Abstract

We report on GaAs-based high power density vertical-cavity surface-emitting laser diodes (VCSELs) with ion implanted isolated current apertures. A continuous-wave output power of over 380 mW and the power density of 4.9 kW/cm2 have been achieved at 15 °C from the 100-μm-diameter aperture, which is the highest output characteristic ever reported for an ion implanted VCSEL. A high background suppression ratio of over 40 dB has also been obtained at the emission wavelength of 970 nm. The ion implantation technique provides an excellent current isolation in the apertures and would be a key to realize high power output from a VCSEL array.

© 2012 OSA

Corrections

Akira Higuchi, Hideyuki Naito, Kousuke Torii, Masahiro Miyamoto, Takenori Morita, Junya Maeda, Hirofumi Miyajima, and Harumasa Yoshida, "High power density vertical-cavity surface-emitting lasers with ion implanted isolated current aperture: erratum," Opt. Express 20, 6203-6203 (2012)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-6-6203

1. Introduction

In recent years, the realization of high power VCSELs is of considerable interest for a number of applications such as medical treatments and material processing. Compared to conventional edge-emitting laser diodes, the VCSELs have high productivity because the low-cost wafer-scale fabrication and testing are allowed. Additionally, VCSELs have a great potential for the high power output in a pulse operation owing to the absence of catastrophic optical damage. Furthermore, it is possible to scale up the output power with two-dimensional (2D) structure [1]. For the VCSELs, the fabrication of isolated current apertures is of great importance in order to achieve high emission efficiency. The output power depends strongly on the aperture size [13]. Generally, there are two ways to fabricate the isolated current apertures; oxide-confinement or ion implantation [4]. Since D. L. Huffaker et al. reported the VCSELs fabricated using a stable native oxidation [5], the major technique has been oxide-confinement, and a great number of studies on oxide-confined VCSELs have been reported. A room temperature maximum continuous-wave (CW) output power of 3 W from the 350-μm-diameter selective oxide aperture was reported [2]. The record of over 230 W output power was also achieved from 5 × 5 mm array chip under CW operation, and it was noted that the design of the high power 2D-VCSEL arrays was based on that of the efficient single VCSEL device [6]. Furthermore, the maximum peak output power of 92 W from the 500-μm-diameter selective oxide aperture was demonstrated in a pulse operation [7]. However, the strain and defects generated by the oxidation degrade the reliability of devices [8]. Additionally, the fabrication using selective oxidation is not easy to provide quality apertures in an epitaxial wafer due to the sensitive oxidation process [810]. On the contrary, because of the excellent controllability of ion energy and dose density, the ion implantation could provide highly controlled apertures, which leads to higher and stable productivity of the devices. For the ion implanted VCSELs, however, the detailed characteristics have only been reported with the output power of several tens milliwatts or less [11, 12].

In this paper, we report high power density characteristic of the single VCSEL with an isolated current aperture formed by the ion implantation technique. An output power of over 380 mW from the 100-μm-diameter aperture has been achieved under CW operation. The power density of 4.9 kW/cm2 is higher than that of any other oxide-confinement VCSELs [1, 2, 7,1315]. These results must be an important step to develop high power 2D-VCSEL arrays.

2. Structure of ion implanted VCSEL

The device structure is illustrated in Fig. 1 . The material growth was performed by metal-organic vapor phase epitaxy. Trimethylgallium, trimethylaluminium, trimethylindium, and arsine were used as source materials. The n-AlGaAs distributed Bragg reflector (DBR) layers, the active region, the p-AlGaAs DBR layers were grown on the n-GaAs substrate. The active region consists of InGaAs multiple quantum wells (MQWs) in a one-wavelength cavity. The composition and thickness of the each layer were designed for the emission wavelength of ~970 nm. After the material growth, the isolated current apertures were formed by the ion implantation technique. Au-based p- and n-electrodes were deposited on p- and n-sides of the devices, respectively. An antireflection coating layer was formed on the light emission window. The devices were mounted on thermoelectric controlled heatsinks to investigate the temperature characteristics.

 

Fig. 1 Schematic structure of the ion implanted VCSEL. The ion implanted aperture diameter is set to be 100 μm.

Download Full Size | PPT Slide | PDF

Figure 2 shows the cross-sectional scanning electron microscopic (SEM) images of the device. The implanted zone can be clearly observed with a strong contrast. The aperture diameter and the depth are precisely defined by the conventional lithography technique and the optimized ion energy, respectively. To avoid any damage in the MQWs, the position of maximum ion population has been set ~2 μm away from the MQWs. The 100-μm-diameter current apertures have been formed successfully in the p-DBR layer. In order to confirm the performance of the current aperture, we have investigated the near field patterns (NFPs) of the actual VCSEL device (Fig. 1). Figure 3 shows the NFPs and their profiles at room temperature (RT), which were measured by a laser beam profiler Hamamatsu LEPAS-11. The device exhibits uniform emission profiles in the aperture below and around the thresholds. A small amount of non-uniform emission in the profile is observed under the high power operation at the current of 500 mA. It is thought to be due to spatial multi-mode emission in the aperture. This result shows that the apertures formed by the ion implantation technique have the capability of the high current isolation in the wide range of operation current.

