Abstract

Precise weight measurements of stainless steel, PZT and PMMA samples were performed after groove machining with femtosecond laser pulses (150 fs, 800 nm, 5 kHz) to determine volume ablation rates and ablation threshold with good accuracy. Weighing clearly enables faster determination of such phenomenological parameters without any methodological issue compared to other methods. Comparisons of the three types of materials reveal similar monotonous trends depending on peak fluences from 0.2 to 15 J/cm2. The metallic target exhibits both the lowest volume ablation rate under the highest irradiation conditions with almost 400 µm3/pulse and the lowest ablation threshold with 0.13 J/cm2. Ceramic PZT reaches 3.103 µm3/pulse with a threshold fluence of 0.26 J/cm2 while polymer PMMA attains 104 µm3/pulse for a 0.76 J/cm2 threshold. Pros and cons of this method are also deduced from complementary results obtained on microscopic and confocal characterizations.

© 2012 OSA

1. Introduction

Precise micromachining using ultrashort-pulses have drawn growing interest for more than a decade [1, 2]. Femtosecond lasers have demonstrated their capability of drilling [3, 4], cutting [5], structuring [6, 7] or marking [8] any kind of material, from metallic targets [9] to organic tissues [10] with good controllability and reduced collateral heat damage [11, 12]. Their main characteristic among other lasers lies in the pulse duration much shorter than the electron-phonon relaxation time [13] and involving high intensities even at low energies. As a consequence, ablation of usual transparent materials at certain wavelengths is possible thanks to non-linear multiphotonic absorption and impact ionization [14]. Since laser-matter interactions are quite complex at these time scales, specific features were developed to macroscopically control the process. The ablation rate and the ablation threshold help classifying materials by quantifying the effect of the processing parameters [15, 16].

The threshold fluence is a critical parameter in laser/matter interaction for precise control of processes. Several methods were developed to determine this parameter exhibiting high discrepancies of the values [17].

The ablation rate, which is related to the depth per pulse, depends on both mechanical properties of the process (energy, scan speed, focusing, beam overlap, etc.) [18, 19] and properties of the material (electronic and lattice structure, thermal and optical absorptions…) [20]. However its determination raises many issues reported in the literature which were summarized in ref [21]. The depths of the machined features such as holes or grooves can be very difficult to estimate. Probe sensing [18, 22], optical profilometry [23, 24], coated replicas [4], profile observation [19, 25], tomography [3] are some of the methods employed for their estimation. Furthermore, in the case of dynamic machining, the analysis method for the calculation of the number of pulses which locally irradiates the material can lead to significant discrepancies in the experimental results [21]. Until now, no clear protocol has ever been defined without any ambiguity.

The ablated volume was also studied rather than the ablated depth, which refers to the total energy absorbed by the material in 3 dimensions [26]. On the one hand it implies that the depth is not necessarily known, but on the other hand, misleading interpretations can be avoided by considering depth, shape and impact diameter together.

But volume ablation rates are generally less considered because of their measurement methods. To our knowledge, most of the estimated volumes were deduced from long and expensive profilometric or microscopic techniques which only provide information on a very-localized area. For instance, atomic force microscopy is often used for measuring volumes of cavities [17, 22]. However such techniques are no more efficient for deep or chaotic features as it can be observed at high fluences [25]. Other methods were imagined to measure the volume ablation rate but they were only applicable to specific cases. Gonzales et al. [27] estimated the ablated volume to drill metallic foils by considering a conical ablated shape whose depth was equivalent to the foil thickness. Volume and mass ablation was then deduced knowing the number of pulses and the material density.

In this study, we propose a fast and simple method based on differential weighing (DW) which allows deducing the volume ablation rate and threshold fluence with good accuracy. Such a technique was very briefly used with ranges from mg to g to determine the mass ablation rate of materials using a nanosecond laser [28] or the mass ablation speed using a picosecond laser [29] but has not been developed yet for accurate volume and threshold estimations on femtosecond processes. The consistency of the method was finally tested by comparing results with confocal and optical characterizations on a metal (stainless steel), a ceramic (PZT) and a polymer (PMMA).

