Abstract

We start from a 2D photonic crystal nanocavity with moderate Q-factor and dynamically increase it by two order of magnitude by the joint action of coherent population oscillations and nonlinear refractive index.

© 2012 OSA

1. Introduction

Reducing cavity mode volumes and increasing the cavity lifetimes is a crucial trend in photonics [1, 2]. Micro or nanocavities with high-quality (Q) factors allow to strongly confine for long times the electromagnetic field in a very tiny spatial region. Ultimately, such properties may result in suitable conditions to enhance light-matter interaction [3] with applications in nonlinear optics [48], biosensing [9], microwave filtering [10], pulse storage [1113], quantum information and quantum electrodynamics [14, 15], potentially in integrated platforms. The strategies to reduce the cavity volume and to increase the cavity lifetimes are multiple but they always consist of the implementation of clever geometrical designs and state of the art technologies in order to boost the quality factor Q. Those approches end up in cavities with extremely high Q-factors with relative small volumes [16, 17], with modest to high Q-factors and wavelength-limited volumes [18, 19], and in few particular cases to a combination of the two requirements [11, 2022]. A rigorous theoretical analysis by C. Sauvan et al. [23] have shown that among the physical mechanisms involved in the geometrical Q-factor enhancement is the increase of the the group index ng of the nanocavity mode. However ultra-high Q-factor micro and nanocavity realizations are extremely sensitive to technological imperfections and residual absorption. Therefore, a main challenge is to build-up alternative avenues to improve and reconfigure the performance of a given nanocavity. This can be achieved by actively enhancing the lifetime starting from cavities with moderate, robust and reproducible performance.

Introducing a strongly dispersive material in a cavity has shown to be a way to change significantly the cavity lifetimes and resonance linewidths [24, 25]. This has been demonstrated in atomic physics using as dispersive media Cesium [24] or Rubidium [26] atoms in macroscopic cavities. The main mechanisms to achieve the strong material dispersion are coherent nonlinear interactions such as population trapping [24] and electromagnetically induced transparency (EIT) [25, 26]. In both cases, the interaction of the atomic systems with a driving (pump) field and a signal (probe) field frequency tuned to the cavity resonance leeds to a steep dispersion at the origin of a strong decrease of the group velocity and linewith narrowing. Coherent Population Oscillations (CPO) effect is also used to produce a strong refractive index dispersion. CPO can be implemented in any two-level system material [2730] and two-level like system such as semiconductor quantum wells and dots [3133]. Despite its simplicity, room temperature operation and wavelength tunability, it is only recently [34] that CPO has been proposed and implemented to achieve lifetime enhancement and linewidth narrowing.

Taken benefit form the strong nonlinear index dispersion of active media, cavity lifetimes enhancement can also be achieved. The nonlinear index dispersion has shown to be particularly strong in semiconductors nanotructures such us quantum wells [35]. Two main avenues are thus offered to improve the temporal and spectral response of a cavity: the atomic-like induced index dispersion and the nonlinear refractive index dispersion.

Here, we extend our recent results [36] and successfully combine these two approaches in solid state semiconductor nanocavities and demonstrate strong linewidth narrowing and lifetime enhancement in a 2D Photonic Crystal (2D PhC) nanocavity. Both CPO-induced dispersion and nonlinear dispersion are obtained in the quantum wells embedded in the nanocavity and contribute to the lifetime enhancement.

2. Experiment

The cavity, illustrated in Fig. 1, is a L3 2D PhC nanocavity formed by missing three holes on an otherwise periodical hole lattice. Such cavity is a good combination of small cavity mode volume, V ∼ (λ/n)3, and reasonable high Q-factors of few 103, reaching about 105 by engineering the size and the position of the holes surrounding the cavity [20]. However, we start here from a L3 nanocavity with moderate Q-factor, ∼ 4000, easily attainable and reproducible. Shown in Fig. 1, the sample is a 260-nm-thick InP semiconductor membrane having 4 InGaAsP/InGaAs quantum wells grown by metal-organic vapor phase epitaxy. The 2D PhC is a hexagonal air-hole lattice in the InP membrane with a lattice constant a = 450 nm, a hole radius of 120 nm and the two end holes are displaced along the cavity axis by 0.15a in order to increase the Q-factor. Preliminarily frequency domain measurements have shown that the cavity has an intrinsic Q-factor Q0 = 4030. This intrinsic Q-factor is a combination of a radiation loss limited Q-factor Qrad = 6300 and of an absorption loss limited Q-factor Qa0 = 11200. The absorption coefficient of the QWs is α0 = 54 cm−1 at the working wavelengths around 1570 nm and the overlap of the confined mode and the QWs is Γ = 20%.

 

Fig. 1 3D representation of the L3 PhC nanocavity with embedded quantum wells, and with the tapered fiber on top for the optical coupling.

