Abstract

In this paper, a multi-band slow light metamaterial is presented and investigated. The metamaterial unit cell is composed of three cut wires of different sizes and parallel to each other. Two transparency windows induced by two-two overlaps of absorption bands of three cut wires are observed. The multi-band transmission characteristics and the slow light properties of metamaterial are verified by numerical simulation, which is in a good agreement with theoretical predictions. The impacts of structure parameters on transparency windows are also investigated. Simulation results show the spectral properties can be tuned by adjusting structure parameters of metamaterial. The equivalent circuit model and the synthesis method of the multi-band slow light metamaterial are presented. It is seen from simulation results that the synthesis method accurately predicts the center frequency of the multi-band metamaterial, which opens a door to a quick and accurate construction for multi-band slow light metamaterial.

© 2012 OSA

1. Introduction

Slow light effect has become increasing interested in scientific research because of its various applications such as optical delay, optical buffers and various optical circuits [1,2]. Many approaches of achieving slow light have been proposed, including electromagnetically induced transparency (EIT) [3], coherent population oscillation (CPO) [4], stimulated Raman scattering (SRS) [5], stimulated Brillouin scattering (SBS) [6], Bragg fiber [7], photonic crystal waveguides or cavities [8,9], surface plasmon waveguide [10], etc. . Among these schemes for achieving slow light, electromagnetically induced transparency is one of the most important approaches. Electromagnetically induced transparency, a spectrally narrow transparency window accompanied with extreme dispersion, is a coherent process, resulting from the quantum inference of pump and probe laser beams tuned at different transitions [1115]. This transparency window accompanied with an extreme dispersion results in a substantial reduction of the group velocity of light. However, the experiment of quantum EIT requires a special setup with extreme constraints [16]. Recent discoveries of analogues of EIT in many classical systems, including photonic crystal [17], plasma [1822], drop-filter cavity-waveguide system [23], metamaterial [2429] and coupled-resonator [30,31], have opened new ways to overcome these issues. However, up to now, most EIT-like metamaterials reported in the literature have been designed to exhibit only the single-band slow light effect. Instead, designing a complex media that possesses the multiple transparency windows with slow light properties has many important applications in multi-band filters [32] and multi-band slow light devices (e.g. delay line).

In Ref [33], a bull’s-eye-shaped structure is presented to achieve the multi-peak of EIT metamaterial. Inspired by the literature [33], this paper proposes a more straightforward multi-band slow light metamaterial in microwave frequency by employing cut wires of different sizes and parallel to each other. Contrasting with some previous schemes, our proposed structure is more convenient for fabrication. Moreover, the electrical field distributions and slow light properties of the metamaterial are also investigated by theory and simulation in detail. Simulation results show our proposed structure can achieve the multi-band slow light effects and possess multi-band EIT-like properties. In addition, the impacts of structure parameters on transparency windows are also investigated. Simulation results show the transparency windows can be tuned by adjusting the structural parameters of metamaterial. Finally, the equivalent RLC circuit model and the synthesis method of the multi-band slow light metamaterial are presented. To verify the validity of the synthesis method, a specific example is given. The simulation results are in a good agreement with the proposed goal. Therefore, our research opens a door to a quick and accurate construction the multi-band slow light metamaterial.

2. Realization of the multi-band slow light metamaterial

The unit cell of the proposed multi-band slow light metamaterial is shown in Fig. 1 . It is composed of three cut wires of different sizes and parallel to each other. Three cut wires are placed in the same plane. Their lengths are shorter in order while other parameters are identical. Due to the different sizes of three cut wires, their resonance frequency is different. The incident light is perpendicularly to the plane of the multi-band metamaterial with electric field along the cut wire. Under excitation by incident light, metal strips serve as dipole antennas that induce strongly localized electric and magnetic fields. Because the lengths of three cut wires are not identical, the strip I will experience the stronger coupling to the radiation field. The strip II undergoes the weaker coupling to the radiation field compared with the strip I. When these constituents are brought into the two wires structure, this asymmetry configuration induces the anti-parallel currents on each metal strip which cause the destructive interference of scattering fields and result in a pronounced transparency window [34, 35]. Similarly, the strip II experiences the stronger coupling to the radiation field comparing with the strip III. The interference between resonances of the strip II and the strip III induces a new transparency window which does not affect the original transparency window. Therefore, three cut wires result in two EIT windows, which thereby achieves the multi-band slow light metamaterial. From the above, the more cut wires included in asymmetric double wires EIT structure, as shown in Fig. 1, will support the more EIT window in different frequency.

 

Fig. 1 Configuration of the multi-band slow light metamaterial.