2. Experimental details

Laser machining was performed using a Ti:Sapphire amplified laser which delivers 150 fs and 400 µJ pulses at a central wavelength of 800 nm. All the experiments were carried out under atmospheric conditions at a repetition rate of 5 kHz. The setup is presented on Fig. 1 . Power control was performed using a combination of a rotary half wave plate (λ/2) and a polarizing beam splitter (BS) and checked with a thermopile power meter after the focusing lens. The output beam of ~7.18 mm was diaphragmed through a 7 mm pinhole (P) to avoid edge defects. The focal plane was imaged and magnified four times on a beam analyzing camera (BA) while temporal duration was observed through an autocorrelator (AC). The waist (half width at 1/e2) of the beam was estimated to be around 34 µm with a 15% ellipticity after a 250 mm achromatic doublet (AD) lens. A long focal length was chosen for an easier groove characterization and a less critical sample positioning. The samples were set at the focal plane on XYZ translation stages and moved at a speed v of 5 mm/s. The peak fluence is defined as Fc = 2Epω02.

 

Fig. 1 Experimental setup of the laser machining. M1-2-3-4, mirrors; BS, polarizing beam splitter; P, Pinhole; FF1-2, flip-flop mirrors; L1-2, Lenses; AD, achromatic doublet lenses; BA, beam analyzer; AC, AutoCorrelator; D, Dichroïc; P, Laser Pointer; S, sample (on a x–y–z computerized stage).

Download Full Size | PPT Slide | PDF

Samples consist of 10x10 mm2 316L stainless steel plates with a 900 µm thickness (ρ = 7900 µg/cm3), 10x10 mm2 PZT plates with a 180 µm thickness (ρ = 7600 µg/cm3) and 10x10 mm2 PMMA plates with a 8 mm thickness (ρ = 1200 µg/cm3). On each sample, sixteen 8mm-long grooves were machined with 4 passes. For each material, 12 peak fluences ranging from 0.2 to 15 J/cm2 were used. It is to note that a higher number of lines can be machined close to the threshold fluence to increase mass variation according to the balance sensitivity.

Weighing was performed using a Cubis® 6202S micro-balance from Sartorius. The repetability of this device is 1 µg which allows the possibility to easily detect change in weight even close to the threshold. Confocal profilometry and profile observation were also used as comparative techniques.

3. Weighing methodology and protocol

The differential weighing (DW) method is based on a mass measurement of ablated material. The sample is weighed before and after machining. The difference Δm in the sample mass corresponds to the mass of ablated material.

But it is important to ensure that no dust or removed material is taken into account during the two weighings. This can be achieved by a specific cleaning process before each weighing. In our case, samples are immerged into two ultrasonic baths of acetone and ethanol successively for three minutes. Acetone removes organic material and ethanol helps diluting acetone and residual traces. Special care should be taken to avoid temperature difference between the sample and the weighing pan which can lead to significant drift in the measurement. The samples were finally dried in ambient air and left several hours next to the micro-balance to ensure temperature equilibrium and consequently, reduce the error on mass measurement. Some materials such as polymers can react with acetone or ethanol. For PMMA samples, acetone and ethanol were replaced by soapy distilled water and distilled water respectively. In this case, the ultrasonic cleaning was preceded by a hand cleaning with soft paper and soapy water. To test the repeatability of the whole weighing process (cleaning + weighing + temperature influence), a 500 mg stainless steel sample was cleaned and weighed 10 times within a day showing a maximal mass variation of 3 µg which will be considered as the measurement error on the mass.

Knowing the volume density ρ of the material, the ablated volume ΔV can be deduced as:

ΔV=Δmρ
The volume ablation rate τvol being the ablated volume per pulse, it is important to calculate the number of pulses Np which were used to machine the target. In the static case (micro-cavity machining or drilling), Np is easily defined by the operator himself. In the dynamic case (grooves machining or cutting), the number of pulses has to be calculated using the mechanical parameters of the setup. First, Np depends on the repetition rate of the laser C, the velocity of the translation stage v, and the total length of the grooves Ltot:
Np=CLtotv
The total length of the process simply depends on the length of the machining path Lpath and on the number of passes k on this path:
Ltot=kLpath
Inserting Eq. (3) in Eq. (2) gives the experimental expression of the number of pulses used to machine the sample:
Np=CkLtotv
In our experiments, C = 5 kHz, k = 4, Lpath = 16 x 8 mm and v = 5 mm/s which gives a total machined length of 512 mm with 512000 pulses. The ablated volume and the number of pulses being calculated, the exact volume ablation rate τvol can be determined by combining Eq. (1) and Eq. (4):

τvol=ΔVNp=ΔmvρCkLpath

The differential weighing method permits to easily determine volume ablation rates by measuring the mass of ablated material during laser machining. The higher the ablated mass is, the more accurate the ablation rate is. In the meantime, laser machining must not be too long and the sample surface can be limited for several reasons (smallness, cost, etc.). Thus, it is necessary to adjust the ablated mass according to the balance characteristics, to the machining time and to the available amount of material.