Download Full Size | PPT Slide | PDF

The excitation of the nanocavity is made using a fibered cw laser having a spectral linewidth of 150 kHz [36]. It is tunable between 1490 nm and 1610 nm and delivers up to 15 mW output power. The coupling of the laser field into the nanocavity is done using a tapered fiber with a diameter of ∼ 1.5μm which is located on the top of the InP membrane above the L3 nanocavity. The coupling efficiency dependents on the fiber diameter and on the gap between the fiber and the membrane, which optimally should be of the order of 100 nm. In our setup, the coupling efficiency into the cavity has been measured to about 7 %, mostly limited by the non-optimal fiber/membrane gap. Indeed, due to electrical charges accumulating on the surface of the fiber, the tapered fiber sticks to the membrane. The power that is launched into the tapered fiber, about 0.5 % of the nominal laser power, is of the order of few μW, comparable to the saturation power of the quantum wells. The loaded Q-factor of the nanocavity with the tapered fiber is measured to be Ql = 3752, corresponding to a cavity lifetime τl = 3.1 ps. In order to avoid any thermal effects, the cw laser is modulated with a fibered acousto-optic modulator producing 100 ns duration square pulses repeated every 20 μs, longer than the thermal dissipation time [37]. The CPO effect is induced by using a sine-wave intensity modulation with a time period longer than electron-hole recombination time τr = 200 ps [27,29]. By driving a fibered Mach-Zehnder interferometer with a rf signal at frequency δ, a 10% intensity modulation depth is applied to the square pulses. The rf signal is supplied by a pulse function arbitrary generator. This temporal sine-wave modulation, 1 + mcos(2πδt), with m < 1 the modulation depth, corresponds in the Fourier space to three spectral components at ω and ω ± δ, associated respectively to the average power of the square pulse and the amplitude of the modulation. The three spectral components play the role of the pump and the probe exciting the QWs in the CPO regime as long as δ < 1/τr. The optical signal are then detected using an Avalanche Photo-Detector (APD) having a 1 GHz electrical bandwidth. The measurement of the delay is achieved with a home made lock-in detection whose outputs are sensitive to the in- and out-of-phase quadratures of the modulation. Basically, the lock-in detection consists first in amplifying the AC component of the electrical signal delivered by the APD and then mixing it with a reference sine-wave signal at the same frequency δ. By changing the phase of the reference from 0° to 90°, the in and out quadrature, called X and Y are obtained at the output of the mixer and after removing the harmonic component at 2δ using a low pass filter. The group delay experienced by the probe field (amplitude modulation) is given by τgϕ/(2πδ), where ϕ = arctan(Y/X) is the phase of the probe relative to the phase reference measured directly by the lock-in system. We stress here on the fact that it is the group delay which measured experimentally and not the cavity lifetime τc. However, it is easy to show that τc = τg/2 for the nanocavity we are using. A full discussion on this topic can be found in [38].

Figures 2(a) and 2(b) show respectively the measured pump and modulation amplitude reflections from the nanocavity for different laser wavelengths tuned around the nanocavity resonance as a function of the laser power. The modulation amplitude reflection corresponds to the reflection of the probe in the Fourier space.

 

Fig. 2 Measured pump (a), modulation amplitude (b) reflections and group delay (c) for δ = 240 MHz and for different laser wavelengths. Pin is the laser power. (d), (e) and (f) are the corresponding theoretical predictions.

Download Full Size | PPT Slide | PDF

Figure 2(c) presents the corresponding group delay for δ =240 MHz. For a given wavelength, the group delay faithfully follows the evolution of the modulation amplitude reflection, reaching a maximum value for a particular laser power. On the other hand, the maximum group delay is also achieved on the steep slope of the pump reflection where a strong nonlinear behavior is clearly apparent for shorter wavelengths as we are getting closer to the nanocavity resonance. The maximum achieved delay is 685 ps for a laser power of about 11 mW, corresponding to 55 μW pump power in the tapered fiber incident on the nanocavity and an optimal pump wavelength λM ≈ 1571.5 nm. This constitutes a strong enhancement of the cavity lifetime τc = 342.5 ps (×110) when compared to the initial value of 3.1 ps.

The cavity lifetime enhancement is closely related to an equivalent narrowing of the resonance linewidth as shown in Fig. 3 representing the measured modulation amplitude transfer function of the nanocavity. The measurement is achieved for a laser power of 10 mW, corresponding to 50 μW pump power. The pump wavelength is set near λM and the modulation frequency δ is tuned from 50 to 400 MHz. From a spectral point of view, this is similar to measure the probe reflection as the probe frequency is tuned relatively to the pump frequency νp = c/λp. The resonance linewidth has a Half Width at Half Maximum (HWHM) of about 220 MHz. When considering the initial 25-GHz HWHM bandwidth of the nanocavity (τc = 3.1 ps), this corresponds to a linewidth narrowing by a factor of 113, which is close to the enhancement observed for the nanocavity lifetime. Table 1 summarizes the initial properties of the nanocavity and the final ones.

 

Fig. 3 Measured modulation amplitude reflection under nonlinear interaction for a pump wavelength near the optimal wavelength λM and a power of 10 mW (full circles). The vertical dashed line at δ = 220 MHz indicates the HWHM. The corresponding theoretical prediction is represented by the continuous line.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Comparison of the results with the initial properties of the L3 PhC nanocavity. HWHM stands for Half Width at Half Maximum of the resonance.

3. Theory

The introduction of a strong dispersion in a cavity predicts an enhancement of the cavity Q-factor [39] given by:

QQi[1+Γ(ngnb1)]
where Qi is the initial quality factor of the cavity, nb is the refractive index of the cavity material, Γ the overlap integral between the cavity mode, and ng the group index associated to the strong dispersive medium embedded in the cavity. The bare CPO-induced dispersion in our L3 PhC nanocavity is characterized by the group index given by: [27, 40]
ngα0cτr2I0(1+I0)3,
where I0 = I/Isat is the normalized intensity with I and Isat the pump and saturation intensities and α0 the unsaturated absorption of the QWs. We have neglected here the dependance on the frequency δ as in our case we are in the limit of δτr ≪ 1. Inserting the experimental parameters into Eq. (2) and using Eq. (1), a CPO group index ng = 26 and an enhancement of the Q-factor by a factor 2.5 are obtained. However, the expression given by Eq. (1) does not include the nonlinear behavior of the QWs in the nanocavity which leads to the resonance shift and to the non-Lorentzian resonance shapes observed experimentally when the pump power is increased [36, 41].

