRef]
  29. D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89, 122103 (2006).
    [CrossRef]
  30. F. A. Hegmann, O. Ostroverkhova, and D. G. Cooke, Probing Organic Semiconductors with Terahertz Pulses Photophysics of Molecular Materials (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).
  31. M. Tinkham, “Energy gap interpretation of experiments on infrared transmission through superconducting films,” Phys. Rev. 104, 845–846 (1956).
    [CrossRef]
  32. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
    [CrossRef]
  33. S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys. 60, 257–261 (1992).
    [CrossRef]
  34. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).
  35. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth’s Scientific Publications, 1955).
  36. M. Heald and J. Marion, Classical Electromagnetic Radiation (Brooks Cole, 1994).
  37. M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Appl. Phys. Lett. 97(7), 071106 (2010).
    [CrossRef]

2011 (11)

M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D-Appl. Phys. 44(8), 083001 (2011).
[CrossRef]

P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

K. Kawase, S. Ichino, K. Suizu, and T. Shibuya, “Half cycle terahertz pulse generation by prism-coupled Cherenkov phase-matching method,” J. Infrared Millim. Terahertz Waves 32, 1168–1177 (2011).
[CrossRef]

C. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves 32(12), 1–4 (2011).
[CrossRef]

B. Voisiat, A. Bi?iu?nas, I. Kašalynas, and G. Ra?iukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A-Matt. Sci. Process. 104(3), 953–958 (2011).
[CrossRef]

S. Atakaramians, S. Asfar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[CrossRef]

B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19(5), 4528–4535 (2011).
[CrossRef] [PubMed]

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[CrossRef] [PubMed]

A. Siemion, A. Siemion, M. Makowski, M. Sypek, E. Hrault, F. Garet, and J.-L. Coutaz, “Off-axis metallic diffractive lens for terahertz beams,” Opt. Lett. 36(11), 1960–1962 (2011).
[CrossRef] [PubMed]

B. Clough, J. Liu, and X.-C. Zhang, ““All air-plasma” terahertz spectroscopy,” Opt. Lett. 36(13), 2399–2401 (2011).
[CrossRef] [PubMed]

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
[CrossRef]

2010 (5)

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[CrossRef] [PubMed]

J.-S. Li, D.-G. Xu, and J.-Q. Yao, “Compact terahertz wave polarizing beam splitter,” Appl. Opt. 49(24), 4494–4497 (2010).
[CrossRef] [PubMed]

A. K. Malik, H. K. Malik, and S. Kawata, “Investigations on terahertz radiation generated by two superposed femtosecond laser pulses,” J. Appl. Phys. 107(11), 113105 (2010).
[CrossRef]

R. Bakunov, R. Mikhaylovskiy, M. Tani, and C. Que, “A structure for enhanced terahertz emission from a photoexcited semiconductor surface,” Appl. Phys. B-Lasers Opt. 100, 695–698 (2010).
[CrossRef]

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Appl. Phys. Lett. 97(7), 071106 (2010).
[CrossRef]

2009 (2)

2008 (2)

Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express 16(20), 15991–15998 (2008).
[CrossRef] [PubMed]

N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93(5), 051105 (2008).
[CrossRef]

2007 (5)

J. Dai, X. Xie, and X.-C. Zhang, “Terahertz wave amplification in gases with the excitation of femtosecond laser pulses,” Appl. Phys. Lett. 91(21), 211102 (2007).
[CrossRef]

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[CrossRef]

K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70 (10), 1597 (2007).
[CrossRef]

X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90(14), 141104 (2007).
[CrossRef]

C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Opt. 46, 7884–7888 (2007).
[CrossRef] [PubMed]

2006 (2)

N. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103–3 (2006).
[CrossRef]

D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89, 122103 (2006).
[CrossRef]

2000 (1)

1998 (1)

1997 (1)

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319 (1997).
[CrossRef]

1992 (1)

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys. 60, 257–261 (1992).
[CrossRef]

1956 (1)

M. Tinkham, “Energy gap interpretation of experiments on infrared transmission through superconducting films,” Phys. Rev. 104, 845–846 (1956).
[CrossRef]

Abbott, D.