The ablated mass Δm can be adjusted by changing the number of pulses during laser machining. The laser/matter interaction depending on the process properties (scan speed, repetition rate, number of passes, beam size and average power, etc.) [18, 19], the best way to increase the ablated mass is to increase the grooves length Lpath.

To test the reliability and the accuracy of this method, results were compared to confocal optical profilometry. Such microscopes were already used for measuring depths in the order of tenths of microns as demonstrated in previous studies for mineral materials [30, 31]. In our set-up, confocal optical microscopy was performed using a commercial setup (Leica SP2) mount with a x63 water immersion objective for stainless steel and PZT and a x40 immersion objective for PMMA. A HeNe laser at 543 nm was used as the illumination source. This optical sectioning microscopy allows us to acquire images of a thin x-y slice at different depths of a sample by removing the out of focus light in each image plane. The z-stack representing the surface of the sample is then computed for topographic representation and the volume of the groove could be reached. Confocal optical microscope has a better resolution than conventional optical microscope, and was estimated in our set-up at 200 nm in lateral direction and 1µm in the axial one [32]. For these resolutions, the field is limited to 240 µm for stainless steel and PZT (Np = 950 pulses) and 375 µm for PMMA (Np = 1500 pulses).

4. Results and discussion

Results for stainless steel are first presented in Fig. 2 . Mass variations were measured, ranging from 26 µg at a fluence of 0.2 J/cm2 to 1628 µg at a fluence of 14.6 J/cm2 with a measurement error of ± 6 µg. Volume ablation rates were deduced by both differential weighing and confocal methods according to (5). DW and confocal measurements are in good agreement. The volume ablation rate varies from 7 µm3/pulse at 0.2 J/cm2 to 400 µm3/pulse at 14.6 J/cm2. A linear regression on the DW volume ablation rate curve at low fluence leads to a peak fluence threshold of 0.13 J/cm2, close to the 0.14 J/cm2 presented in ref [9]. within roughly the same laser parameters.

 

Fig. 2 Evolution of the volume ablation rate for stainless steel measured by confocal microscopy (circles) and DW method (squares). Waist around 34µm.

Download Full Size | PPT Slide | PDF

It is to note that the DW curve is very smooth while an unexpected step appears around 3.5 J/cm2 on the confocal one. Moreover, the difference between DW and confocal results increases with fluence.

Figures 3(a) and 3(b) present 3D topographic views of stainless steel samples at 0.8 and 4.1 J/cm2 obtained with confocal microscopy and the mean resulting profiles. Moreover, these samples were cut orthogonally to the grooves direction, molded in a KM-U polymer and mirror-polished to enable the observation of the 16 grooves cross-sections. Three of them are shown on Figs. 3(c) and 3(d) to compare the results. Profiles are very similar for low fluences. At fluences higher than 4.1 J/cm2, profiles exhibit strong roughness and vary significantly from one cross-section to another. This trend is amplified with increasing fluence. Such chaotic profiles involve troubles for confocal characterizations and induce under-estimations of the ablated volumes. The error is hardly predictable since it depends on both the resolution of the profilometric technique and the roughness of the machined zone. In the case of cross-section observations, errors can also be made by considering only one profile as representative of the whole machined area. Time consuming analyses of multiple profiles are necessary to get correct mean estimations of the ablated volume. Nevertheless, this method has the advantage to be the only way to see recast in a groove at the expense of destructing the sample.

 

Fig. 3 Topographic views of the stainless steel sample obtained by confocal microscopy and average profile for (a) 0.8 J/cm2 and (b) 4.1 J/cm2. Three examples of cross-sections directly observed by optical microscopy for (c) 0.8 J/cm2 and (d) 4.1 J/cm2.

Download Full Size | PPT Slide | PDF

The same study was performed on both PZT (Fig. 4 ) and PMMA (Fig. 5 ), except for the profile observation part, to test the robustness of the DW method. Mass measurements Δm vary from 144 µg to 11370 µg for PZT and from 6 µg to 6161 µg for PMMA on the same fluence range. According to Eq. (6), both materials are ablated faster than stainless steel, with maximum volume ablation rates of 2900 µm3/pulse and 10200 µm3/pulse for PZT and PMMA respectively. The ablation threshold of PZT is estimated to be around 0.26 J/cm2, less than the two values of 0.38 and 0.29 J/cm2 obtained in ref [21].