To explain the experimental results, a full theoretical analysis based on the coupled mode theory is carried out. It is based on the equations describing the time evolution of the mode amplitude a in the cavity and of the carrier density N in the quantum wells. They are given by [34, 42, 43]:

dadt=[j12τl+12τa0NNt(1+jαH)]a+1τesindNdt=Nτr1τr|a|2|asat|2(NNt).
The resonance frequency of the cavity at transparency is given by ω0. τa0 = Qa0/ω0 is the intrinsic photon lifetime in the nanocavity limited by the absorption of the QWs. τl = Ql/ω0 is the overall photon lifetime without pumping and defined by 1/τl = 2/τe + 1/τrad + 1/τa0, where τe is the fiber coupling photon lifetime and τrad = Qrad/ω0 the radiation photon lifetime. Δ = ω0αH /(2τa0) − ωp, where ωp is the circular frequency of the pump laser. Nt is the carrier density at transparency, αH is the Henry factor, proportional to n2, connecting the real to the imaginary parts of the nonlinear susceptibility of the QWs, and |asat|2 the saturation energy. sin(t) is the input signal whereas the reflected signal is deduced from: rout(t)=1/τea(t). The solutions are derived by considering an intensity modulated excitation written as sin(t) = s0 + s1 exp (j2πδt) + s−1 exp (− j2πδt), with s1 = s−1s0. Neglecting the high order terms, the output amplitude can also be written as rout (t) = r0 + r1 exp (j2πδt) + r−1 exp (− j2πδt). The output power Pout can thus be written: Pout (t) = |rout (t)|2 = |r0|2 +Rs(δ)cos[2πδtϕ(δ)]. From Pout (t) we can deduce the reflected pump power Rp = |r0|2, the reflected modulation amplitude Rs(δ) and the group delay given by τgϕ(δ)/(2πδ).

The theoretical evolutions of Rp, Rs(δ) and τg(δ) are then obtained using the following parameters: λ0 = 2πc/ω0 = 1570.21 nm, αH = 25, Qrad = 6300 and Qa0 = 11200. As already noticed, these values are either independently measured or inferred from experimental measurements. Note that we had to use Ql = 3000 in order to reproduce the width of the pump resonance [36]. This value is slightly different from that experimentally measured. This can be explained by the modification in the coupling conditions between the different experiments. In the numerical calculation, we consider s1 = s0/80 which gives a modulation depth of 10%. The only free parameter is the value of the intracavity saturation energy |asat|2. The theoretical results are presented in Figs. 2(d), 2(e), 2(f), and also in Fig. 3, in regard to the experimental ones. The experimental behaviors are well reproduced. However, for the highest laser powers and short wavelengths there is a discrepancy on the reflected modulation amplitude and delay that is quite reasonable considering the limited number of adjustable parameters. This is due to limitations both on the measurement of the steep resonances and on the determination of the theoretical parameters close to the highly nonlinear points. For the long wavelengths and high laser powers, both experimental and theoretical curves show negative delays. Whereas theory predicts a negative delay of −80 ps, experimentally we measure negative delays up to −300 ps, this result is not yet understood.

4. Conclusion

Producing highly confining small optical resonators is a difficult task with demanding design and fabrication performance. We demonstrated that by inducing a coherent non linear interaction such as coherent population oscillation and a strong nonlinear index it is possible to considerably boost the nanocavity Q-factor. Starting from a semiconuctor 2D PhC nanocavity with Q-factor of 3752 we achieved a Q-factor of 4×105, with converging spectral and temporal measurement results. For a given wavelength, close to the initial resonance, the Q enhancement is resonant with the pump power which allows to tune its value.

Acknowledgments

We acknowledge support by the French Agence Nationale de la Recherche through the project CALIN (ANR 2010 BLAN-1002). These results are within the scope of C’Nano IdF and RTRA Triangle de la Physique; C’Nano IdF is a CNRS, CEA, MESR and Région Ile-de-France Nanosciences Competence Center. We thank Philippe Lalanne for helpful discussions.

References and links

1. K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003). [CrossRef]  

2. V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes-part ii: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006). [CrossRef]  

3. A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, “Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-q photonic crystal resonators,” Phys. Rev. Lett. 96, 093901 (2006). [CrossRef]   [PubMed]  

4. M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739–2741 (2003). [CrossRef]  

5. A. Shinya, S. Matsuo, Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high q ingaasp photonic crystal,” Opt. Express 16, 19382–19387 (2008). [CrossRef]  

6. Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104, 103902 (2010). [CrossRef]   [PubMed]  

7. M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 031803 (2012). [CrossRef]  

8. A. M. Yacomotti, P. Monnier, F. Raineri, B. B. Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett. 97, 143904 (2006). [CrossRef]   [PubMed]  

9. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel –a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17, 6230–6238 (2009). [CrossRef]   [PubMed]  

10. D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. Matsko, and L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol. 21, 3052–3061 (2003). [CrossRef]  

11. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007). [CrossRef]  

12. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature Phys. 3, 406–410 (2007). [CrossRef]  

13. Y. Dumeige, “Stopping and manipulating light using a short array of active microresonators,” Europhys. Lett. 86, 14003 (2009). [CrossRef]  