S. Atakaramians, S. Asfar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[CrossRef]

Adam, A. J.

Almási, G.

Asfar V., S.

S. Atakaramians, S. Asfar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[CrossRef]

Åstrand, P.-O.

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319 (1997).
[CrossRef]

Atakaramians, S.

S. Atakaramians, S. Asfar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[CrossRef]

Bakunov, R.

R. Bakunov, R. Mikhaylovskiy, M. Tani, and C. Que, “A structure for enhanced terahertz emission from a photoexcited semiconductor surface,” Appl. Phys. B-Lasers Opt. 100, 695–698 (2010).
[CrossRef]

Bang, O.

S. Atakaramians, S. Asfar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[CrossRef]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Bauer, S.

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys. 60, 257–261 (1992).
[CrossRef]

Beigang, R.

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Appl. Phys. Lett. 97(7), 071106 (2010).
[CrossRef]

Berry, C.

C. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves 32(12), 1–4 (2011).
[CrossRef]

Biciu¯nas, A.

B. Voisiat, A. Bi?iu?nas, I. Kašalynas, and G. Ra?iukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A-Matt. Sci. Process. 104(3), 953–958 (2011).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).

Carr, G. L.

Clough, B.

Cook, D. J.

Cooke, D.

P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

Cooke, D. G.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[CrossRef]

D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89, 122103 (2006).
[CrossRef]

F. A. Hegmann, O. Ostroverkhova, and D. G. Cooke, Probing Organic Semiconductors with Terahertz Pulses Photophysics of Molecular Materials (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).

Coutaz, J.-L.

Cundiff, S. T.

Dai, J.

J. Dai, X. Xie, and X.-C. Zhang, “Terahertz wave amplification in gases with the excitation of femtosecond laser pulses,” Appl. Phys. Lett. 91(21), 211102 (2007).
[CrossRef]

X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90(14), 141104 (2007).
[CrossRef]

Freeman, M. R.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[CrossRef]

Fülöp, J. A.

M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D-Appl. Phys. 44(8), 083001 (2011).
[CrossRef]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[CrossRef] [PubMed]

Garet, F.

Grischkowsky, D.

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Appl. Phys. Lett. 97(7), 071106 (2010).
[CrossRef]

N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93(5), 051105 (2008).
[CrossRef]

Hajar, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[CrossRef]

Heald, M.

M. Heald and J. Marion, Classical Electromagnetic Radiation (Brooks Cole, 1994).

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth’s Scientific Publications, 1955).

Hebling, J.

Hegmann, F. A.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[CrossRef]

D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89, 122103 (2006).
[CrossRef]

F. A. Hegmann, O. Ostroverkhova, and D. G. Cooke, Probing Organic Semiconductors with Terahertz Pulses Photophysics of Molecular Materials (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).

Hochstrasser, R. M.

Hoffmann, M. C.

M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D-Appl. Phys. 44(8), 083001 (2011).
[CrossRef]

Homes, C. C.

Hrault, E.

Ichino, S.

K. Kawase, S. Ichino, K. Suizu, and T. Shibuya, “Half cycle terahertz pulse generation by prism-coupled Cherenkov phase-matching method,” J. Infrared Millim. Terahertz Waves 32, 1168–1177 (2011).
[CrossRef]

Jansen, C.

Jarrahi, M.

C. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves 32(12), 1–4 (2011).
[CrossRef]

Jepsen, P. U.

P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Jördens, C.

Kan’an, A. M.

Karpowicz, N.

N. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103–3 (2006).
[CrossRef]

Kašalynas, I.

B. Voisiat, A. Bi?iu?nas, I. Kašalynas, and G. Ra?iukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A-Matt. Sci. Process. 104(3), 953–958 (2011).
[CrossRef]

Kawase, K.

K. Kawase, S. Ichino, K. Suizu, and T. Shibuya, “Half cycle terahertz pulse generation by prism-coupled Cherenkov phase-matching method,” J. Infrared Millim. Terahertz Waves 32, 1168–1177 (2011).
[CrossRef]

Kawata, S.

A. K. Malik, H. K. Malik, and S. Kawata, “Investigations on terahertz radiation generated by two superposed femtosecond laser pulses,” J. Appl. Phys. 107(11), 113105 (2010).
[CrossRef]

Keiding, S. R.