 

Fig. 4 Evolution of the volume ablation rate for PZT ceramic measured by confocal microscopy (circles) and DW method (squares). Waist around 34µm.

Download Full Size | PPT Slide | PDF

 

Fig. 5 Evolution of the volume ablation rate for PMMA polymer measured by confocal microscopy (circles) and DW method (squares). Waist around 34µm.

Download Full Size | PPT Slide | PDF

As compared to stainless steel, confocal measurements systematically underestimate the ablated volumes for all tested fluences. The upper surface roughness is around 3 µm, which can imply this systematic error on the volume estimations. However, DW and confocal curves look very similar even at high fluences despite features deeper than in stainless steel. This smaller discrepancy can be explained by the smoother and more regular bottoms of the ceramic grooves.

For PMMA, the threshold fluence is around 0.59 J/cm2, higher than the two other materials while ablated volumes are much higher. Intensities have to be high enough to generate non-linear absorptions in a material usually transparent at this wavelength. Depths increase so quickly that confocal microscopy cannot detect bottoms after 4 J/cm2, revealing the limits of most of the profiling techniques. As compared to DW, deep features can easily be used for ablation estimations.

It has to be noted that saturation was never observed in the studied range of fluence with mass measurements. DW seems efficient enough to be used for any regime of ablation since it is not based on profiling. Even next to the ablation threshold, an increase in the machined features can lead to a sufficient mass measurement to deduce ablation.

5. Conclusion

We presented a new method for determining the volume ablation rate characterizing the interaction between the laser process and the machined material. This method is based on a differential weighing of the sample before and after machining. The weight difference corresponds to the amount of material which has been removed during laser machining.

Demonstration was made on three different types of material: a metal (stainless steel), a ceramic (PZT) and a polymer (PMMA). For each material, a comparison was led between differential weighing and confocal microscopy. Results were similar, and differences were correlated to the inhomogeneity of the groove profile thanks to a microscopic line section analysis.

Fast, user-friendly and affordable, DW method allows a quasi-real-time optimization of a process. But it also presents physical advantages. The first one is that measuring the ablated mass leads to a precise volume ablation rate averaged on a very high number of pulses and to an accurate detection of material removal corresponding to the definition of the ablation threshold. Secondly, DW method does not depend on the machined groove profile or roughness of the sample compared to other microscopic or profilometric techniques. It is applicable for both industrial processes and fundamental researches since mass detection is independent of the studied range of fluences. Of course, differential weighing gives no information concerning the shapes of the features and profilometric techniques remain necessary to check the quality of machining. Moreover, knowing the total ablated volume and the total time of machining, DW method can be used to estimate the processing time of any machining under the same experimental conditions.

This paper deals with the application of differential weighing method for volume ablation rate in the case of femtosecond laser/matter interaction. But the method can be applicable to any pulsed laser machining.

Acknowledgment

Authors are gratefully thanking Aurelie Mourgues from Sartorius who gives us the possibility to freely perform weighings on a Cubis® 6202S micro-balance.

References and links

1. N. H. Rizvi, “Femtosecond laser micromachining: Current status and applications,” Riken Rev. 50, 107–112 (2003).

2. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997). [CrossRef]  

3. H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process. 101(2), 271–278 (2010). [CrossRef]  

4. G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).

5. X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010). [CrossRef]  

6. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 77, 229–235 (2003).

7. L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira Jr, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc. 12, 67–75 (2011). [CrossRef]  

8. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010). [CrossRef]   [PubMed]  

9. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997). [CrossRef]  

10. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J Biophotonics 2(10), 557–572 (2009). [CrossRef]   [PubMed]  

11. R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002). [CrossRef]  

12. S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci. 239(3-4), 381–386 (2005). [CrossRef]  

13. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996). [CrossRef]  

14. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996). [CrossRef]   [PubMed]  

15. P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE 4876, 470–478 (2003). [CrossRef]  

16. M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE 4423, 178–185 (2001). [CrossRef]  

17. N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009). [CrossRef]  

18. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005). [CrossRef]  

19. J. P. Desbiens and P. Masson, “ArF excimer laser micromachining of pyrex, SiC and PZT for rapid prototyping of MEMS components,” Sens. Actuators A Phys. 136(2), 554–563 (2007). [CrossRef]  

20. J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B 71(16), 1–6 (2005). [CrossRef]  

21. Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng. 50(11), 1582–1591 (2012). [CrossRef]  