14. T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009). [CrossRef]   [PubMed]  

15. K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011). [CrossRef]  

16. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature (London) 421, 925–928 (2003). [CrossRef]  

17. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 051804 (2004). [CrossRef]  

18. E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lemaitre, and P. Senellart, “High-q whispering-gallery modes in gaas/alox microdisks,” Appl. Phys. Lett. 86, 021103 (2005). [CrossRef]  

19. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett. 90, 051108 (2007). [CrossRef]  

20. Y. Akahane, T. Asano, B. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003). [CrossRef]  

21. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17206–17213 (2007). [CrossRef]   [PubMed]  

22. J. Lu and J. Vuckovic, “Inverse design of nanophotonic structures using complementary convex optimization,” Opt. Express 18, 3793–3804 (2010). [CrossRef]   [PubMed]  

23. C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B 71, 165118 (2005). [CrossRef]  

24. G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385–2389 (1997). [CrossRef]  

25. M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett. 23, 295–297 (1998). [CrossRef]  

26. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically induced transparency,” Opt. Lett. 25, 1732–1734 (2000). [CrossRef]  

27. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003). [CrossRef]   [PubMed]  

28. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef]   [PubMed]  

29. E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005). [CrossRef]   [PubMed]  

30. P. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95, 253601 (2005). [CrossRef]   [PubMed]  

31. X. Zhao, P. Palinginis, B. Pesala, C. Chang-Hasnain, and P. Hemmer, “Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier,” Opt. Express 13, 7899–7904 (2005). [CrossRef]   [PubMed]  

32. N. Laurand, S. Calvez, M. D. Dawson, and A. E. Kelly, “Slow-light in a vertical-cavity semiconductor optical amplifier,” Opt. Express 14, 6858–6863 (2006). [CrossRef]   [PubMed]  

33. A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett. 105, 223902 (2010). [CrossRef]  

34. Y. Dumeige, A. M. Yacomotti, P. Grinberg, K. Bencheikh, E. Le Cren, and J. A. Levenson, “Microcavity-quality-factor enhancement using nonlinear effects close to the bistability threshold and coherent population oscillations,” Phys. Rev. A 85, 063824 (2012). [CrossRef]  

35. Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett. 57, 2446–2449 (1986). [CrossRef]   [PubMed]  

36. P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett. 109, 113903 (2012). [CrossRef]   [PubMed]  

37. V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, and Y. D. Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett. 96, 091103 (2010). [CrossRef]  

38. Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18, 8367–8382 (2010). [CrossRef]   [PubMed]  

39. M. Soljačić, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005). [CrossRef]  

40. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24, 411–423 (1981). [CrossRef]  

41. A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett. 88, 231107 (2006). [CrossRef]  

42. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

43. E. Kapon, Semiconductor Laser I: Fundamentals (Academic Press, 1999).

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature (London)424, 839–846 (2003).
    [CrossRef]
  2. V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes-part ii: applications,” IEEE J. Sel. Top. Quantum Electron.12, 15–32 (2006).
    [CrossRef]
  3. A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, “Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-q photonic crystal resonators,” Phys. Rev. Lett.96, 093901 (2006).
    [CrossRef] [PubMed]
  4. M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83, 2739–2741 (2003).
    [CrossRef]
  5. A. Shinya, S. Matsuo, Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high q ingaasp photonic crystal,” Opt. Express16, 19382–19387 (2008).
    [CrossRef]
  6. Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902 (2010).
    [CrossRef] [PubMed]
  7. M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
    [CrossRef]
  8. A. M. Yacomotti, P. Monnier, F. Raineri, B. B. Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
    [CrossRef] [PubMed]
  9. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel –a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express17, 6230–6238 (2009).
    [CrossRef] [PubMed]
  10. D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. Matsko, and L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol.21, 3052–3061 (2003).
    [CrossRef]
  11. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-q photonic-crystal nanocavity,” Nat. Photonics1, 49–52 (2007).
    [CrossRef]
  12. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature Phys.3, 406–410 (2007).
    [CrossRef]
  13. Y. Dumeige, “Stopping and manipulating light using a short array of active microresonators,” Europhys. Lett.86, 14003 (2009).
    [CrossRef]
  14. T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett.102, 083601 (2009).
    [CrossRef] [PubMed]
  15. K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett.98, 083105 (2011).
    [CrossRef]
  16. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature (London)421, 925–928 (2003).
    [CrossRef]
  17. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004).
    [CrossRef]
  18. E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lemaitre, and P. Senellart, “High-q whispering-gallery modes in gaas/alox microdisks,” Appl. Phys. Lett.86, 021103 (2005).
    [CrossRef]
  19. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett.90, 051108 (2007).
    [CrossRef]
  20. Y. Akahane, T. Asano, B. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)425, 944–947 (2003).
    [CrossRef]
  21. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-q nanocavity with a 2-ns photon lifetime,” Opt. Express15, 17206–17213 (2007).
    [CrossRef] [PubMed]
  22. J. Lu and J. Vuckovic, “Inverse design of nanophotonic structures using complementary convex optimization,” Opt. Express18, 3793–3804 (2010).
    [CrossRef] [PubMed]
  23. C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B71, 165118 (2005).
    [CrossRef]
  24. G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A56, 2385–2389 (1997).
    [CrossRef]
  25. M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett.23, 295–297 (1998).
    [CrossRef]
  26. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically induced transparency,” Opt. Lett.25, 1732–1734 (2000).
    [CrossRef]
  27. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003).
    [CrossRef] [PubMed]
  28. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301, 200–202 (2003).
    [CrossRef] [PubMed]
  29. E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95, 143601 (2005).
    [CrossRef] [PubMed]
  30. P. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett.95, 253601 (2005).
    [CrossRef] [PubMed]
  31. X. Zhao, P. Palinginis, B. Pesala, C. Chang-Hasnain, and P. Hemmer, “Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier,” Opt. Express13, 7899–7904 (2005).
    [CrossRef] [PubMed]
  32. N. Laurand, S. Calvez, M. D. Dawson, and A. E. Kelly, “Slow-light in a vertical-cavity semiconductor optical amplifier,” Opt. Express14, 6858–6863 (2006).
    [CrossRef] [PubMed]
  33. A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett.105, 223902 (2010).
    [CrossRef]
  34. Y. Dumeige, A. M. Yacomotti, P. Grinberg, K. Bencheikh, E. Le Cren, and J. A. Levenson, “Microcavity-quality-factor enhancement using nonlinear effects close to the bistability threshold and coherent population oscillations,” Phys. Rev. A85, 063824 (2012).
    [CrossRef]
  35. Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986).
    [CrossRef] [PubMed]
  36. P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett.109, 113903 (2012).
    [CrossRef] [PubMed]
  37. V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, and Y. D. Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett.96, 091103 (2010).
    [CrossRef]
  38. Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express18, 8367–8382 (2010).
    [CrossRef] [PubMed]
  39. M. Soljačić, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E71, 026602 (2005).
    [CrossRef]
  40. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A24, 411–423 (1981).
    [CrossRef]
  41. A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
    [CrossRef]
  42. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  43. E. Kapon, Semiconductor Laser I: Fundamentals (Academic Press, 1999).