Download Full Size | PPT Slide | PDF

The proposed metamaterial structure is constructed on the teflon substrate with dielectric constant of ε=2.2, and the cut wires are resumed copper with a electric conductivity 5.96 × 107 S/m. The thickness of copper is 0.018 mm. One period of the multi-band slow light metamaterial is shown in Fig. 1. The structure parameters of the simulated multi-band metamaterial are l1 = 14 mm, l2 = 12 mm, l3 = 10 mm. E-fields polarized along x axis and H-fields polarized along y axis are employed. To verify the validity of our proposed the multi-band slow light metamaterial, the transmission spectra of four different cut wires configurations are shown in Fig. 2 . It is seen from Fig. 2, the dependent strip I shows strong resonance at 9.1 GHz. The dependent strip II shows strong resonance at 10.3 GHz as well. When we put these two constituents into double wires, due to breaking the length symmetry of double wires, the destructive inference between double wires induces a pronounced transparency window at 8.9 GHz. During this process, on the one hand, the radiative element transfers the exciting electromagnetically energy to the subradiative element through the coupling of near field. On the other hand, the strip II also shows strong resonance under the polarization by electromagnetic fields. Because of these two parts of effects, the resultant transmission spectrum emerges an EIT window. When we bring the third wire into the double wires, an additional EIT-like window occurs at 10.6 GHz and does not affect the original EIT window. These characters effectively verify that the multi-band transparency windows are achieved by simple cut wire configuration.

 

Fig. 2 The transmission coefficients of different metamaterials.

Download Full Size | PPT Slide | PDF

However, From Fig. 2, it can been seen that transparency windows exhibit asymmetry in frequency, so that it can be explained by the fact that the three metal strips of the multi-band EIT metamaterial have different length, and thus they have different resonance frequencies. Usually, transparency windows of EIT metamaterials appear symmetric only when their resonance elements have the same resonance frequencies, and the symmetry can be easily broken by the difference between the resonance frequencies whether the individual spectra of the resonance elements are symmetric or not. Therefore, the proposed multi-band metamaterial exhibits the asymmetric spectra. Worth noting is that the asymmetric EIT windows usually have sharper spectral profile, which is very useful for achieving stronger dispersion (slower light) and higher sensitivity [18, 28].

We also investigate the multi-band slow light properties of metamaterial which can be illustrated by employing propagating electromagnetic pulses [13]. We consider a Gaussian-shaped pulse centered at 8.9 GHz, normally propagating through the metamaterial with a thickness of 1 cell in the z direction. The simulation results are shown in Fig. 3(a) . From Fig. 3(a), we can see that the peak of incident Gaussian pulse with the center frequency at 8.9 GHz appears at 35.193 ns and the peak of transmitted pulse appears at 37.118 ns. Hence, the pulse is delayed ~1.925 ns, while the delay time of the pulse across free space with the same thickness is only 0.01 ns. To demonstrate the delay properties of metamaterial in another transparency window, we also simulate a Gaussian-shaped pulse centered at 10.6 GHz, normally propagating through the metamaterial with a thickness of 1 cell in the z direction. From the simulation result revealed in Fig. 3(b), the transmitted pulse in the second EIT window is delayed by ~0.858 ns, which is about 85.8 times longer than the delay time of a pulse propagating through free space with the same thickness. Interestingly, the delay properties of pulse at two EIT-like windows do not disturb each other. This property can realize double channel slow light equipment for various potential applications.

 

Fig. 3 (a) The simulated time pulse signal with Gaussian-shaped pulse centered at 8.9 GHz (b) The simulated time pulse signal with Gaussian-shaped pulse centered at 10.6 GHz.

Download Full Size | PPT Slide | PDF

To understand the underlying electromagnetic physics of the multi-band slow light metamaterial, we investigate the electric field distributions of the multi-band structure in detail. Figure 4 shows the simulation results of the E-fields at frequencies (a)-(e) of Fig. 2 which correspond to 8.6, 8.9, 10.1, 10.6, 12.5 GHz, respectively. The color represents the intensity of E-field. In Fig. 4, we can clearly observe the formation process of multi-band transparency windows. In Fig. 4(a), before the onset EIT, we can see that the electrical fields of strip I are much stronger than strip II, especially near the ends of the strip I. As the frequency is increased, EIT window occurs at the overlap of absorption band of the independent metal wire, which is further verified from Fig. 4(b). In Fig. 4(b), we can see the electrical fields of strip II are much stronger than strip I, i.e., the electrical fields of strip I is suppressed due to the existence of strip II. The destructive inference between two metallic wires results in a pronounced transparency window at 8.9 GHz. When frequency is further increased, the prominent electrical fields appear on strip II and strip III, and the EIT window occurring at higher frequency repeats the former process as shown in Fig. 4(c)-(e).

 

Fig. 4 The electrical field distributions of the multi-band slow light metamaterial at frequencies (a) 8.6 GHz, (b) 8.9 GHz, (c) 10.1 GHz, (d) 10.6 GHz, (e) 12.5 GHz, respectively. Red (green) corresponds to a large (small) electric field.

