Abstract

We show that using metal-insulator-metal (MIM) waveguides to carry out various second-order nonlinear optical processes not only provides highly desired tight optical confinement but also facilitates the phase-matching due to their inherently large anisotropy. This fact allows one to take advantage of otherwise inaccessible large nonlinear susceptibilities of the cubic zinc blende semiconductors. Our efficiency estimates show that since only the longer wavelength infra-red radiation propagates in the surface-plasmon-polariton (SPP) mode, the losses in the metal, while significant, do not preclude development of highly compact nonlinear optical devices on this integration-friendly semiconductor platform.

© 2012 OSA

1. Introduction

Recent years have seen increased (or, more properly, revived) interest in the properties of surface plasmon polaritons (SPP's) [1, 2] existing on the metal/dielectric interfaces or in metal dielectric composites. This interest has been propelled by the fact that in structures incorporating metals the optical fields get confined on sub-wavelength scale and a variety of effects, linear and especially nonlinear, get enhanced. When combined with rapidly improving capabilities of nano-fabrication, plasmonic enhancement carries a promise of on-chip integration of efficient opto-electronic devices, including those using various nonlinear optical effects, such as switches, modulators and optical frequency converter. It is also well known that sub-wavelength confinement in nano-plasmonic structures is always accompanied by substantial losses, associated with field penetrating the metal [3, 4]. For given wavelength these losses cannot be reduced by engineering the shape of plasmonic structures [5], hence the figure of merit of nonlinear device, loosely defined here as strength of nonlinearity divided by the attenuation coefficient of nonlinear plasmonic devices is not high enough to justify their use in applications that require power efficiency for all intents and purposes, restricting nonlinear plasmonics to sensing. It is the goal of this work to explore whether there are circumstances in which despite being inherent lossy, nonlinear plasmonics can become competitive in terms of efficiency. For that we consider frequency conversion based on second order optical nonlinearity, χ(2) since these are the lowest order (i.e. the strongest) nonlinear phenomena, and one can hope that satisfactory frequency conversion efficiency of a few percent per watt can be achieved over the distances less than one absorption length.

As mentioned above, SPP's can be divided into two broad classes: propagating SPP's on the metal/dielectric interface, and localized SPP's in the metal nanoparticles embedded into the dielectrics. The most ubiquitous of χ(2) phenomena, second harmonic generation (SHG) has been observed by numerous groups in the media incorporating localized SPP's which may make plasmonic SHG into a diagnostic tool, but the power efficiency of the generation was quite small [610]. This follows from the fact that, as has been known for many decades [1115], the metals themselves have tiny χ(2), mostly due to the quadrupole interaction with the field, so the nonlinear polarization can only come from the surface [16] or the intrinsic nonlinearity of the surrounding dielectric. Then, first of all, while the fields do get locally enhanced in the vicinity of nanoparticles, the density of nanoparticles must be kept low (to avoid excessive absorption and overheating). Second, SHG is a three-wave process, and its efficiency depends on the overlap between the three interacting vector fields (two for fundamental frequency and one for second harmonic) and the tensor of χ(2). This overlap is typically quite small for all geometries. Third, there is no provision for phase-matching. The combination of these three factors makes efficiency of optical nonlinearity using metals negligibly small [17] for most applications other than diagnostic, even though the effective nonlinearity per unit volume can be quite high.

This leaves one with propagating SPP’s and there has been an effort to study second-order nonlinearity of metal films early on [18], but, once again due to the inversion symmetry considerations, the strength of the interaction is weak, and, furthermore Kretchman excitation geometry [1921] leads to very short interaction length, meaning that if one uses intrinsic χ(2) of the dielectric the efficiency of nonlinear generation will be small. Once the inevitable absorption loss in the metal is accounted for, it appears that propagating SPP's are not capable of facilitating high efficiency χ(2) processes, unless (a) the losses are kept to the minimum and (b) SPP offers additional benefits besides improved confinement. In this work we show that gap plasmons [22] in the metal-insulator-metal (MIM) waveguides [23] offer the added advantage of facilitating phase-matching in the isotropic nonlinear crystals, such as GaAs, and that by using gap plasmons only for the longest wavelength waves one can keep the losses within reasonable limit allowing efficient nonlinear generation.