2012 (3)

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

Y. Dumeige, A. M. Yacomotti, P. Grinberg, K. Bencheikh, E. Le Cren, and J. A. Levenson, “Microcavity-quality-factor enhancement using nonlinear effects close to the bistability threshold and coherent population oscillations,” Phys. Rev. A85, 063824 (2012).
[CrossRef]

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett.109, 113903 (2012).
[CrossRef] [PubMed]

2011 (1)

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett.98, 083105 (2011).
[CrossRef]

2010 (5)

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902 (2010).
[CrossRef] [PubMed]

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett.105, 223902 (2010).
[CrossRef]

J. Lu and J. Vuckovic, “Inverse design of nanophotonic structures using complementary convex optimization,” Opt. Express18, 3793–3804 (2010).
[CrossRef] [PubMed]

V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, and Y. D. Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett.96, 091103 (2010).
[CrossRef]

Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express18, 8367–8382 (2010).
[CrossRef] [PubMed]

2009 (3)

Y. Dumeige, “Stopping and manipulating light using a short array of active microresonators,” Europhys. Lett.86, 14003 (2009).
[CrossRef]

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett.102, 083601 (2009).
[CrossRef] [PubMed]

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel –a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express17, 6230–6238 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (4)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-q photonic-crystal nanocavity,” Nat. Photonics1, 49–52 (2007).
[CrossRef]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature Phys.3, 406–410 (2007).
[CrossRef]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett.90, 051108 (2007).
[CrossRef]

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-q nanocavity with a 2-ns photon lifetime,” Opt. Express15, 17206–17213 (2007).
[CrossRef] [PubMed]

2006 (5)

N. Laurand, S. Calvez, M. D. Dawson, and A. E. Kelly, “Slow-light in a vertical-cavity semiconductor optical amplifier,” Opt. Express14, 6858–6863 (2006).
[CrossRef] [PubMed]

V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes-part ii: applications,” IEEE J. Sel. Top. Quantum Electron.12, 15–32 (2006).
[CrossRef]

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, “Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-q photonic crystal resonators,” Phys. Rev. Lett.96, 093901 (2006).
[CrossRef] [PubMed]

A. M. Yacomotti, P. Monnier, F. Raineri, B. B. Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
[CrossRef]

2005 (6)

M. Soljačić, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E71, 026602 (2005).
[CrossRef]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95, 143601 (2005).
[CrossRef] [PubMed]

P. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett.95, 253601 (2005).
[CrossRef] [PubMed]

X. Zhao, P. Palinginis, B. Pesala, C. Chang-Hasnain, and P. Hemmer, “Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier,” Opt. Express13, 7899–7904 (2005).
[CrossRef] [PubMed]

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lemaitre, and P. Senellart, “High-q whispering-gallery modes in gaas/alox microdisks,” Appl. Phys. Lett.86, 021103 (2005).
[CrossRef]

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B71, 165118 (2005).
[CrossRef]

2004 (1)

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004).
[CrossRef]

2003 (7)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature (London)421, 925–928 (2003).
[CrossRef]

D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. Matsko, and L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol.21, 3052–3061 (2003).
[CrossRef]

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83, 2739–2741 (2003).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature (London)424, 839–846 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)425, 944–947 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301, 200–202 (2003).
[CrossRef] [PubMed]

2000 (1)

1998 (1)

1997 (1)

G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A56, 2385–2389 (1997).
[CrossRef]

1986 (1)

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986).
[CrossRef] [PubMed]

1981 (1)

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A24, 411–423 (1981).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)425, 944–947 (2003).
[CrossRef]

Alouini, M.