Download Full Size | PPT Slide | PDF

Finally, we investigate the influences of structure parameters on the transparency windows. For comparison, we plot the transmission coefficients of the multi-band slow light metamaterial for a reference structure with the same parameters as Fig. 1 (red solid curves) and for two structures with l2 = 11 mm (blue curves) and l2 = 13 mm (magenta curves) while keeping other parameters constant (see Fig. 5(a) ). As shown in Fig. 5(a), the strip II affects the spectral response the most. To the first transparency window as an example, when the length of strip II is decreased, the first transparency window widens and its strength enhances while the second window is just opposite. This is because the induced transparency window will become narrow and sharp when the difference between lengths of two metal strips become small [35,36]. In other words, at a low degree of asymmetry, the transparency window is extremely sharp and is accompanied by steep phase change [35]. Therefore, by adjusting the asymmetric degree of metamaterial, we can control the phase change of resonance, and thus control the width of resonance and the sharp degree of transparency window [34]. Figure 5(b) shows the changes in transmission spectra induced by the different widths w of metal strip. The blue, the red and the magenta solid lines present the transmission spectra for various widths w of metal strip from 0.5 mm to 1.5 mm with an increment of 0.5 mm. We can see when the widths of strips are increased, the transparency windows become narrow and the strengths decrease at the same time.

 

Fig. 5 The transmission spectra (a) with variable l2 (b) with variable w.

Download Full Size | PPT Slide | PDF

3. Synthesis of the multi-band slow light metamaterial

As to the authors’ best knowledge, there are no papers reporting the synthesis design method for such a multi-band structure with three cut wires. In order to obtain some rules of thumb for design the multi-band slow light metamaterial, we propose a simple model which clearly describes the EM behaviors of the multi-band metamaterial. We model the coupled metallic wires as three RLC circuits coupled by two capacities, as shown in Fig. 6 . The leftmost subcircuit corresponds to the longest wire (strip I) and contains a voltage source representing the action by external electric field. The medial subcircuit responds to quasi-dark state [12] circuit—the metal strip II, and also contains a voltage source since the independent metal strip II can act as a bright component. The rightmost subcircuit represents the strip III.

 

Fig. 6 The equivalent circuits of the multi-band slow light metamaterial.

Download Full Size | PPT Slide | PDF

To the sake of simplification, we negative the mutual inductances between wires, the mutual capacities between non adjacent metal wires, and the loss of substrate in RLC circuit model. In order to obtain the calculating formula of inductances and capacitances of the proposed multi-band metamaterial, we assume that the width w of cut wires, the separation s between adjacent cut wires and the length l of cut wires.

The inductance L produced by cut wires can be estimated by the following formula [37]:

L=μ0l2π[ln(2lw)+0.5+w3lw224l2]

The detailed derivation process of inductance L can be seen from Ref [37].The expression of capacity is also estimated by the following formula:

C=l×C0+H
C0=ε0εeK(1k2)K(k)
where H is the correction factor, which is related to the brink effects of electromagnetic fields. K(o) is the complete elliptic integral of the first kind, k = s/(s + 2w) [38], and the effective permittivity εeis related to the dielectric constant of substrate. The effective permittivity εe can be estimated by the following formula:

εe=1+0.5(εr1)[1+(1+10hw)0.5]

The resistance Ri (i = 1, 2, 3) of equivalent circuit shown in Fig. 6 is composed of two parts: Rrad and Rc. Because the three metal strips serve as dipole antennas, the radiation resistance Rrad of metal strip is estimated by the radiation resistance of dipole antenna:

Rrad=600π[cos(klcosθ/2)cos(kl/2)]2sinθdθ
where k is the wave number of free space, l is the length of cut wire. It needs to be emphasized, when the transparency windows are induced, the parts of radiation losses are suppressed.

In the case of lossy conductors, we add a series resistance Rc to take into account the losses in the conductor. Because the metal wire is very thin, it is difficult to decide. Therefore, the total series resistance can be estimated by the form of Rc = R0l, where R0 = ρ/ (wt) is the per-unit-length resistance, withρbeing the electrical resistivity of the metal. Hence, the final expression of the conductor loss is

Rc=lρwt

At last, we analyze the coupled capacity Cc. Because of the electromagnetic brink effects, the coupled capacity is difficult to be decided. Hence, the coupled capacitance Cc (C12 or C23 in Fig. 6) can be estimated by the following formula:

Cc=ε0εeAs
where A is the effective area, s is the distance between adjacent cut wires.

Using the equivalent circuit depicted in Fig. 6 and Eqs. (1)(7), we can obtain the analytical formula for the transparency window of metamaterial at center frequency:

fres357.143×106l1ln2l1w+l2ln2l2w+0.5(l1+l2)+2w3l1l2(ln2l1w+0.5+w3l1)(ln2l2w+0.5+w3l2)(15.7wK(1k12)K(k1)+15.7wK(1k22)K(k2)+H)
wherek1,2=(Dl1,2)/(D+l1,2), D is the length along x-direction of the unit cell.