 

Fig. 2 Cross-sectional SEM images of the device.

Download Full Size | PPT Slide | PDF

 

Fig. 3 NFPs and their profiles at output powers of 100 mW, 150 mW and 200 mW.

Download Full Size | PPT Slide | PDF

3. Results and discussions

Next, we focus on output performances. In order to obtain high power density, it is important to reduce the thermal roll-over of light output. In the conventional edge-emitting laser diodes, the solution for the issue is limited to the suppression of carrier overflow or the operation at lower temperature. In the VCSELs, another approach can be available. The VCSELs have two characteristic wavelengths (the maximum gain wavelength λgain and the cavity wavelength λcav), and these wavelengths differently shift with the injection current [16]. The VCSELs provide high performance in case of the detuning |λgain-λcav| is equal to zero. Basically, the detuning is adjusted to zero [16, 17]. In this case, the low threshold current and the excellent performance can be obtained at a low output power around the threshold. However, the efficiency decreases with increasing current due to the increase of detuning. This can be one of factors of the thermal roll-over phenomena in the VCSELs. To obtain an excellent performance at high injection current, we designed the laser structure to minimize the detuning at the high injection current [18].

The light-output current characteristics at temperatures ranging from 15 to 75 °C under CW operation are shown in Fig. 4 . The maximum output power of over 380 mW has been achieved at 15 °C. Note that the estimated power density is 4.9 kW/cm2, higher than that of the previous reports on the high power single VCSELs [1, 2, 7, 1315]. And more the device exhibits the superior output characteristic than any other ion implanted VCSELs [11, 12]. Figure 5 shows the current dependence of slope efficiency (SE) at 15 °C. The maximum SE is 0.96 W/A, which is comparable to that of other reports [1922]. In spite of the ordinary value of SE, the high power density is the result of suppression of roll-over phenomena by the nonzero-detuning (|λgain-λcav| ≠ 0) at the threshold as mentioned above [18]. The SE shows wavy behavior probably due to the spatial multimodal property observed in Fig. 3.

 

Fig. 4 Light-output current characteristics at temperature ranging form 15 to 75 °C.

Download Full Size | PPT Slide | PDF

 

Fig. 5 SE at 15 °C under CW operation.The curve is calculated from the light-output current characteristics of the device and smoothed.

Download Full Size | PPT Slide | PDF

In order to increase output power, larger aperture and/or high power density are necessary. One way to higher power density would be further suppression of the thermal roll-over of output power as shown in Fig. 4. More increase of detuning at the threshold would be a possible way for this purpose. However, this is not practical. Figure 6 shows the temperature dependence on the threshold current. The threshold drastically increases at lower temperature where the detuning is large. It is predicted that further increase of the detuning leads significant increase of the threshold. Thus, decreasing heat generation is important to increase the power density. So we believe that higher output power will be achieved with higher conductive DBR layers. Using external optical system also has a possibility to increase the power density. In fact, high power density of over 7 kW/cm2 from an external cavity VCSEL was reported [18]. However, that approach would not be suitable for 2D-array structure because the external optics makes the fabrication process complex.

 

Fig. 6 Temperature dependence on threshold current.

Download Full Size | PPT Slide | PDF

Figure 7 shows the typical optical spectrum at CW output power of 250 mW at RT measured by a spectrometer with spectral resolution of 0.1 nm. The spectral width is around 0.4 nm. Despite the high power characteristics, a high background suppression ratio of over 40 dB has been achieved without any parasitic emission.

 

Fig. 7 Typical optical spectrum at CW output power of 250 mW at RT.

Download Full Size | PPT Slide | PDF

Figure 8 shows the current dependence of the emission wavelength. The wavelength-current coefficient is estimated to be 0.06 Å/mA which is comparable to that of distributed feedback laser diodes with an excellent wavelength stability [23]. Additionally, we evaluated the variance of output characteristics in the 50 devices. These devices were operated at 200 mA DC at RT. The mean value and the standard deviation of output powers are estimated to be 96.7 and 5.2 mW, respectively. The small variance indicates that the homogeneous characteristics in the devices can be obtained by the ion implantation technique.

 

Fig. 8 Current dependence of emission wavelengths.