2. Modal overlap and phase matching in MIM waveguides

Many of the III-V and some of II-VI semiconductors crystallize in the zinc-blend lattice that has no inversion symmetry, allowing for very large χ(2), on the order of 100's of pm/V (compared to about 30 for LiNbO3) [24], but this lattice is also perfectly isotropic which prevents conventional birefringence phase-matching. While quasi-phase-matching in GaAs has been explored [25] its implementation is difficult as in the absence of ferro-electricity the material cannot be poled. In the absence of material birefringence, the artificial waveguide birefringence can be employed using layered structures [26] or slot waveguides [27], but the fabrication is difficult, and the efficiency is greatly reduced by the fact that it is difficult to achieve good modal overlap between three waves with significantly different wavelengths in the same waveguide. This factor becomes particularly detrimental in the case of nonlinear generation of mid-IR radiation, which is of course the most desirable application of χ(2) processes.

Let us consider how employing MIM rather than all-dielectric waveguides can simultaneously provide good modal overlap and phase-matching. Consider the MIM waveguide shown schematically in Fig. 1(a) and consisting of the core layer of GaAs or related zinc blende crystal of thickness d surrounded by metal layers on both sides sitting on top of a wider bandgap dielectric with lower index of refraction. This waveguide is capable of supporting of both TE and TM modes. The TE modes are characterized by the electric field polarized along y-axis,Ey=Ey0exp(jβTEz)cos(qTEx), inside the core layer and experience cut-off at long wavelength, as can be seen from the dispersion curve for the lowest order TE0 wave Fig. 1(b). Note that the propagation constant βTE(ω) is always smaller than the wave-vector kGaAs(ω)=nGaAs(ω)ω/cof the plane wave propagating in unconstrained GaAs. The dispersion curve for the latter (often referred to as the light line) is also shown in Fig. 1(b) as dashed line, and its deviation from the straight line indicates strong material dispersion impeding phase-matching without the metal. At the same time the lowest order TM0 wave inside GaAs can be described as Ex=Ex0exp(jβTMz)cosh(qTMx). In microwave engineering this mode is regularly referred to as transverse-electro-magnetic (TEM) mode, while in optics it is frequently called gap SPP to indicate the fact that this mode does penetrate the metal much more than TE mode. Because of this the propagation constant βTEM(ω)is always larger than the wave-vector kGaAs(ω)as also shown in Fig. 1(b) and this metal-imposed birefringence can be sufficient to compensate the intrinsic dispersion of GaAs or other non-birefringent nonlinear crystals used as the core layer in the MIM waveguide.

 

Fig. 1 (a) The lowest order TE and TM modes in MIM waveguide, (b) their dispersion, (c) power densities of fundamental TM and second harmonic TE waves in the MIM waveguide designed for SHG at 775 nm, (d) effective indices, and (e) loss of these modes as a function of waveguide width d.

Download Full Size | PPT Slide | PDF

Let us consider how one can practically take advantage of this phase-matching scheme. First of all the only non-vanishing component of second order susceptibility is χ14(2) which requires three interacting fields to be polarized along three crystal axes of zinc blende lattice. Therefore, the propagation direction should be along one of the 110 axes (that happens to take advantage of natural cleavage planes in zinc blende lattice) with metal applied to the sides of the waveguide as shown in Fig. 1(c). To provide vertical confinement the waveguide is grown on top of AlAs cladding layer. The height of the waveguide h is chosen to be fixed and the width d is the adjustable parameter that provides phase-matching.

3. Second order nonlinear processes

For the ubiquitous case of SHG the fundamental wave of frequency ω is then coupled into TEM (gap SPP) mode and the second harmonic frequency 2ω is generated in the TE0 mode. The field distributions are shown in Fig. 1(c). The phase-matching condition βTE(2ω)=2βTM(ω) can also be written as equality of effective indices of refraction, nTE(2ω)=βTE(2ω)c/2ω and nTM(ω)=βTM(ω)c/ω. As an example we use the fundamental radiation of wavelength λω=1550nm and the second harmonicλ2ω=755nm in the MIM waveguide with Ag side walls, consisting of Al0.2Ga0.8As as the core layer of height h = 1µm and width d sitting on top of a AlAs layer of 1µm on a GaAs substrate. The Al0.2Ga0.8As core layer is chosen here to avoid optical absorption at λ = 775nm, and its indices of refraction are n = 3.3 atλω=1550nm and n = 3.6 at λ2ω=755nm. We have numerically calculated the effective indices versus the width d using a FDTD software from Lumerical. The results are shown in Fig. 1(d) and indicate that phase-matching is achieved at d = 0.57µm.