22. J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process. 69(7), S399–S402 (1999). [CrossRef]  

23. W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci. 255(5), 2303–2311 (2008). [CrossRef]  

24. Y. Huang, S. Liu, W. Li, Y. Liu, and W. Yang, “Two-dimensional periodic structure induced by single-beam femtosecond laser pulses irradiating titanium,” Opt. Express 17(23), 20756–20761 (2009). [CrossRef]   [PubMed]  

25. V. Kara and H. Kizil, “Titanium micromachining by femtosecond laser,” Opt. Lasers Eng. 50(2), 140–147 (2012). [CrossRef]  

26. B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE 8243, 824307 1–13 (2012).

27. P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE 5458, 265–272 (2004). [CrossRef]  

28. S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem. 72(9), 2087–2092 (2000). [CrossRef]   [PubMed]  

29. B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004). [CrossRef]  

30. M. K. Head and N. R. Buenfeld, “Confocal imaging of porosity in hardened concrete,” Cement Concr. Res. 36(5), 896–911 (2006). [CrossRef]  

31. J. T. Fredrich, “3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes,” Phys. Chem. Earth A 24(7), 551–561 (1999). [CrossRef]  

32. T. R. Corle and G. S. Kino, Confocal scanning optical microscopy and related imaging systems (Academic Press, 1996).

References

  • View by:
  • |
  • |
  • |

  1. N. H. Rizvi, “Femtosecond laser micromachining: Current status and applications,” Riken Rev. 50, 107–112 (2003).
  2. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
    [Crossref]
  3. H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process. 101(2), 271–278 (2010).
    [Crossref]
  4. G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).
  5. X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
    [Crossref]
  6. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 77, 229–235 (2003).
  7. L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc. 12, 67–75 (2011).
    [Crossref]
  8. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
    [Crossref] [PubMed]
  9. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
    [Crossref]
  10. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J Biophotonics 2(10), 557–572 (2009).
    [Crossref] [PubMed]
  11. R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
    [Crossref]
  12. S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci. 239(3-4), 381–386 (2005).
    [Crossref]
  13. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [Crossref]
  14. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  15. P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE 4876, 470–478 (2003).
    [Crossref]
  16. M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE 4423, 178–185 (2001).
    [Crossref]
  17. N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
    [Crossref]
  18. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
    [Crossref]
  19. J. P. Desbiens and P. Masson, “ArF excimer laser micromachining of pyrex, SiC and PZT for rapid prototyping of MEMS components,” Sens. Actuators A Phys. 136(2), 554–563 (2007).
    [Crossref]
  20. J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B 71(16), 1–6 (2005).
    [Crossref]
  21. Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng. 50(11), 1582–1591 (2012).
    [Crossref]
  22. J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process. 69(7), S399–S402 (1999).
    [Crossref]
  23. W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci. 255(5), 2303–2311 (2008).
    [Crossref]
  24. Y. Huang, S. Liu, W. Li, Y. Liu, and W. Yang, “Two-dimensional periodic structure induced by single-beam femtosecond laser pulses irradiating titanium,” Opt. Express 17(23), 20756–20761 (2009).
    [Crossref] [PubMed]
  25. V. Kara and H. Kizil, “Titanium micromachining by femtosecond laser,” Opt. Lasers Eng. 50(2), 140–147 (2012).
    [Crossref]
  26. B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE 8243, 824307 1–13 (2012).
  27. P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE 5458, 265–272 (2004).
    [Crossref]
  28. S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem. 72(9), 2087–2092 (2000).
    [Crossref] [PubMed]
  29. B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
    [Crossref]
  30. M. K. Head and N. R. Buenfeld, “Confocal imaging of porosity in hardened concrete,” Cement Concr. Res. 36(5), 896–911 (2006).
    [Crossref]
  31. J. T. Fredrich, “3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes,” Phys. Chem. Earth A 24(7), 551–561 (1999).
    [Crossref]
  32. T. R. Corle and G. S. Kino, Confocal scanning optical microscopy and related imaging systems (Academic Press, 1996).

2012 (3)

Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng. 50(11), 1582–1591 (2012).
[Crossref]

V. Kara and H. Kizil, “Titanium micromachining by femtosecond laser,” Opt. Lasers Eng. 50(2), 140–147 (2012).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE 8243, 824307 1–13 (2012).