Download Full Size | PPT Slide | PDF

4. Summary

We have presented the high power density characteristic of single VCSEL with the isolated current aperture formed by the ion implantation technique. The NFP profiles prove the effective current isolation in the aperture. The CW output power of over 380 mW and the high power density of 4.9 kW/cm2 have been achieved at 15 °C by optimizing the detuning between λgain and λcav. The high background suppression ratio of over 40 dB has been obtained at the emission wavelength of 970 nm. We also confirmed the small variance of output characteristics in the 50 devices. From these results, the isolated current apertures formed by the ion implantation technique would be a key technology to realize the high power VCSEL arrays.

Acknowledgments

This work is partly supported by New Energy and Industrial Technology Development Organization (NEDO) in Japan.

References and links

1. M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999). [CrossRef]  

2. L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 64 (2005).

3. T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007). [CrossRef]  

4. F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004). [CrossRef]  

5. D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994). [CrossRef]  

6. J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008). [CrossRef]  

7. L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011). [CrossRef]  

8. K. L. Lear, S. P. Kilcoyne, R. P. Schneider Jr, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996). [CrossRef]  

9. F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003). [CrossRef]  

10. H. D. Kim, W. G. Jeong, H. E. Shin, J. H. Ser, H. K. Shin, and Y. G. Ju, “Reliability in the oxide vertical-cavity surface-emitting lasers exposed to electrostatic discharge,” Opt. Express 14(25), 12432–12438 (2006). [CrossRef]   [PubMed]  

11. M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990). [CrossRef]  

12. K. L. Lear, S. P. Kilcoyne, and S. A. Chalmers, “High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 6(7), 778–781 (1994). [CrossRef]  

13. Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010). [CrossRef]   [PubMed]  

14. Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

15. M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001). [CrossRef]  

16. J. Piprek, Semiconductor Optoelectronic Devices (Academic Press, 2003).

17. D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993). [CrossRef]  

18. E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003). [CrossRef]  

19. H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010). [CrossRef]  

20. Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010). [CrossRef]   [PubMed]  

21. K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010). [CrossRef]  

22. D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011). [CrossRef]  

23. A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
    [CrossRef]
  2. L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 64 (2005).
  3. T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
    [CrossRef]
  4. F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
    [CrossRef]
  5. D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994).
    [CrossRef]
  6. J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
    [CrossRef]
  7. L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
    [CrossRef]
  8. K. L. Lear, S. P. Kilcoyne, R. P. Schneider, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996).
    [CrossRef]
  9. F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
    [CrossRef]
  10. H. D. Kim, W. G. Jeong, H. E. Shin, J. H. Ser, H. K. Shin, and Y. G. Ju, “Reliability in the oxide vertical-cavity surface-emitting lasers exposed to electrostatic discharge,” Opt. Express 14(25), 12432–12438 (2006).
    [CrossRef] [PubMed]
  11. M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
    [CrossRef]
  12. K. L. Lear, S. P. Kilcoyne, and S. A. Chalmers, “High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 6(7), 778–781 (1994).
    [CrossRef]
  13. Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
    [CrossRef] [PubMed]
  14. Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).
  15. M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
    [CrossRef]
  16. J. Piprek, Semiconductor Optoelectronic Devices (Academic Press, 2003).
  17. D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
    [CrossRef]
  18. E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
    [CrossRef]
  19. H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
    [CrossRef]
  20. Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
    [CrossRef] [PubMed]
  21. K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
    [CrossRef]
  22. D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
    [CrossRef]
  23. A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
    [CrossRef]

2011 (2)

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

2010 (4)

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

2009 (1)

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

2008 (1)

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

2007 (1)

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

2006 (1)

2005 (2)

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 64 (2005).

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

2004 (1)

F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
[CrossRef]

2003 (2)

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

2001 (1)

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

1999 (1)

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

1996 (1)

K. L. Lear, S. P. Kilcoyne, R. P. Schneider, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996).
[CrossRef]

1994 (2)

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994).
[CrossRef]

K. L. Lear, S. P. Kilcoyne, and S. A. Chalmers, “High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 6(7), 778–781 (1994).
[CrossRef]

1993 (1)

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

1990 (1)

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Baier, J.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Braun, M.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Bugge, F.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Cantos, B. D.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Carey, G. P.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Chalmers, S. A.

K. L. Lear, S. P. Kilcoyne, and S. A. Chalmers, “High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 6(7), 778–781 (1994).
[CrossRef]

Chang, Y. H.

F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
[CrossRef]

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Chang-Hasnain, C.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Clausen, E.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Coldren, L. A.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Cong, H.

Corzine, S. W.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Cui, J.

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

D’Asaro, L. A.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

D'Asaro, L. A.

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 64 (2005).

Deppe, D. G.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994).
[CrossRef]

Doan, V. V.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Ebeling, K. J.