The conversion efficiency of the SHG process depends strongly on the overlap between the fundamental and second harmonic modes and can be found as [24]

P2ωPω=(πlλ2ω)2d142Seff12η0nTM2(ω)nTE(2ω)Pω
where l is the interaction length, d14=χ14(2)(2ω;ω,ω) is the SHG coefficient, η0 = 377Ω, and Seff is the “effective area” of the waveguide defined as
Seff1=|coreE2ω,xEω,y2dxdy|2|E2ω|2dxdy(|Eω|2dxdy)2
where the overlap integral of the field distributions of TE and TM modes in the numerator is taken over the nonlinear core medium only. The interaction length l is of course limited by the large TM mode waveguide loss due to the metal absorption as shown in Fig. 1(e). Note that the TM mode always experiences far larger loss than the TE mode due to field penetrating the metal, and it is the key advantage of our scheme that only the longer wavelength pump propagates in TM mode, which keeps propagation length lprop to a manageable 23 µm at the phase-matching conditionnTM(ω)=nTE(2ω)=3.53, with the TM mode loss of 1875 dB/cm. Using the numerical field profiles of both TE(2ω) and TM(ω) modes obtained from Lumerical, we have also calculated the effective area of the MIM waveguide to be 1.27 µm2 at the phase-matching condition. Usingl=lprop(ω)=23 µm this brings the efficiency of SHG generation to a rather respectable 1.07 × 10−2 W−1, indicating that high conversion efficiency can be attained with a mode-locked pump.

Of course, SHG by itself is of little practical interest, compared to the difference frequency generation (DFG) capable of converting near IR pumps into the important mid-IR radiation. The DFG efficiency is typically much lower than SHG efficiency, primarily because it is difficult to achieve a good overlap between the relatively short wavelength near IR pumps and long wave-length mid-IR signal. This is where MIM waveguide has distinct advantage as mid-IR TM wave that can be compressed way below diffraction limit without incurring excessive loss. As an example we consider the arrangement shown in Fig. 2(a) in which the TE0 pump at 1.3 µm and TM signal at 2.0 µm combine in the In0.2Ga0.8As MIM waveguide with Ag side walls sitting on top of a GaAs substrate to produce DFG idler at 3.71 µm. The phase-matching condition βTE(ωp)=βTEM(ωs)+βTEM(ωi) as shown Fig. 2(b) is achieved at d = 0.84 µm when the effective indices of refraction at those wavelengths are nTE(pump)=3.48, nTM(sig)=3.53, andnTM(idl)=3.37. The conversion efficiency can be estimated as

PidlerPsignal=(πlλidler)2(2d14)2Seff12η0nTE(pump)nTM(sig)nTM(idl)Ppump
where the factor of 2 in the parenthesis indicates that χ(2) for DFG is twice that of SHG, and the effective area is
Seff1=|coreEpump,yEsig,xEidl,xdxdy|2|E|pump2dxdy|E|sig2dxdy|E|idl2dxdy
which is evaluated to be Seff = 4.78 µm2 at phase matching. Since signal and idler get absorbed with loss rate of 1330 dB/cm and 750 dB/cm, respectively, as shown in Fig. 2(c), the effective propagation length is l=(1/lprop(sig)+1/lprop(idl))1=21µm which brings us to respectable conversion efficiency of about 4.29 × 10−4 W−1.

 

Fig. 2 (a) Power densities of TE pump and TM signal and idler waves in the MIM waveguide designed for DFG at 3710 nm, (b) propagation constants, (c) loss of these modes as a function of waveguide width d, (d) power densities of TE pump and TM signal waves in the MIM waveguide designed for degenerate OPG at 3100 nm, (e) effective indices, and (f) loss of these modes as a function of waveguide width d.