Because of involving to the complete elliptic integral of the first kind with unknown parameters, the explicit solutions of physical parameters of cut wires cannot be given. However, by employing the Eq. (8), we can get the numerical solution of physical parameters of cut wires. To testify the validity of the proposed synthesis method, we give a specific example. To obtain the multi-band transparency window (multi-band slow light effect) with the center frequency of 7.9 GHz and 10 GHz, we assume the length 0.526λ01 and width 0.263λ01of the unit cell, the length 0.421λ01 and width 0.026λ01of the longest cut wire, the width 0.026λ01other two cut wires, and the separations 0.026λ01between cut wires (λ01corresponds to the wavelength of 7.9 GHz). We can get the lengths of other two cut wires are 13.8 mm and 10.2 mm by Eq. (8). Three cut wires with above parameters are simulated by CST Microwave Studio. Simulation results are showed in Fig. 7 . It is seen from Fig. 7, the center frequencies of the multi-band transparency windows are 7.9 GHz and 10.2 GHz, respectively, which are in a good agreement with the design goal.

 

Fig. 7 The numerical simulation results of three cut wires

Download Full Size | PPT Slide | PDF

4. Summary

In this paper, we have demonstrated a metamaterial exhibiting the properties of multi-band slow light. The metamaterial is consisted of three cut wires of different sizes and parallel to each other. The resonance frequencies are different because the lengths of three metal wires are different. Under the polarization of electrical field, because three cut wires experience strong resonance, two-two overlaps of absorption bands of three cut wires induce two transparency windows. The calculated transmission spectra also reveal that the additional wire added in the single band double wires structure induces a new transparency window while not affecting the original window. Moreover, the slow light properties and electrical field distributions of the metamaterial are also investigated in detail, which further confirms the multi-band slow light effects and the nature of EIT. In addition, the impacts of structure parameters on transparency windows are also investigated. Simulation results show the transparency windows can be tuned by adjusting the structural parameters of metamaterial. Finally, we propose the equivalent RLC circuit model of multi-band slow light metamaterial and the synthesis design method. Simulation results show that the synthesis method accurately predicts the center frequencies of transparency windows, which opens a door to a quick and accurate construction for the multi-band slow light metamaterial. Our proposed metamaterial structure with all above features confirms the versatility of metamaterials toward various potential applications.

Acknowledgment

This work is supported by the Science and Technology on Communication Information Security Control Laboratory (Grant No. JJ1003), the Program for Interdisciplinary Basic Research of Science-Engineering-Medicine in Harbin Institute of Technology, and the National Natural Science Foundation of China (Grant Nos. 60801015 and 60971064).

References and links

1. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001). [CrossRef]   [PubMed]  

2. R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98(4), 043902 (2007). [CrossRef]   [PubMed]  

3. T. Lauprêtre, J. Ruggiero, R. Ghosh, F. Bretenaker, and F. Goldfarb, “Observation of electromagnetically induced transparency and slow light in the dark state--bright state basis,” Opt. Express 17(22), 19444–19450 (2009). [CrossRef]   [PubMed]  

4. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13(24), 9909–9915 (2005). [CrossRef]   [PubMed]  

5. G. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101(9), 093109 (2007). [CrossRef]  

6. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005). [CrossRef]   [PubMed]  

7. C. X. Lin, W. Zhang, Y. D. Huang, and J. D. Peng, “Zero dispersion slow light with low leakage loss in defect Bragg fiber,” Appl. Phys. Lett. 90(3), 031109 (2007). [CrossRef]  

8. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007). [CrossRef]  

9. S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, D. L. Kwong, and C. W. Wong, “Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities,” Appl. Phys. Lett. 96(22), 221111 (2010). [CrossRef]  

10. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005). [CrossRef]   [PubMed]  

11. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005). [CrossRef]  

12. V. T. T. Thuy, N. T. Tung, J. W. Park, V. D. Lam, Y. P. Lee, and J. Y. Rhee, “Highly dispersive transparency in coupled metamaterial,” J. Opt. 12(11), 115102 (2010). [CrossRef]  

13. F. Y. Meng, J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, “Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions,” J. Phys. D Appl. Phys. 44(26), 265402 (2011). [CrossRef]  

14. F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011). [CrossRef]  

15. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002). [CrossRef]  

16. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011). [CrossRef]   [PubMed]  

17. J. Tidström, C. W. Neff, and L. M. Andersson, “Photonic crystal cavity embedded in electromagnetically induced transparency media,” J. Opt. 12(3), 035105 (2010). [CrossRef]  

18. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010). [CrossRef]   [PubMed]  

19. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef]   [PubMed]  

20. Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010). [CrossRef]   [PubMed]  

21. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef]   [PubMed]  

22. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009). [CrossRef]   [PubMed]  

23. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006). [CrossRef]   [PubMed]  