2011 (1)

L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc. 12, 67–75 (2011).
[Crossref]

2010 (3)

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
[Crossref] [PubMed]

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process. 101(2), 271–278 (2010).
[Crossref]

2009 (3)

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Y. Huang, S. Liu, W. Li, Y. Liu, and W. Yang, “Two-dimensional periodic structure induced by single-beam femtosecond laser pulses irradiating titanium,” Opt. Express 17(23), 20756–20761 (2009).
[Crossref] [PubMed]

2008 (1)

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci. 255(5), 2303–2311 (2008).
[Crossref]

2007 (1)

J. P. Desbiens and P. Masson, “ArF excimer laser micromachining of pyrex, SiC and PZT for rapid prototyping of MEMS components,” Sens. Actuators A Phys. 136(2), 554–563 (2007).
[Crossref]

2006 (1)

M. K. Head and N. R. Buenfeld, “Confocal imaging of porosity in hardened concrete,” Cement Concr. Res. 36(5), 896–911 (2006).
[Crossref]

2005 (3)

J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B 71(16), 1–6 (2005).
[Crossref]

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci. 239(3-4), 381–386 (2005).
[Crossref]

2004 (2)

P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE 5458, 265–272 (2004).
[Crossref]

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[Crossref]

2003 (4)

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE 4876, 470–478 (2003).
[Crossref]

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).

N. H. Rizvi, “Femtosecond laser micromachining: Current status and applications,” Riken Rev. 50, 107–112 (2003).

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 77, 229–235 (2003).

2002 (1)

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

2001 (1)

M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE 4423, 178–185 (2001).
[Crossref]

2000 (1)

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem. 72(9), 2087–2092 (2000).
[Crossref] [PubMed]

1999 (2)

J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process. 69(7), S399–S402 (1999).
[Crossref]

J. T. Fredrich, “3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes,” Phys. Chem. Earth A 24(7), 551–561 (1999).
[Crossref]

1997 (2)

S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[Crossref]

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

1996 (2)

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Ang, B. C. Y.

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process. 101(2), 271–278 (2010).
[Crossref]

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

Audouard, E.

Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng. 50(11), 1582–1591 (2012).
[Crossref]

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
[Crossref] [PubMed]

J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B 71(16), 1–6 (2005).
[Crossref]

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci. 239(3-4), 381–386 (2005).
[Crossref]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Baudach, S.

J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process. 69(7), S399–S402 (1999).
[Crossref]

Bauer, T.

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).

Bernath, R.

P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE 5458, 265–272 (2004).
[Crossref]

Bonneau, F.

J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B 71(16), 1–6 (2005).
[Crossref]

Bonse, J.

J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process. 69(7), S399–S402 (1999).
[Crossref]

Breitling, D.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

Buenfeld, N. R.

M. K. Head and N. R. Buenfeld, “Confocal imaging of porosity in hardened concrete,” Cement Concr. Res. 36(5), 896–911 (2006).
[Crossref]

Bussiere, B.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Cazottes, P.

Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng. 50(11), 1582–1591 (2012).
[Crossref]

Chan, S. Y.

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem. 72(9), 2087–2092 (2000).
[Crossref] [PubMed]

Cheung, N. H.

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem. 72(9), 2087–2092 (2000).
[Crossref] [PubMed]

Chichkov, B. N.

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 77, 229–235 (2003).

S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Chu, P. L.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process. 101(2), 271–278 (2010).
[Crossref]

Chung, S. H.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

Colombier, J. P.

Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng. 50(11), 1582–1591 (2012).
[Crossref]

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
[Crossref] [PubMed]

J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B 71(16), 1–6 (2005).
[Crossref]

Combis, P.

J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B 71(16), 1–6 (2005).
[Crossref]

Coustillier, G.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Coyne, E.

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE 4876, 470–478 (2003).
[Crossref]

Dausinger, F.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

de Rossi, W.

L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc. 12, 67–75 (2011).
[Crossref]

Desbiens, J. P.

J. P. Desbiens and P. Masson, “ArF excimer laser micromachining of pyrex, SiC and PZT for rapid prototyping of MEMS components,” Sens. Actuators A Phys. 136(2), 554–563 (2007).
[Crossref]

Di Maio, Y.

Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng. 50(11), 1582–1591 (2012).
[Crossref]

Donnet, C.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

Du, K.-M.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[Crossref]

Duering, M.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[Crossref]

Duncan, J.

P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE 5458, 265–272 (2004).
[Crossref]

Dusser, B.

Egbert, A.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 77, 229–235 (2003).

Fallnich, C.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 77, 229–235 (2003).