Download Full Size | PPT Slide | PDF

DFG is obviously not the best way to obtain mid-IR radiation since it requires two sources – it would be more advantageous to develop an optical parametric generator (OPG) as shown in Fig. 2(d) in which near IR pump at 1.55 µm can produce degenerate signal/idler at 3.1 µm. As one can see from Fig. 2(e) phase-matching is achieved with nTE(pump)=nTM(sig)=3.41when In0.4Ga0.6As MIM waveguide width is d = 0.85 µm and the waveguide loss for the signal propagating in TM mode is only 830 dB/cm (propagation length of 52 µm) as shown in Fig. 2(f). The OPG threshold [24] will occur when the parametric gain overcomes the waveguide loss, or

PthnTE(pump)(nTM(sig))22η0|2d14|2(λsigπlprop(sig))2Seff
where Seff has been defined in Eq. (2) and has been determined to be 4.22 µm2. The OPG threshold for our MIM waveguide is about 220 W– such peak powers are attainable from semiconductor mode-locked lasers integrated with power amplifiers [28] which means that integrated-all-semiconductor parametric source of mid-IR radiation is within the reach.

4. Summary

We have calculated the guided surface plasmon modes of silver nano-scale ridge plasmon waveguides. We find that only one guided plasmon mode is bounded on the top surface of the flat-top metal nano-ride. The nano-ridge plasmon mode is a TEM mode with very small longitudinal electromagnetic field components in the direction of the propagation. We calculated the dispersion of the nano-ridge plasmon mode and its propagation length as a function of the wavelength. We also calculated the figure-of-merit of the nano-ridge mode for different ridge widths. We find that as the nano-ridge width increases, the propagation length always increases, however, the figure of merit increases first as the ridge width increases and then reaches a maximum when the ridge width falls between 100 nm and 200 nm. The nano-ridge waveguide of 100 nm wide has a propagation length of 242.8 µm at an excitation wavelength of 1.55 µm. This propagation length is long enough for building plasmonic circuits. During the process of writing this paper, we have found that a round top single crystal gold nano-ridge waveguide has been fabricated using focused ion beam milling, and the appearance of a nano-ridge plasmon mode was confirmed by the experiment [26]. Metal nano-ridge surface plasmon waveguides can also be fabricated by metal filling nano-trenches etched in dielectric substrates. We believe the nano-ridge plasmon waveguide can be the building block for making plasmonic integrated circuits for sensor applications.

Acknowledgments

This work was supported by the Air Force Office of Scientific Research, Air Force Research Laboratory and the Air Force Summer Faculty Research Fellowship Program.

References and links

1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

2. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011). [CrossRef]   [PubMed]  

3. J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96(18), 181102 (2010). [CrossRef]  

4. F. Wang and Y. R. Shen, “General properties of local Plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006). [CrossRef]   [PubMed]  

5. J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett. 99(21), 211106 (2011). [CrossRef]  

6. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011). [CrossRef]   [PubMed]  

7. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33(17), 1975–1977 (2008). [CrossRef]   [PubMed]  

8. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009). [CrossRef]  

9. N. I. Zheludev and V. I. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt. 6(1), 26–28 (2004). [CrossRef]  

10. A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express 20(1), 220–227 (2012). [CrossRef]   [PubMed]  

11. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968). [CrossRef]  

12. F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14(25), 1029–1031 (1965). [CrossRef]  

13. F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14(25), 1029–1031 (1965). [CrossRef]  

14. S. S. Jha, “Nonlinear optical reflection from a metal surface,” Phys. Rev. Lett. 15(9), 412–414 (1965). [CrossRef]  

15. S. S. Jha, “Theory of optical harmonic generation at a metal surface,” Phys. Rev. 140(6A), A2020–A2030 (1965). [CrossRef]  

16. F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009). [CrossRef]  

17. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3(12), 1647–1655 (1986). [CrossRef]  

18. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett. 33(26), 1531–1534 (1974). [CrossRef]  

19. R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248(1-3), 249–256 (2005). [CrossRef]  

20. K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007). [CrossRef]   [PubMed]  

21. N. B. Grosse, J. Heckmann, and U. Woggon, “Nonlinear Plasmon-Photon Interaction Resolved by k-Space Spectroscopy,” Phys. Rev. Lett. 108(13), 136802 (2012). [CrossRef]   [PubMed]  

22. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef]   [PubMed]  

23. K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett. 21(10), 630–632 (2009). [CrossRef]  

24. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience New York 2003).