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319 (1997).
[CrossRef]

Koch, M.

Laman, N.

N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93(5), 051105 (2008).
[CrossRef]

LaVeigne, J. D.

Leaird, D. E.

Leonhardt, R.

Li, J.-S.

Liu, J.

Lo, Y. H.

Lobo, R. P. S. M.

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Makowski, M.

Malik, A. K.

A. K. Malik, H. K. Malik, and S. Kawata, “Investigations on terahertz radiation generated by two superposed femtosecond laser pulses,” J. Appl. Phys. 107(11), 113105 (2010).
[CrossRef]

Malik, H. K.

A. K. Malik, H. K. Malik, and S. Kawata, “Investigations on terahertz radiation generated by two superposed femtosecond laser pulses,” J. Appl. Phys. 107(11), 113105 (2010).
[CrossRef]

Marion, J.

M. Heald and J. Marion, Classical Electromagnetic Radiation (Brooks Cole, 1994).

Mendis, R.

Mikhaylovskiy, R.

R. Bakunov, R. Mikhaylovskiy, M. Tani, and C. Que, “A structure for enhanced terahertz emission from a photoexcited semiconductor surface,” Appl. Phys. B-Lasers Opt. 100, 695–698 (2010).
[CrossRef]

Mikkelsen, K. V.

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319 (1997).
[CrossRef]

Mittleman, D. M.

Munro, T. M.

S. Atakaramians, S. Asfar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[CrossRef]

Nagel, M.

S. Atakaramians, S. Asfar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[CrossRef]

Nielsen, K.

Ostroverkhova, O.

F. A. Hegmann, O. Ostroverkhova, and D. G. Cooke, Probing Organic Semiconductors with Terahertz Pulses Photophysics of Molecular Materials (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).

Pálfalvi, L.

Planken, P. C.

Que, C.

R. Bakunov, R. Mikhaylovskiy, M. Tani, and C. Que, “A structure for enhanced terahertz emission from a photoexcited semiconductor surface,” Appl. Phys. B-Lasers Opt. 100, 695–698 (2010).
[CrossRef]

Raciukaitis, G.

B. Voisiat, A. Bi?iu?nas, I. Kašalynas, and G. Ra?iukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A-Matt. Sci. Process. 104(3), 953–958 (2011).
[CrossRef]

Rasmussen, H. K.

S. Atakaramians, S. Asfar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[CrossRef]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Reimann, K.

K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70 (10), 1597 (2007).
[CrossRef]

Rønne, C.

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319 (1997).
[CrossRef]

Scheller, M.

Scherger, B.

Sherstan, C.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[CrossRef]

Shibuya, T.

K. Kawase, S. Ichino, K. Suizu, and T. Shibuya, “Half cycle terahertz pulse generation by prism-coupled Cherenkov phase-matching method,” J. Infrared Millim. Terahertz Waves 32, 1168–1177 (2011).
[CrossRef]

Siemion, A.

Suizu, K.

K. Kawase, S. Ichino, K. Suizu, and T. Shibuya, “Half cycle terahertz pulse generation by prism-coupled Cherenkov phase-matching method,” J. Infrared Millim. Terahertz Waves 32, 1168–1177 (2011).
[CrossRef]

Sypek, M.

Tani, M.

R. Bakunov, R. Mikhaylovskiy, M. Tani, and C. Que, “A structure for enhanced terahertz emission from a photoexcited semiconductor surface,” Appl. Phys. B-Lasers Opt. 100, 695–698 (2010).
[CrossRef]

Tanner, D. B.

Theuer, M.

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Appl. Phys. Lett. 97(7), 071106 (2010).
[CrossRef]

Thrane, L.

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319 (1997).
[CrossRef]

Tiedje, T.

D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89, 122103 (2006).
[CrossRef]

Tinkham, M.

M. Tinkham, “Energy gap interpretation of experiments on infrared transmission through superconducting films,” Phys. Rev. 104, 845–846 (1956).
[CrossRef]

Vieweg, N.

Voisiat, B.