Faure, N.

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Föhl, C.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

Fortunier, R.

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci. 239(3-4), 381–386 (2005).
[Crossref]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Fraczkiewicz, A.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Fredrich, J. T.

J. T. Fredrich, “3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes,” Phys. Chem. Earth A 24(7), 551–561 (1999).
[Crossref]

Freitas, A. Z.

L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc. 12, 67–75 (2011).
[Crossref]

Geuss, M.

J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process. 69(7), S399–S402 (1999).
[Crossref]

Giesekus, J.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[Crossref]

Gobert, O.

M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE 4423, 178–185 (2001).
[Crossref]

Gonzales, P.

P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE 5458, 265–272 (2004).
[Crossref]

Hashida, M.

M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE 4423, 178–185 (2001).
[Crossref]

Head, M. K.

M. K. Head and N. R. Buenfeld, “Confocal imaging of porosity in hardened concrete,” Cement Concr. Res. 36(5), 896–911 (2006).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Huang, Y.

Huot, N.

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci. 239(3-4), 381–386 (2005).
[Crossref]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Itina, T.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Jacobs, H.

Jaeggi, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE 8243, 824307 1–13 (2012).

Jiang, G.

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci. 255(5), 2303–2311 (2008).
[Crossref]

Jonin, C.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Jourlin, M.

Kamlage, G.

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).

Kara, V.

V. Kara and H. Kizil, “Titanium micromachining by femtosecond laser,” Opt. Lasers Eng. 50(2), 140–147 (2012).
[Crossref]

Kautek, W.

J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process. 69(7), S399–S402 (1999).
[Crossref]

Kizil, H.

V. Kara and H. Kizil, “Titanium micromachining by femtosecond laser,” Opt. Lasers Eng. 50(2), 140–147 (2012).
[Crossref]

Koch, J.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 77, 229–235 (2003).

Kolev, V. Z.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[Crossref]

Korte, F.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 77, 229–235 (2003).

Laporte, P.

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci. 239(3-4), 381–386 (2005).
[Crossref]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Le Harzic, R.

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci. 239(3-4), 381–386 (2005).
[Crossref]

J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B 71(16), 1–6 (2005).
[Crossref]

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Lederer, M. J.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[Crossref]

Lei, S.

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci. 255(5), 2303–2311 (2008).
[Crossref]

Leray, A.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Li, W.

Liu, S.

Liu, T.

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process. 101(2), 271–278 (2010).
[Crossref]

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

Liu, Y.

Luther-Davies, B.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[Crossref]

Machado, L. M.

L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc. 12, 67–75 (2011).
[Crossref]

Madsen, N. R.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[Crossref]

Magee, J.

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE 4876, 470–478 (2003).
[Crossref]

Mannion, P.

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE 4876, 470–478 (2003).
[Crossref]

Martin, P. E.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE 8243, 824307 1–13 (2012).

Masson, P.

J. P. Desbiens and P. Masson, “ArF excimer laser micromachining of pyrex, SiC and PZT for rapid prototyping of MEMS components,” Sens. Actuators A Phys. 136(2), 554–563 (2007).
[Crossref]

Mazur, E.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

Mei, X.

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci. 255(5), 2303–2311 (2008).
[Crossref]

Momma, C.

S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

Neuenschwander, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE 8243, 824307 1–13 (2012).

Nolte, S.

S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

O’Connor, G. M.

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE 4876, 470–478 (2003).
[Crossref]

Olmstead, T.

P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE 5458, 265–272 (2004).
[Crossref]

Ostendorf, A.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 77, 229–235 (2003).

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Petite, G.

M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE 4423, 178–185 (2001).
[Crossref]

Richardson, M.

P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE 5458, 265–272 (2004).
[Crossref]

Rizvi, N. H.

N. H. Rizvi, “Femtosecond laser micromachining: Current status and applications,” Riken Rev. 50, 107–112 (2003).

Rode, A. V.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[Crossref]

Rouffiange, V.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE 8243, 824307 1–13 (2012).

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Sagan, Z.

Samad, R. E.

L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc. 12, 67–75 (2011).
[Crossref]

Sanner, N.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Schmid, M.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE 8243, 824307 1–13 (2012).

Semerok, A.

M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE 4423, 178–185 (2001).
[Crossref]

Sentis, M.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Serbin, J.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 77, 229–235 (2003).

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Soder, H.

Sommer, S.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Sturm, H.