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Erbert, G.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Florez, L. T.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Fricke, J.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Ghosh, C. L.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

Grabherr, M.

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Gronenborn, S.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Ha, W.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Harbison, J. P.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Heald, D. L.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Hiraiwa, K.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Hitchens, W. R.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Hsueh, T. H.

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Hu, Y.

Huffaker, D. L.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994).
[CrossRef]

Imai, S.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Ishikawa, T.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Iwai, N.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Jäger, R.

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Jeong, W. G.

Jewell, J. E.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Ju, Y. G.

Kamiya, S.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Kasukawa, A.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Kawakita, Y.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Kennedy, K. W.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Khalfin, V.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

Kilcoyne, S. P.

K. L. Lear, S. P. Kilcoyne, R. P. Schneider, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996).
[CrossRef]

K. L. Lear, S. P. Kilcoyne, and S. A. Chalmers, “High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 6(7), 778–781 (1994).
[CrossRef]

Kim, H. D.

King, R.

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

Klehr, A.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Knauer, A.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Kolb, J.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Kumar, K.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994).
[CrossRef]

Kuo, H. C.

F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
[CrossRef]

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Lai, F. I.

F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
[CrossRef]

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Lai, L. H.

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Laih, L. H.

F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
[CrossRef]

Lear, K. L.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

K. L. Lear, S. P. Kilcoyne, R. P. Schneider, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996).
[CrossRef]

K. L. Lear, S. P. Kilcoyne, and S. A. Chalmers, “High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 6(7), 778–781 (1994).
[CrossRef]

Lee, D.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Lehmen, A. C. V.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Lewis, A.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Li, T.

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

Liu, D.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Liu, G.

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

Liu, J.

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

Liu, Y.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

Majewski, M. L.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Martin, U.

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Mcinerney, J. G.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Michalzik, R.

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Miglo, A.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

Miller, M.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Moench, H.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Mooradian, A.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Nevers, J. A.

K. L. Lear, S. P. Kilcoyne, R. P. Schneider, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996).
[CrossRef]

Ning, Y.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

Orenstein, M.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Pekarski, P.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Peters, F. H.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Peters, M. G.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Pradhan, P.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

Qin, L.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

Ressel, P.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Rogers, T. J.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994).
[CrossRef]

Schemmann, M.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Schneider, R. P.

K. L. Lear, S. P. Kilcoyne, R. P. Schneider, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996).
[CrossRef]

Scott, J. W.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Ser, J. H.

Seurin, J. F.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 64 (2005).

Shchegrov, A. V.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Shi, J.

Shimizu, H.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Shin, H. E.

Shin, H. K.

Shu, W. C.

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Stoffel, N. G.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Strzelecka, E. M.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Sun, Y.

Takagi, T.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Takaki, K.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Thibeault, B. J.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Tong, C.

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Tränkle, G.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Tsukiji, N.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Unold, H. J.

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Valster, A.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Wang, C.

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

Wang, L.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

Wang, S. C.

F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
[CrossRef]

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Wang, W.

Wang, Y.

Wang, Z.

Watson, J. P.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Wenzel, H.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Wynn, J. D.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 64 (2005).

Xu, G.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

Xu, H.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

Young, D. B.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Zeng, Y.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Zhang, J.

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

Zhang, L.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Zhang, X.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

Zhang, Y.

Zhou, H.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Express (2)

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994).
[CrossRef]

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. L. Lear, S. P. Kilcoyne, and S. A. Chalmers, “High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 6(7), 778–781 (1994).
[CrossRef]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

J. Lumin. (1)

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

Opt. Express (2)

Photon. Spectra (1)

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 64 (2005).

Proc. SPIE (7)

F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
[CrossRef]

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

K. L. Lear, S. P. Kilcoyne, R. P. Schneider, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996).
[CrossRef]

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Solid-State Electron. (1)

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Other (1)

J. Piprek, Semiconductor Optoelectronic Devices (Academic Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic structure of the ion implanted VCSEL. The ion implanted aperture diameter is set to be 100 μm.

Fig. 2
Fig. 2

Cross-sectional SEM images of the device.

Fig. 3
Fig. 3

NFPs and their profiles at output powers of 100 mW, 150 mW and 200 mW.

Fig. 4
Fig. 4

Light-output current characteristics at temperature ranging form 15 to 75 °C.

Fig. 5
Fig. 5

SE at 15 °C under CW operation.The curve is calculated from the light-output current characteristics of the device and smoothed.

Fig. 6
Fig. 6

Temperature dependence on threshold current.

Fig. 7
Fig. 7

Typical optical spectrum at CW output power of 250 mW at RT.

Fig. 8
Fig. 8

Current dependence of emission wavelengths.

Metrics