25. X. Yu, L. Scaccabarozzi, J. S. Harris Jr, P. S. Kuo, and M. M. Fejer, “Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phasematched AlGaAs waveguides,” Opt. Express 13(26), 10742–10748 (2005). [CrossRef]  

26. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71(25), 3622–3624 (1997). [CrossRef]  

27. J. B. Khurgin, M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Suspended AlGaAs waveguides for tunable difference frequency generation in mid-infrared,” Opt. Lett. 33(24), 2904–2906 (2008). [CrossRef]   [PubMed]  

28. K. Kim, S. Lee, and P. Delfyett, “1.4kW high peak power generation from an all semiconductor mode-locked master oscillator power amplifier system based on eXtreme Chirped Pulse Amplification(X-CPA),” Opt. Express 13(12), 4600–4606 (2005). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
    [CrossRef] [PubMed]
  3. J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96(18), 181102 (2010).
    [CrossRef]
  4. F. Wang and Y. R. Shen, “General properties of local Plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
    [CrossRef] [PubMed]
  5. J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett. 99(21), 211106 (2011).
    [CrossRef]
  6. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
    [CrossRef] [PubMed]
  7. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33(17), 1975–1977 (2008).
    [CrossRef] [PubMed]
  8. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
    [CrossRef]
  9. N. I. Zheludev and V. I. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt. 6(1), 26–28 (2004).
    [CrossRef]
  10. A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express 20(1), 220–227 (2012).
    [CrossRef] [PubMed]
  11. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968).
    [CrossRef]
  12. F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14(25), 1029–1031 (1965).
    [CrossRef]
  13. F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14(25), 1029–1031 (1965).
    [CrossRef]
  14. S. S. Jha, “Nonlinear optical reflection from a metal surface,” Phys. Rev. Lett. 15(9), 412–414 (1965).
    [CrossRef]
  15. S. S. Jha, “Theory of optical harmonic generation at a metal surface,” Phys. Rev. 140(6A), A2020–A2030 (1965).
    [CrossRef]
  16. F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
    [CrossRef]
  17. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3(12), 1647–1655 (1986).
    [CrossRef]
  18. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett. 33(26), 1531–1534 (1974).
    [CrossRef]
  19. R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248(1-3), 249–256 (2005).
    [CrossRef]
  20. K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007).
    [CrossRef] [PubMed]
  21. N. B. Grosse, J. Heckmann, and U. Woggon, “Nonlinear Plasmon-Photon Interaction Resolved by k-Space Spectroscopy,” Phys. Rev. Lett. 108(13), 136802 (2012).
    [CrossRef] [PubMed]
  22. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  23. K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett. 21(10), 630–632 (2009).
    [CrossRef]
  24. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience New York 2003).
  25. X. Yu, L. Scaccabarozzi, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phasematched AlGaAs waveguides,” Opt. Express 13(26), 10742–10748 (2005).
    [CrossRef]
  26. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71(25), 3622–3624 (1997).
    [CrossRef]
  27. J. B. Khurgin, M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Suspended AlGaAs waveguides for tunable difference frequency generation in mid-infrared,” Opt. Lett. 33(24), 2904–2906 (2008).
    [CrossRef] [PubMed]
  28. K. Kim, S. Lee, and P. Delfyett, “1.4kW high peak power generation from an all semiconductor mode-locked master oscillator power amplifier system based on eXtreme Chirped Pulse Amplification(X-CPA),” Opt. Express 13(12), 4600–4606 (2005).
    [CrossRef] [PubMed]

2012 (2)

2011 (3)

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
[CrossRef] [PubMed]

J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett. 99(21), 211106 (2011).
[CrossRef]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

2010 (1)

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96(18), 181102 (2010).
[CrossRef]

2009 (3)

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[CrossRef]

K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett. 21(10), 630–632 (2009).
[CrossRef]

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[CrossRef]

2008 (2)

2007 (1)

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007).
[CrossRef] [PubMed]

2006 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

F. Wang and Y. R. Shen, “General properties of local Plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

N. I. Zheludev and V. I. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt. 6(1), 26–28 (2004).
[CrossRef]

1997 (1)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71(25), 3622–3624 (1997).
[CrossRef]

1986 (1)

1974 (1)

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett. 33(26), 1531–1534 (1974).
[CrossRef]

1968 (1)

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968).
[CrossRef]

1965 (4)

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14(25), 1029–1031 (1965).
[CrossRef]

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14(25), 1029–1031 (1965).
[CrossRef]

S. S. Jha, “Nonlinear optical reflection from a metal surface,” Phys. Rev. Lett. 15(9), 412–414 (1965).
[CrossRef]

S. S. Jha, “Theory of optical harmonic generation at a metal surface,” Phys. Rev. 140(6A), A2020–A2030 (1965).
[CrossRef]

Ahorinta, R.