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett.105, 223902 (2010).
[CrossRef]

Alton, D. J.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett.102, 083601 (2009).
[CrossRef] [PubMed]

Aoki, T.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett.102, 083601 (2009).
[CrossRef] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature (London)421, 925–928 (2003).
[CrossRef]

Arnold, S.

Asano, T.

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-q nanocavity with a 2-ns photon lifetime,” Opt. Express15, 17206–17213 (2007).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)425, 944–947 (2003).
[CrossRef]

Aveline, D.

Baili, G.

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett.105, 223902 (2010).
[CrossRef]

Bakir, B. B.

A. M. Yacomotti, P. Monnier, F. Raineri, B. B. Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

Baldit, E.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95, 143601 (2005).
[CrossRef] [PubMed]

Banyai, L.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986).
[CrossRef] [PubMed]

Beaudoin, G.

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett.105, 223902 (2010).
[CrossRef]

Ben Bakir, B.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
[CrossRef]

Bencheikh, K.

Y. Dumeige, A. M. Yacomotti, P. Grinberg, K. Bencheikh, E. Le Cren, and J. A. Levenson, “Microcavity-quality-factor enhancement using nonlinear effects close to the bistability threshold and coherent population oscillations,” Phys. Rev. A85, 063824 (2012).
[CrossRef]

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett.109, 113903 (2012).
[CrossRef] [PubMed]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95, 143601 (2005).
[CrossRef] [PubMed]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301, 200–202 (2003).
[CrossRef] [PubMed]

Bigot, L.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett.109, 113903 (2012).
[CrossRef] [PubMed]

Bloch, J.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lemaitre, and P. Senellart, “High-q whispering-gallery modes in gaas/alox microdisks,” Appl. Phys. Lett.86, 021103 (2005).
[CrossRef]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301, 200–202 (2003).
[CrossRef] [PubMed]

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A24, 411–423 (1981).
[CrossRef]

Bretenaker, F.

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett.105, 223902 (2010).
[CrossRef]

Brunstein, M.

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett.109, 113903 (2012).
[CrossRef] [PubMed]

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, and Y. D. Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett.96, 091103 (2010).
[CrossRef]

Buckley, S.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett.98, 083105 (2011).
[CrossRef]

Burkett, W. H.

Calvez, S.

Chang-Hasnain, C.

Chavez-Pirson, A.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986).
[CrossRef] [PubMed]

Chembo, Y. K.

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902 (2010).
[CrossRef] [PubMed]

Cojocaru, C.

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, “Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-q photonic crystal resonators,” Phys. Rev. Lett.96, 093901 (2006).
[CrossRef] [PubMed]

Danzmann, K.

G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A56, 2385–2389 (1997).
[CrossRef]

Dawson, M. D.

Dayan, B.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett.102, 083601 (2009).
[CrossRef] [PubMed]

Di Cioccio, L.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
[CrossRef]

Dong, P.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature Phys.3, 406–410 (2007).
[CrossRef]

Dumeige, Y.

Y. Dumeige, A. M. Yacomotti, P. Grinberg, K. Bencheikh, E. Le Cren, and J. A. Levenson, “Microcavity-quality-factor enhancement using nonlinear effects close to the bistability threshold and coherent population oscillations,” Phys. Rev. A85, 063824 (2012).
[CrossRef]

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett.109, 113903 (2012).
[CrossRef] [PubMed]

Y. Dumeige, “Stopping and manipulating light using a short array of active microresonators,” Europhys. Lett.86, 14003 (2009).
[CrossRef]

El Amili, A.

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett.105, 223902 (2010).
[CrossRef]

Fan, S.

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83, 2739–2741 (2003).
[CrossRef]

Fedeli, J. M.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
[CrossRef]

Fleischhauer, M.

Gibbs, H. M.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986).
[CrossRef] [PubMed]

Goldfarb, F.

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett.105, 223902 (2010).
[CrossRef]

Goorskey, D. J.

Gossard, A. C.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986).
[CrossRef] [PubMed]

Grinberg, P.

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett.109, 113903 (2012).
[CrossRef] [PubMed]

Y. Dumeige, A. M. Yacomotti, P. Grinberg, K. Bencheikh, E. Le Cren, and J. A. Levenson, “Microcavity-quality-factor enhancement using nonlinear effects close to the bistability threshold and coherent population oscillations,” Phys. Rev. A85, 063824 (2012).
[CrossRef]

Guirleo, G.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lemaitre, and P. Senellart, “High-q whispering-gallery modes in gaas/alox microdisks,” Appl. Phys. Lett.86, 021103 (2005).
[CrossRef]

Hagino, H.

Harter, D. J.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A24, 411–423 (1981).
[CrossRef]

Hau, L. V.

M. Soljačić, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E71, 026602 (2005).
[CrossRef]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Hemmer, P.

Hennessy, K.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett.90, 051108 (2007).
[CrossRef]

Holler, S.

Hu, E.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett.90, 051108 (2007).
[CrossRef]

Hugonin, J. P.

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B71, 165118 (2005).
[CrossRef]

Ilchenko, V.

V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes-part ii: applications,” IEEE J. Sel. Top. Quantum Electron.12, 15–32 (2006).
[CrossRef]

Ilchenko, V. S.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004).
[CrossRef]

Jeffery, A.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986).
[CrossRef] [PubMed]

Joannopoulos, J. D.

M. Soljačić, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E71, 026602 (2005).
[CrossRef]

Johnson, T. J.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett.90, 051108 (2007).
[CrossRef]

Kakitsuka, T.