24. K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010). [CrossRef]  

25. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008). [CrossRef]   [PubMed]  

26. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009). [CrossRef]   [PubMed]  

27. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009). [CrossRef]   [PubMed]  

28. M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100(4), 699–703 (2010). [CrossRef]  

29. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009). [CrossRef]  

30. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004). [CrossRef]  

31. Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring mach-zehnder interferometer,” J. Opt. Soc. Am. B 28(1), 28–36 (2011). [CrossRef]  

32. X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

33. J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010). [CrossRef]   [PubMed]  

34. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010). [CrossRef]   [PubMed]  

35. R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011). [CrossRef]  

36. X. R. Jin, J. Park, H. Y. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011). [CrossRef]   [PubMed]  

37. S. S. Mohan, “The design, modeling and optimization of on-chip inductor and transformer circuits,” Ph.D. Thesis, Stanford University, 153–155 (1999).

38. F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE T. Microwave Theory Tech. 55(12), 2865–2873 (2007). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
    [Crossref] [PubMed]
  2. R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98(4), 043902 (2007).
    [Crossref] [PubMed]
  3. T. Lauprêtre, J. Ruggiero, R. Ghosh, F. Bretenaker, and F. Goldfarb, “Observation of electromagnetically induced transparency and slow light in the dark state--bright state basis,” Opt. Express 17(22), 19444–19450 (2009).
    [Crossref] [PubMed]
  4. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13(24), 9909–9915 (2005).
    [Crossref] [PubMed]
  5. G. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101(9), 093109 (2007).
    [Crossref]
  6. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
    [Crossref] [PubMed]
  7. C. X. Lin, W. Zhang, Y. D. Huang, and J. D. Peng, “Zero dispersion slow light with low leakage loss in defect Bragg fiber,” Appl. Phys. Lett. 90(3), 031109 (2007).
    [Crossref]
  8. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
    [Crossref]
  9. S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, D. L. Kwong, and C. W. Wong, “Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities,” Appl. Phys. Lett. 96(22), 221111 (2010).
    [Crossref]
  10. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
    [Crossref] [PubMed]
  11. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  12. V. T. T. Thuy, N. T. Tung, J. W. Park, V. D. Lam, Y. P. Lee, and J. Y. Rhee, “Highly dispersive transparency in coupled metamaterial,” J. Opt. 12(11), 115102 (2010).
    [Crossref]
  13. F. Y. Meng, J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, “Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions,” J. Phys. D Appl. Phys. 44(26), 265402 (2011).
    [Crossref]
  14. F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
    [Crossref]
  15. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
    [Crossref]
  16. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
    [Crossref] [PubMed]
  17. J. Tidström, C. W. Neff, and L. M. Andersson, “Photonic crystal cavity embedded in electromagnetically induced transparency media,” J. Opt. 12(3), 035105 (2010).
    [Crossref]
  18. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  19. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  20. Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
    [Crossref] [PubMed]
  21. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  22. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
    [Crossref] [PubMed]
  23. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
    [Crossref] [PubMed]
  24. K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
    [Crossref]
  25. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [Crossref] [PubMed]
  26. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
    [Crossref] [PubMed]
  27. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
    [Crossref] [PubMed]
  28. M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100(4), 699–703 (2010).
    [Crossref]
  29. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
    [Crossref]
  30. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
    [Crossref]
  31. Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring mach-zehnder interferometer,” J. Opt. Soc. Am. B 28(1), 28–36 (2011).
    [Crossref]
  32. X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
  33. J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010).
    [Crossref] [PubMed]
  34. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010).
    [Crossref] [PubMed]
  35. R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
    [Crossref]
  36. X. R. Jin, J. Park, H. Y. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
    [Crossref] [PubMed]
  37. S. S. Mohan, “The design, modeling and optimization of on-chip inductor and transformer circuits,” Ph.D. Thesis, Stanford University, 153–155 (1999).
  38. F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE T. Microwave Theory Tech. 55(12), 2865–2873 (2007).
    [Crossref]

2011 (7)

F. Y. Meng, J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, “Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions,” J. Phys. D Appl. Phys. 44(26), 265402 (2011).
[Crossref]

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring mach-zehnder interferometer,” J. Opt. Soc. Am. B 28(1), 28–36 (2011).
[Crossref]

X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

X. R. Jin, J. Park, H. Y. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
[Crossref] [PubMed]

2010 (10)

M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100(4), 699–703 (2010).
[Crossref]

J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010).
[Crossref] [PubMed]

K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010).
[Crossref] [PubMed]

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
[Crossref]

J. Tidström, C. W. Neff, and L. M. Andersson, “Photonic crystal cavity embedded in electromagnetically induced transparency media,” J. Opt. 12(3), 035105 (2010).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, D. L. Kwong, and C. W. Wong, “Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities,” Appl. Phys. Lett. 96(22), 221111 (2010).
[Crossref]