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[CrossRef]

Albers, W. M.

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[CrossRef]

Ayala-Orozco, C.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Berger, V.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71(25), 3622–3624 (1997).
[CrossRef]

Bloembergen, N.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Bravetti, P.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71(25), 3622–3624 (1997).
[CrossRef]

Brown, F.

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14(25), 1029–1031 (1965).
[CrossRef]

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14(25), 1029–1031 (1965).
[CrossRef]

Chang, R. K.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968).
[CrossRef]

Chauvat, D.

Chen, K.

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007).
[CrossRef] [PubMed]

Danckwerts, M.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[CrossRef]

de Wilde, Y.

Decker, M.

Delfyett, P.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Durak, C.

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Emel’yanov, V. I.

N. I. Zheludev and V. I. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt. 6(1), 26–28 (2004).
[CrossRef]

Fejer, M. M.

Feth, N.

Fiore, A.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71(25), 3622–3624 (1997).
[CrossRef]

Flytzanis, C.

Grady, N. K.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Grosse, N. B.

N. B. Grosse, J. Heckmann, and U. Woggon, “Nonlinear Plasmon-Photon Interaction Resolved by k-Space Spectroscopy,” Phys. Rev. Lett. 108(13), 136802 (2012).
[CrossRef] [PubMed]

Hache, F.

Halas, N. J.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Harris, J. S.

Hashimoto, K.

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248(1-3), 249–256 (2005).
[CrossRef]

Heckmann, J.

N. B. Grosse, J. Heckmann, and U. Woggon, “Nonlinear Plasmon-Photon Interaction Resolved by k-Space Spectroscopy,” Phys. Rev. Lett. 108(13), 136802 (2012).
[CrossRef] [PubMed]

Heflin, J. R.

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007).
[CrossRef] [PubMed]

Hoyer, W.

Jacques, V.

Jha, S. S.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968).
[CrossRef]

S. S. Jha, “Theory of optical harmonic generation at a metal surface,” Phys. Rev. 140(6A), A2020–A2030 (1965).
[CrossRef]

S. S. Jha, “Nonlinear optical reflection from a metal surface,” Phys. Rev. Lett. 15(9), 412–414 (1965).
[CrossRef]

Jung, K.-Y.

K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett. 21(10), 630–632 (2009).
[CrossRef]

Kajikawa, K.

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248(1-3), 249–256 (2005).
[CrossRef]

Kauranen, M.

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett. 99(21), 211106 (2011).
[CrossRef]

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96(18), 181102 (2010).
[CrossRef]

J. B. Khurgin, M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Suspended AlGaAs waveguides for tunable difference frequency generation in mid-infrared,” Opt. Lett. 33(24), 2904–2906 (2008).
[CrossRef] [PubMed]

Kim, K.

Klein, M. W.

Koch, S. W.

Kuo, P. S.

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Laurent, N.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71(25), 3622–3624 (1997).
[CrossRef]

Le Xuan, L.

Lee, C. H.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968).
[CrossRef]

Lee, S.

Linden, S.

Liu, J.

Mitchell, D. E.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett. 33(26), 1531–1534 (1974).
[CrossRef]

Moloney, J. V.

Nagle, J.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71(25), 3622–3624 (1997).
[CrossRef]

Naraoka, R.

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248(1-3), 249–256 (2005).
[CrossRef]

Niesler, F. B. P.

Novotny, L.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[CrossRef]

Okawa, H.

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248(1-3), 249–256 (2005).
[CrossRef]

Palomba, S.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[CrossRef]

Parks, R. E.

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14(25), 1029–1031 (1965).
[CrossRef]

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14(25), 1029–1031 (1965).
[CrossRef]

Pruessner, M. W.

Rabinovich, W. S.

Reano, R. M.

K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett. 21(10), 630–632 (2009).
[CrossRef]

Ricard, D.

Robinson, H. D.

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007).
[CrossRef] [PubMed]

Roch, J.-F.

Rodríguez, F. J.

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[CrossRef]

Rosencher, E.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71(25), 3622–3624 (1997).
[CrossRef]

Scaccabarozzi, L.