J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process. 69(7), S399–S402 (1999).
[Crossref]

Tan, J. L.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process. 101(2), 271–278 (2010).
[Crossref]

Tay, G. H.

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process. 101(2), 271–278 (2010).
[Crossref]

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

Teh, K. M.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process. 101(2), 271–278 (2010).
[Crossref]

Tunnermann, A.

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Utéza, O.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Valette, S.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci. 239(3-4), 381–386 (2005).
[Crossref]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Vieira, N. D.

L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc. 12, 67–75 (2011).
[Crossref]

Wagner, J. F.

M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE 4423, 178–185 (2001).
[Crossref]

Wang, H. C.

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process. 101(2), 271–278 (2010).
[Crossref]

Wang, W.

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci. 255(5), 2303–2311 (2008).
[Crossref]

Wang, X. C.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

Weikert, M.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

Wellegehausen, B.

Welling, H.

Yang, C.

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci. 255(5), 2303–2311 (2008).
[Crossref]

Yang, W.

Zheng, H. Y.

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process. 101(2), 271–278 (2010).
[Crossref]

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

Anal. Chem. (1)

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem. 72(9), 2087–2092 (2000).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (7)

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process. 101(2), 271–278 (2010).
[Crossref]

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 77, 229–235 (2003).

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[Crossref]

J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process. 69(7), S399–S402 (1999).
[Crossref]

Appl. Surf. Sci. (3)

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci. 255(5), 2303–2311 (2008).
[Crossref]

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci. 239(3-4), 381–386 (2005).
[Crossref]

Cement Concr. Res. (1)

M. K. Head and N. R. Buenfeld, “Confocal imaging of porosity in hardened concrete,” Cement Concr. Res. 36(5), 896–911 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

J Biophotonics (1)

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lasers Eng. (3)

V. Kara and H. Kizil, “Titanium micromachining by femtosecond laser,” Opt. Lasers Eng. 50(2), 140–147 (2012).
[Crossref]

Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng. 50(11), 1582–1591 (2012).
[Crossref]

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

Phys. Chem. Earth A (1)

J. T. Fredrich, “3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes,” Phys. Chem. Earth A 24(7), 551–561 (1999).
[Crossref]

Phys. Proc. (1)

L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc. 12, 67–75 (2011).
[Crossref]

Phys. Rev. B (1)

J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B 71(16), 1–6 (2005).
[Crossref]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Proc. SPIE (4)

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE 4876, 470–478 (2003).
[Crossref]

M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE 4423, 178–185 (2001).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE 8243, 824307 1–13 (2012).

P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE 5458, 265–272 (2004).
[Crossref]

Riken Rev. (1)

N. H. Rizvi, “Femtosecond laser micromachining: Current status and applications,” Riken Rev. 50, 107–112 (2003).

Sens. Actuators A Phys. (1)

J. P. Desbiens and P. Masson, “ArF excimer laser micromachining of pyrex, SiC and PZT for rapid prototyping of MEMS components,” Sens. Actuators A Phys. 136(2), 554–563 (2007).
[Crossref]

Other (1)

T. R. Corle and G. S. Kino, Confocal scanning optical microscopy and related imaging systems (Academic Press, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the laser machining. M1-2-3-4, mirrors; BS, polarizing beam splitter; P, Pinhole; FF1-2, flip-flop mirrors; L1-2, Lenses; AD, achromatic doublet lenses; BA, beam analyzer; AC, AutoCorrelator; D, Dichroïc; P, Laser Pointer; S, sample (on a x–y–z computerized stage).

Fig. 2
Fig. 2

Evolution of the volume ablation rate for stainless steel measured by confocal microscopy (circles) and DW method (squares). Waist around 34µm.

Fig. 3
Fig. 3

Topographic views of the stainless steel sample obtained by confocal microscopy and average profile for (a) 0.8 J/cm2 and (b) 4.1 J/cm2. Three examples of cross-sections directly observed by optical microscopy for (c) 0.8 J/cm2 and (d) 4.1 J/cm2.

Fig. 4
Fig. 4

Evolution of the volume ablation rate for PZT ceramic measured by confocal microscopy (circles) and DW method (squares). Waist around 34µm.

Fig. 5
Fig. 5

Evolution of the volume ablation rate for PMMA polymer measured by confocal microscopy (circles) and DW method (squares). Waist around 34µm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ΔV= Δm ρ
N p = C L tot v
L tot =k L path
N p = Ck L tot v
τ vol = ΔV N p = Δmv ρCk L path

Metrics