V. T. T. Thuy, N. T. Tung, J. W. Park, V. D. Lam, Y. P. Lee, and J. Y. Rhee, “Highly dispersive transparency in coupled metamaterial,” J. Opt. 12(11), 115102 (2010).
[Crossref]

2009 (6)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

T. Lauprêtre, J. Ruggiero, R. Ghosh, F. Bretenaker, and F. Goldfarb, “Observation of electromagnetically induced transparency and slow light in the dark state--bright state basis,” Opt. Express 17(22), 19444–19450 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

2008 (1)

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

2007 (5)

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE T. Microwave Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98(4), 043902 (2007).
[Crossref] [PubMed]

G. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101(9), 093109 (2007).
[Crossref]

C. X. Lin, W. Zhang, Y. D. Huang, and J. D. Peng, “Zero dispersion slow light with low leakage loss in defect Bragg fiber,” Appl. Phys. Lett. 90(3), 031109 (2007).
[Crossref]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[Crossref]

2006 (1)

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref] [PubMed]

2005 (4)

K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
[Crossref] [PubMed]

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13(24), 9909–9915 (2005).
[Crossref] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

2004 (1)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

2002 (1)

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

2001 (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

Alici, K. B.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE T. Microwave Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Ali-Khan, I.

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98(4), 043902 (2007).
[Crossref] [PubMed]

Al-Naib, I. A. I.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Altug, H.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

Alzar, C. L. G.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Andersson, L. M.

J. Tidström, C. W. Neff, and L. M. Andersson, “Photonic crystal cavity embedded in electromagnetically induced transparency media,” J. Opt. 12(3), 035105 (2010).
[Crossref]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

Atwater, H. A.

Aydin, K.

K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010).
[Crossref] [PubMed]

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE T. Microwave Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Bai, Q.

M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100(4), 699–703 (2010).
[Crossref]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

Bettiol, A. A.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Bilotti, F.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE T. Microwave Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Boyd, R. W.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Bretenaker, F.

Broadbent, C. J.

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98(4), 043902 (2007).
[Crossref] [PubMed]

Buchwald, W. R.

Camacho, R. M.

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98(4), 043902 (2007).
[Crossref] [PubMed]

Cao, W.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Chang, H.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Chang-Hasnain, C.

Chen, J.

M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100(4), 699–703 (2010).
[Crossref]

M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100(4), 699–703 (2010).
[Crossref]

Cheong, H. S.

Chiam, S. Y.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Choi, J. J.

F. Y. Meng, J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, “Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions,” J. Phys. D Appl. Phys. 44(26), 265402 (2011).
[Crossref]

Choi, J.-J.

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Chowdhury, D. R.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Cook, J. J. H.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
[Crossref]

Crankshaw, S.

Darmawan, S.

Dong, Z. G.

Dorpe, P. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[Crossref] [PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Fu, J. H.

F. Y. Meng, J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, “Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions,” J. Phys. D Appl. Phys. 44(26), 265402 (2011).
[Crossref]

Fuller, K. A.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Ghosh, R.

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Goldfarb, F.

Gui, T.

X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Hamm, J. M.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
[Crossref]

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

He, X. J.

X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

Herráez, M. G.

Hess, O.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Howell, J. C.

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98(4), 043902 (2007).
[Crossref] [PubMed]

Huang, Y. D.

C. X. Lin, W. Zhang, Y. D. Huang, and J. D. Peng, “Zero dispersion slow light with low leakage loss in defect Bragg fiber,” Appl. Phys. Lett. 90(3), 031109 (2007).
[Crossref]

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Jang, W. H.

Jin, X. R.

Joannopoulos, J. D.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Jose, R.

G. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101(9), 093109 (2007).
[Crossref]

Kang, M.

M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100(4), 699–703 (2010).
[Crossref]

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kim, J.

Kim, J. Y.

F. Y. Meng, J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, “Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions,” J. Phys. D Appl. Phys. 44(26), 265402 (2011).
[Crossref]

Kim, J.-Y.

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

Kim, K. W.

Kocaman, S.

S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, D. L. Kwong, and C. W. Wong, “Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities,” Appl. Phys. Lett. 96(22), 221111 (2010).
[Crossref]

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Krauss, T. F.

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[Crossref]

Kwong, D. L.

S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, D. L. Kwong, and C. W. Wong, “Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities,” Appl. Phys. Lett. 96(22), 221111 (2010).
[Crossref]

Lam, V. D.

V. T. T. Thuy, N. T. Tung, J. W. Park, V. D. Lam, Y. P. Lee, and J. Y. Rhee, “Highly dispersive transparency in coupled metamaterial,” J. Opt. 12(11), 115102 (2010).
[Crossref]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lauprêtre, T.

Lederer, F.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Lee, B.

F. Y. Meng, J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, “Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions,” J. Phys. D Appl. Phys. 44(26), 265402 (2011).
[Crossref]

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

Lee, J. C.