B. Voisiat, A. Bi?iu?nas, I. Kašalynas, and G. Ra?iukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A-Matt. Sci. Process. 104(3), 953–958 (2011).
[CrossRef]

Wallqvist, A.

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319 (1997).
[CrossRef]

Walther, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[CrossRef]

Weiner, A. M.

Wiesauer, K.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).

Xie, X.

J. Dai, X. Xie, and X.-C. Zhang, “Terahertz wave amplification in gases with the excitation of femtosecond laser pulses,” Appl. Phys. Lett. 91(21), 211102 (2007).
[CrossRef]

X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90(14), 141104 (2007).
[CrossRef]

Xu, D.-G.

Xu, J.

X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90(14), 141104 (2007).
[CrossRef]

Yao, J.-Q.

Young, E. C.

D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89, 122103 (2006).
[CrossRef]

Zhang, X.-C.

B. Clough, J. Liu, and X.-C. Zhang, ““All air-plasma” terahertz spectroscopy,” Opt. Lett. 36(13), 2399–2401 (2011).
[CrossRef] [PubMed]

J. Dai, X. Xie, and X.-C. Zhang, “Terahertz wave amplification in gases with the excitation of femtosecond laser pulses,” Appl. Phys. Lett. 91(21), 211102 (2007).
[CrossRef]

X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90(14), 141104 (2007).
[CrossRef]

N. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103–3 (2006).
[CrossRef]

Zhong, N.

N. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103–3 (2006).
[CrossRef]

Am. J. Phys. (1)

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys. 60, 257–261 (1992).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A-Matt. Sci. Process. (1)

B. Voisiat, A. Bi?iu?nas, I. Kašalynas, and G. Ra?iukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A-Matt. Sci. Process. 104(3), 953–958 (2011).
[CrossRef]

Appl. Phys. B-Lasers Opt. (1)

R. Bakunov, R. Mikhaylovskiy, M. Tani, and C. Que, “A structure for enhanced terahertz emission from a photoexcited semiconductor surface,” Appl. Phys. B-Lasers Opt. 100, 695–698 (2010).
[CrossRef]

Appl. Phys. Lett. (7)

J. Dai, X. Xie, and X.-C. Zhang, “Terahertz wave amplification in gases with the excitation of femtosecond laser pulses,” Appl. Phys. Lett. 91(21), 211102 (2007).
[CrossRef]

X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90(14), 141104 (2007).
[CrossRef]

N. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103–3 (2006).
[CrossRef]

S. Atakaramians, S. Asfar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[CrossRef]

N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93(5), 051105 (2008).
[CrossRef]

D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89, 122103 (2006).
[CrossRef]

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Appl. Phys. Lett. 97(7), 071106 (2010).
[CrossRef]

J. Appl. Phys. (1)

A. K. Malik, H. K. Malik, and S. Kawata, “Investigations on terahertz radiation generated by two superposed femtosecond laser pulses,” J. Appl. Phys. 107(11), 113105 (2010).
[CrossRef]

J. Chem. Phys. (1)

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319 (1997).
[CrossRef]

J. Infrared Millim. Terahertz Waves (2)

C. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves 32(12), 1–4 (2011).
[CrossRef]

K. Kawase, S. Ichino, K. Suizu, and T. Shibuya, “Half cycle terahertz pulse generation by prism-coupled Cherenkov phase-matching method,” J. Infrared Millim. Terahertz Waves 32, 1168–1177 (2011).
[CrossRef]

J. Phys. D-Appl. Phys. (1)

M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D-Appl. Phys. 44(8), 083001 (2011).
[CrossRef]

Laser Photon. Rev. (1)

P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. (1)

M. Tinkham, “Energy gap interpretation of experiments on infrared transmission through superconducting films,” Phys. Rev. 104, 845–846 (1956).
[CrossRef]

Phys. Rev. B (1)

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[CrossRef]

Rep. Prog. Phys. (1)

K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70 (10), 1597 (2007).
[CrossRef]

Other (5)

F. A. Hegmann, O. Ostroverkhova, and D. G. Cooke, Probing Organic Semiconductors with Terahertz Pulses Photophysics of Molecular Materials (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth’s Scientific Publications, 1955).