Kapon, E.

E. Kapon, Semiconductor Laser I: Fundamentals (Academic Press, 1999).

Kelly, A. E.

Keng, D.

Kim, H.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett.98, 083105 (2011).
[CrossRef]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett.90, 051108 (2007).
[CrossRef]

Kimble, H. J.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett.102, 083601 (2009).
[CrossRef] [PubMed]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature (London)421, 925–928 (2003).
[CrossRef]

Koch, S. W.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986).
[CrossRef] [PubMed]

Kuramochi, E.

A. Shinya, S. Matsuo, Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high q ingaasp photonic crystal,” Opt. Express16, 19382–19387 (2008).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-q photonic-crystal nanocavity,” Nat. Photonics1, 49–52 (2007).
[CrossRef]

Lalanne, P.

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B71, 165118 (2005).
[CrossRef]

Laurand, N.

Le Cren, E.

Y. Dumeige, A. M. Yacomotti, P. Grinberg, K. Bencheikh, E. Le Cren, and J. A. Levenson, “Microcavity-quality-factor enhancement using nonlinear effects close to the bistability threshold and coherent population oscillations,” Phys. Rev. A85, 063824 (2012).
[CrossRef]

Lee, K. H.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett.90, 051108 (2007).
[CrossRef]

Lee, Y. H.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986).
[CrossRef] [PubMed]

Lemaitre, A.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lemaitre, and P. Senellart, “High-q whispering-gallery modes in gaas/alox microdisks,” Appl. Phys. Lett.86, 021103 (2005).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301, 200–202 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003).
[CrossRef] [PubMed]

Letartre, X.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
[CrossRef]

Levenson, A.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, and Y. D. Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett.96, 091103 (2010).
[CrossRef]

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
[CrossRef]

Levenson, J. A.

Y. Dumeige, A. M. Yacomotti, P. Grinberg, K. Bencheikh, E. Le Cren, and J. A. Levenson, “Microcavity-quality-factor enhancement using nonlinear effects close to the bistability threshold and coherent population oscillations,” Phys. Rev. A85, 063824 (2012).
[CrossRef]

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett.109, 113903 (2012).
[CrossRef] [PubMed]

A. M. Yacomotti, P. Monnier, F. Raineri, B. B. Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, “Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-q photonic crystal resonators,” Phys. Rev. Lett.96, 093901 (2006).
[CrossRef] [PubMed]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95, 143601 (2005).
[CrossRef] [PubMed]

Li, Q.

Lidorikis, E.

M. Soljačić, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E71, 026602 (2005).
[CrossRef]

Lipson, M.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature Phys.3, 406–410 (2007).
[CrossRef]

Lu, J.

Lukin, M. D.

Majumdar, A.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett.98, 083105 (2011).
[CrossRef]

Maleki, L.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004).
[CrossRef]

D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. Matsko, and L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol.21, 3052–3061 (2003).
[CrossRef]

Matsko, A.

V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes-part ii: applications,” IEEE J. Sel. Top. Quantum Electron.12, 15–32 (2006).
[CrossRef]

D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. Matsko, and L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol.21, 3052–3061 (2003).
[CrossRef]

Matsko, A. B.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004).
[CrossRef]

Matsuo, S.

Michael, C. P.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett.90, 051108 (2007).
[CrossRef]

Miranda, B.-X.

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett.105, 223902 (2010).
[CrossRef]

Monnier, P.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
[CrossRef]

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, “Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-q photonic crystal resonators,” Phys. Rev. Lett.96, 093901 (2006).
[CrossRef] [PubMed]

A. M. Yacomotti, P. Monnier, F. Raineri, B. B. Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95, 143601 (2005).
[CrossRef] [PubMed]

Moreau, V.

V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, and Y. D. Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett.96, 091103 (2010).
[CrossRef]

Morhange, J.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986).
[CrossRef] [PubMed]

Müller, G.

G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A56, 2385–2389 (1997).
[CrossRef]

Müller, M.

G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A56, 2385–2389 (1997).
[CrossRef]

Narum, P.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A24, 411–423 (1981).
[CrossRef]

Noda, S.

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-q nanocavity with a 2-ns photon lifetime,” Opt. Express15, 17206–17213 (2007).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)425, 944–947 (2003).
[CrossRef]

Notomi, M.

A. Shinya, S. Matsuo, Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high q ingaasp photonic crystal,” Opt. Express16, 19382–19387 (2008).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-q photonic-crystal nanocavity,” Nat. Photonics1, 49–52 (2007).
[CrossRef]

Ostby, E.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett.102, 083601 (2009).
[CrossRef] [PubMed]

Painter, O.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett.90, 051108 (2007).
[CrossRef]

Palinginis, P.

Park, S. H.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986).
[CrossRef] [PubMed]

Parkins, A. S.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett.102, 083601 (2009).
[CrossRef] [PubMed]

Pesala, B.

Peter, E.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lemaitre, and P. Senellart, “High-q whispering-gallery modes in gaas/alox microdisks,” Appl. Phys. Lett.86, 021103 (2005).
[CrossRef]

Petroff, P.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett.98, 083105 (2011).
[CrossRef]

Peyghambarian, N.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986).
[CrossRef] [PubMed]

Qiu, M.

Raineri, F.