F. Y. Meng, J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, “Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions,” J. Phys. D Appl. Phys. 44(26), 265402 (2011).
[Crossref]

Lee, J.-C.

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

Lee, S.

Lee, Y.

Lee, Y. P.

V. T. T. Thuy, N. T. Tung, J. W. Park, V. D. Lam, Y. P. Lee, and J. Y. Rhee, “Highly dispersive transparency in coupled metamaterial,” J. Opt. 12(11), 115102 (2010).
[Crossref]

Li, T.

Li, Y. N.

M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100(4), 699–703 (2010).
[Crossref]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Lin, C. X.

C. X. Lin, W. Zhang, Y. D. Huang, and J. D. Peng, “Zero dispersion slow light with low leakage loss in defect Bragg fiber,” Appl. Phys. Lett. 90(3), 031109 (2007).
[Crossref]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

Liu, H.

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Martinez, M. A. G.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

McMillan, J. F.

S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, D. L. Kwong, and C. W. Wong, “Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities,” Appl. Phys. Lett. 96(22), 221111 (2010).
[Crossref]

Mei, T.

Meng, F. Y.

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

F. Y. Meng, J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, “Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions,” J. Phys. D Appl. Phys. 44(26), 265402 (2011).
[Crossref]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Moewe, M.

Morandotti, R.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Neff, C. W.

J. Tidström, C. W. Neff, and L. M. Andersson, “Photonic crystal cavity embedded in electromagnetically induced transparency media,” J. Opt. 12(3), 035105 (2010).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Nussenzveig, P.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Ohishi, Y.

G. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101(9), 093109 (2007).
[Crossref]

Ozaki, T.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Ozbay, E.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE T. Microwave Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Palinginis, P.

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Park, J.

Park, J. W.

V. T. T. Thuy, N. T. Tung, J. W. Park, V. D. Lam, Y. P. Lee, and J. Y. Rhee, “Highly dispersive transparency in coupled metamaterial,” J. Opt. 12(11), 115102 (2010).
[Crossref]

Peng, J. D.

C. X. Lin, W. Zhang, Y. D. Huang, and J. D. Peng, “Zero dispersion slow light with low leakage loss in defect Bragg fiber,” Appl. Phys. Lett. 90(3), 031109 (2007).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Pryce, I. M.

Qin, G.

G. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101(9), 093109 (2007).
[Crossref]

Rhee, J. Y.

Rockstuhl, C.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Rosenberger, A. T.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Ruggiero, J.

Sedgwick, F.

Singh, R.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Smith, D. D.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Sobhani, H.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Soljacic, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Song, K. Y.

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Soref, R.

Soukoulis, C. M.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Thévenaz, L.

Thuy, V. T. T.

V. T. T. Thuy, N. T. Tung, J. W. Park, V. D. Lam, Y. P. Lee, and J. Y. Rhee, “Highly dispersive transparency in coupled metamaterial,” J. Opt. 12(11), 115102 (2010).
[Crossref]

Tidström, J.

J. Tidström, C. W. Neff, and L. M. Andersson, “Photonic crystal cavity embedded in electromagnetically induced transparency media,” J. Opt. 12(3), 035105 (2010).
[Crossref]

Tobing, L. Y. M.

Toscano, A.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE T. Microwave Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Tsakmakidis, K. L.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
[Crossref]

Tung, N. T.

V. T. T. Thuy, N. T. Tung, J. W. Park, V. D. Lam, Y. P. Lee, and J. Y. Rhee, “Highly dispersive transparency in coupled metamaterial,” J. Opt. 12(11), 115102 (2010).
[Crossref]

Vegni, L.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE T. Microwave Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Vuckovic, J.

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref] [PubMed]

Waks, E.

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref] [PubMed]

Wang, H. T.

M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100(4), 699–703 (2010).
[Crossref]

Wang, J.

X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

Wang, S. M.

Wang, Y.

X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

Wartak, M. S.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
[Crossref]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wong, C. W.

S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, D. L. Kwong, and C. W. Wong, “Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities,” Appl. Phys. Lett. 96(22), 221111 (2010).
[Crossref]

Wu, P. H.

M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100(4), 699–703 (2010).
[Crossref]

Wu, Q.

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

F. Y. Meng, J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, “Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions,” J. Phys. D Appl. Phys. 44(26), 265402 (2011).
[Crossref]

X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

Xu, M. X.

Yang, X.

S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, D. L. Kwong, and C. W. Wong, “Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities,” Appl. Phys. Lett. 96(22), 221111 (2010).
[Crossref]

Yang, Y. P.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Yanik, A. A.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

Yu, M. B.

S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, D. L. Kwong, and C. W. Wong, “Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities,” Appl. Phys. Lett. 96(22), 221111 (2010).
[Crossref]

Zhang, D. H.

Zhang, F.

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

Zhang, K.