M. Heald and J. Marion, Classical Electromagnetic Radiation (Brooks Cole, 1994).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) A plot of thickness and frequency against relative transmission. The transmission appears to be nearly invariant over the frequency range, due to the small layer thickness well below the skin depth. (b) Simplified frequency-invariant model of transmission dependent only on the thickness of the paint. The blue curve is plotted according to the theoretical model and fitted with a DC conductivity of 500 S·m−1, while the red points represent the measured data.

Fig. 2
Fig. 2

Schematic diagram of the Fabry-Pérot effect in the layers of the beam-splitter. The very thin LDPE layer can be neglected here as it does not exhibit any measurable time delay or losses at terahertz frequencies. The Fresnel coefficients used in Eq. (4) are denoted here by t1, r1 and r2.

Fig. 3
Fig. 3

Photograph of the fabricated beam-splitters. From the left, beam-splitters are shown with a terahertz reflection/transmission ratio of 10:90, 50:50 & 90:10. The expanded views show photos from a microscope camera showing the surface of the silver conductive paint layer at a magnification of 60×. These microscope photos show that the area of the LDPE is covered more than 10% and 50% for the 10:90 and 50:50 ratio beam-splitters respectively, demonstrating that they are not area based polka-dot beam-splitters.

Fig. 4
Fig. 4

Schematic diagram of the Picometrix 2000XP THz-TDS system. The output of a Ti:Sapphire laser (Spectra-Physics Mai-Tai with a pulse-width of <100 fs) is coupled into the control box of the Picometrix 2000XP system which is fiber-coupled to movable emitter and detector heads, allowing transmission and reflection from the beam-splitter to be be measured for varying angles of incidence.

Fig. 5
Fig. 5

(a) Time-domain of the reference pulse and LDPE beam-splitter in lab air. The shape of the time-domain pulse is not affected by the transmission through the beam-splitter. (b) Frequency plot of the reference pulse and of the pulse transmitted through the beam-splitter. The beam-splitter does not contribute additional absorption peaks, while the broadband attenuation appears to be approximately uniform. The splitting ratio of the beam-splitter used here is 60:40.

Fig. 6
Fig. 6

Terahertz transmission plots of beam-splitters with varying thickness at normal incidence. The increase in the conductive layer thickness led to decreased transmission. The peaks in the curves are due to the water absorption in lab air. The modelled values of splitting ratios are depicted next to each curve.

Fig. 7
Fig. 7

(a) and (b) P and S polarization plots of relative reflection and transmission of a beam-splitter with splitting ratio of 60:40 at 45° incidence. It can be noted that the P polarization reflectance (a) is lower than that of the S polarization (b) in agreement with the modelled results shown in Figs. 8a & 8b.

Fig. 8
Fig. 8

(a) Relative transmission, reflection and loss in P polarization. (b) Relative transmission, reflection and loss in S polarization. The error bars in (a) and (b) are calculated from the standard deviation of the thickness of coatings for a sample with a beam-splitting ratio of 60:40. The solid lines denote the model used, while the points show the measured data.

Fig. 9
Fig. 9

Comparison of the transmittance curves for a 1 mm thick Hi-Z Si wafer (green), a thin 200 μm wafer (blue) and a silver painted beam-splitter with a splitting ratio of 38:62. Note that the LDPE beam-splitter exhibits a smoother transmission as a function of frequency, compared to the two Hi-Z Si wafers without Fabry-Pérot interference being removed within the time-domain.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δ = 2 μ 0 μ r σ 0 ω ,
T ( ω ) = | E sample ( ω ) E reference ( ω ) | = 1 | 1 + σ ˜ d Z 0 n substrate + 1 | 2 ,
σ 1 = σ 0 1 + ( ω τ ) 2 , σ 2 = σ 0 ( ω τ ) 1 + ( ω τ ) 2 , with , τ = m 0 σ B N e 2 ,
R = r 1 t 1 2 r 2 e 2 i δ 1 + t 1 2 r 1 r 2 2 e 4 i δ 1 t 1 2 r 1 2 r 2 3 e 6 i δ 1 +
A = 4 y n ˜ cos φ 0 ( 2 + y n ˜ cos φ 0 ) 2 ,
T = 1 R A .

Metrics