Shen, Y. R.

F. Wang and Y. R. Shen, “General properties of local Plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

Simon, H. J.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett. 33(26), 1531–1534 (1974).
[CrossRef]

Sipe, J. E.

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[CrossRef]

Slablab, A.

Sleeper, A. M.

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14(25), 1029–1031 (1965).
[CrossRef]

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14(25), 1029–1031 (1965).
[CrossRef]

Stievater, T. H.

Stockman, M. I.

Sun, G.

J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett. 99(21), 211106 (2011).
[CrossRef]

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96(18), 181102 (2010).
[CrossRef]

Teixeira, F. L.

K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett. 21(10), 630–632 (2009).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wang, F.

F. Wang and Y. R. Shen, “General properties of local Plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

Wang, F. H.

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[CrossRef]

Watson, J. G.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett. 33(26), 1531–1534 (1974).
[CrossRef]

Wegener, M.

Woggon, U.

N. B. Grosse, J. Heckmann, and U. Woggon, “Nonlinear Plasmon-Photon Interaction Resolved by k-Space Spectroscopy,” Phys. Rev. Lett. 108(13), 136802 (2012).
[CrossRef] [PubMed]

Yu, X.

Zeng, Y.

Zhang, Y.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Zheludev, N. I.

N. I. Zheludev and V. I. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt. 6(1), 26–28 (2004).
[CrossRef]

Zielinski, M.

Appl. Phys. Lett. (3)

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96(18), 181102 (2010).
[CrossRef]

J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett. 99(21), 211106 (2011).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71(25), 3622–3624 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett. 21(10), 630–632 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[CrossRef]

N. I. Zheludev and V. I. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt. 6(1), 26–28 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007).
[CrossRef] [PubMed]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248(1-3), 249–256 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. (2)

S. S. Jha, “Theory of optical harmonic generation at a metal surface,” Phys. Rev. 140(6A), A2020–A2030 (1965).
[CrossRef]

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968).
[CrossRef]

Phys. Rev. B (1)

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[CrossRef]

Phys. Rev. Lett. (6)

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14(25), 1029–1031 (1965).
[CrossRef]

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14(25), 1029–1031 (1965).
[CrossRef]

S. S. Jha, “Nonlinear optical reflection from a metal surface,” Phys. Rev. Lett. 15(9), 412–414 (1965).
[CrossRef]

F. Wang and Y. R. Shen, “General properties of local Plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

N. B. Grosse, J. Heckmann, and U. Woggon, “Nonlinear Plasmon-Photon Interaction Resolved by k-Space Spectroscopy,” Phys. Rev. Lett. 108(13), 136802 (2012).
[CrossRef] [PubMed]

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett. 33(26), 1531–1534 (1974).
[CrossRef]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience New York 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) The lowest order TE and TM modes in MIM waveguide, (b) their dispersion, (c) power densities of fundamental TM and second harmonic TE waves in the MIM waveguide designed for SHG at 775 nm, (d) effective indices, and (e) loss of these modes as a function of waveguide width d.

Fig. 2
Fig. 2

(a) Power densities of TE pump and TM signal and idler waves in the MIM waveguide designed for DFG at 3710 nm, (b) propagation constants, (c) loss of these modes as a function of waveguide width d, (d) power densities of TE pump and TM signal waves in the MIM waveguide designed for degenerate OPG at 3100 nm, (e) effective indices, and (f) loss of these modes as a function of waveguide width d.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P 2ω P ω = ( πl λ 2ω ) 2 d 14 2 S eff 1 2 η 0 n TM 2 ( ω ) n TE ( 2ω ) P ω
S eff 1 = | core E 2ω,x E ω,y 2 dxdy | 2 | E 2ω | 2 dxdy ( | E ω | 2 dxdy ) 2
P idler P signal = ( πl λ idler ) 2 ( 2 d 14 ) 2 S eff 1 2 η 0 n TE ( pump ) n TM ( sig ) n TM ( idl ) P pump
S eff 1 = | core E pump,y E sig,x E idl,x dxdy | 2 | E | pump 2 dxdy | E | sig 2 dxdy | E | idl 2 dxdy
P th n TE ( pump ) ( n TM ( sig ) ) 2 2 η 0 | 2 d 14 | 2 ( λ sig π l prop ( sig ) ) 2 S eff

Metrics