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

F. Y. Meng, J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, “Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions,” J. Phys. D Appl. Phys. 44(26), 265402 (2011).
[Crossref]

Zhang, L.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Zhang, W.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

C. X. Lin, W. Zhang, Y. D. Huang, and J. D. Peng, “Zero dispersion slow light with low leakage loss in defect Bragg fiber,” Appl. Phys. Lett. 90(3), 031109 (2007).
[Crossref]

Zhang, W. L.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Zhang, X.

Zhang, Y.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Zheng, H. Y.

Zhu, S. N.

Am. J. Phys. (1)

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Appl. Phys. B (1)

M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100(4), 699–703 (2010).
[Crossref]

Appl. Phys. Lett. (3)

C. X. Lin, W. Zhang, Y. D. Huang, and J. D. Peng, “Zero dispersion slow light with low leakage loss in defect Bragg fiber,” Appl. Phys. Lett. 90(3), 031109 (2007).
[Crossref]

S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, D. L. Kwong, and C. W. Wong, “Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities,” Appl. Phys. Lett. 96(22), 221111 (2010).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

IEEE T. Microwave Theory Tech. (1)

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE T. Microwave Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

IEEE Trans. Magn. (1)

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

J. Appl. Phys. (1)

G. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101(9), 093109 (2007).
[Crossref]

J. Opt. (2)

V. T. T. Thuy, N. T. Tung, J. W. Park, V. D. Lam, Y. P. Lee, and J. Y. Rhee, “Highly dispersive transparency in coupled metamaterial,” J. Opt. 12(11), 115102 (2010).
[Crossref]

J. Tidström, C. W. Neff, and L. M. Andersson, “Photonic crystal cavity embedded in electromagnetically induced transparency media,” J. Opt. 12(3), 035105 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (2)

F. Y. Meng, J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, “Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions,” J. Phys. D Appl. Phys. 44(26), 265402 (2011).
[Crossref]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[Crossref]

Nano Lett. (3)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Nat. Mater. (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Nature (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

Opt. Express (8)

T. Lauprêtre, J. Ruggiero, R. Ghosh, F. Bretenaker, and F. Goldfarb, “Observation of electromagnetically induced transparency and slow light in the dark state--bright state basis,” Opt. Express 17(22), 19444–19450 (2009).
[Crossref] [PubMed]

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13(24), 9909–9915 (2005).
[Crossref] [PubMed]

K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
[Crossref] [PubMed]

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[Crossref] [PubMed]

J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010).
[Crossref] [PubMed]

K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[Crossref] [PubMed]

X. R. Jin, J. Park, H. Y. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
[Crossref] [PubMed]

Phys. Rev. A (1)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Phys. Rev. B (2)

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
[Crossref]

Phys. Rev. Lett. (5)

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98(4), 043902 (2007).
[Crossref] [PubMed]

Prog. Electromagn. Res. (1)

X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Other (1)

S. S. Mohan, “The design, modeling and optimization of on-chip inductor and transformer circuits,” Ph.D. Thesis, Stanford University, 153–155 (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Configuration of the multi-band slow light metamaterial.

Fig. 2
Fig. 2

The transmission coefficients of different metamaterials.

Fig. 3
Fig. 3

(a) The simulated time pulse signal with Gaussian-shaped pulse centered at 8.9 GHz (b) The simulated time pulse signal with Gaussian-shaped pulse centered at 10.6 GHz.

Fig. 4
Fig. 4

The electrical field distributions of the multi-band slow light metamaterial at frequencies (a) 8.6 GHz, (b) 8.9 GHz, (c) 10.1 GHz, (d) 10.6 GHz, (e) 12.5 GHz, respectively. Red (green) corresponds to a large (small) electric field.

Fig. 5
Fig. 5

The transmission spectra (a) with variable l2 (b) with variable w.

Fig. 6
Fig. 6

The equivalent circuits of the multi-band slow light metamaterial.

Fig. 7
Fig. 7

The numerical simulation results of three cut wires

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

L= μ 0 l 2π [ln( 2l w )+0.5+ w 3l w 2 24 l 2 ]
C = l × C 0 + H
C 0 = ε 0 ε e K ( 1 k 2 ) K ( k )
ε e =1+0.5( ε r 1)[1+ (1+10 h w ) 0.5 ]
R rad =60 0 π [cos(klcosθ/2)cos(kl/2)] 2 sinθ dθ
R c = lρ wt
C c = ε 0 ε e A s
f res 357.143× 10 6 l 1 ln 2 l 1 w + l 2 ln 2 l 2 w +0.5( l 1 + l 2 )+ 2w 3 l 1 l 2 (ln 2 l 1 w +0.5+ w 3 l 1 )(ln 2 l 2 w +0.5+ w 3 l 2 )(15.7w K( 1 k 1 2 ) K( k 1 ) +15.7w K( 1 k 2 2 ) K( k 2 ) +H)

Metrics