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett.109, 113903 (2012).
[CrossRef] [PubMed]

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, and Y. D. Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett.96, 091103 (2010).
[CrossRef]

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
[CrossRef]

A. M. Yacomotti, P. Monnier, F. Raineri, B. B. Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, “Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-q photonic crystal resonators,” Phys. Rev. Lett.96, 093901 (2006).
[CrossRef] [PubMed]

Raj, R.

V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, and Y. D. Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett.96, 091103 (2010).
[CrossRef]

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
[CrossRef]

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, “Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-q photonic crystal resonators,” Phys. Rev. Lett.96, 093901 (2006).
[CrossRef] [PubMed]

A. M. Yacomotti, P. Monnier, F. Raineri, B. B. Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

Rao, D. V. G. L. N.

P. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett.95, 253601 (2005).
[CrossRef] [PubMed]

Raymer, M. G.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A24, 411–423 (1981).
[CrossRef]

Regal, C. A.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett.102, 083601 (2009).
[CrossRef] [PubMed]

Rinkleff, R.-H.

G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A56, 2385–2389 (1997).
[CrossRef]

Rivoire, K.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett.98, 083105 (2011).
[CrossRef]

Rouget, V.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95, 143601 (2005).
[CrossRef] [PubMed]

Sagnes, I.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett.109, 113903 (2012).
[CrossRef] [PubMed]

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett.105, 223902 (2010).
[CrossRef]

V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, and Y. D. Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett.96, 091103 (2010).
[CrossRef]

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lemaitre, and P. Senellart, “High-q whispering-gallery modes in gaas/alox microdisks,” Appl. Phys. Lett.86, 021103 (2005).
[CrossRef]

Sato, T.

Sauvan, C.

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B71, 165118 (2005).
[CrossRef]

Savchenkov, A. A.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004).
[CrossRef]

Scully, M. O.

Seassal, C.

A. M. Yacomotti, P. Monnier, F. Raineri, B. B. Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
[CrossRef]

Senellart, P.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lemaitre, and P. Senellart, “High-q whispering-gallery modes in gaas/alox microdisks,” Appl. Phys. Lett.86, 021103 (2005).
[CrossRef]

Shinya, A.

A. Shinya, S. Matsuo, Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high q ingaasp photonic crystal,” Opt. Express16, 19382–19387 (2008).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-q photonic-crystal nanocavity,” Nat. Photonics1, 49–52 (2007).
[CrossRef]

Shopova, S. I.

Soljacic, M.

M. Soljačić, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E71, 026602 (2005).
[CrossRef]

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83, 2739–2741 (2003).
[CrossRef]

Song, B.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)425, 944–947 (2003).
[CrossRef]

Song, B.-S.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature (London)421, 925–928 (2003).
[CrossRef]

Srinivasan, K.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett.90, 051108 (2007).
[CrossRef]

Strekalov, D.

Strekalov, D. V.

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902 (2010).
[CrossRef] [PubMed]

Su, Y.

Takahashi, Y.

Tanabe, T.

A. Shinya, S. Matsuo, Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high q ingaasp photonic crystal,” Opt. Express16, 19382–19387 (2008).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-q photonic-crystal nanocavity,” Nat. Photonics1, 49–52 (2007).
[CrossRef]

Tanaka, Y.

Taniyama, H.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-q photonic-crystal nanocavity,” Nat. Photonics1, 49–52 (2007).
[CrossRef]

Tessier, G.

V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, and Y. D. Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett.96, 091103 (2010).
[CrossRef]

Thompson, R.

Vahala, K. J.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett.102, 083601 (2009).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature (London)424, 839–846 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature (London)421, 925–928 (2003).
[CrossRef]

Varoutsis, S.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lemaitre, and P. Senellart, “High-q whispering-gallery modes in gaas/alox microdisks,” Appl. Phys. Lett.86, 021103 (2005).
[CrossRef]

Vecchi, G.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
[CrossRef]

Velichansky, V. L.

Viktorovitch, P.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
[CrossRef]

Vollmer, F.

Vuckovic, J.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett.98, 083105 (2011).
[CrossRef]

J. Lu and J. Vuckovic, “Inverse design of nanophotonic structures using complementary convex optimization,” Opt. Express18, 3793–3804 (2010).
[CrossRef] [PubMed]

Wang, H.

Wang, T.

Wicht, A.

G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A56, 2385–2389 (1997).
[CrossRef]

Wiegmann, W.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986).
[CrossRef] [PubMed]

Wilde, Y. D.

V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, and Y. D. Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett.96, 091103 (2010).
[CrossRef]

Wu, P.

P. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett.95, 253601 (2005).
[CrossRef] [PubMed]

Xiao, M.

Xu, Q.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature Phys.3, 406–410 (2007).
[CrossRef]

Yacomotti, A.

V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, and Y. D. Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett.96, 091103 (2010).
[CrossRef]

Yacomotti, A. M.

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett.109, 113903 (2012).
[CrossRef] [PubMed]

Y. Dumeige, A. M. Yacomotti, P. Grinberg, K. Bencheikh, E. Le Cren, and J. A. Levenson, “Microcavity-quality-factor enhancement using nonlinear effects close to the bistability threshold and coherent population oscillations,” Phys. Rev. A85, 063824 (2012).
[CrossRef]

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

A. M. Yacomotti, P. Monnier, F. Raineri, B. B. Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, “Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-q photonic crystal resonators,” Phys. Rev. Lett.96, 093901 (2006).
[CrossRef] [PubMed]

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
[CrossRef]

Yan, M.

Yanik, M. F.

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83, 2739–2741 (2003).
[CrossRef]

Yosia,

Yu, N.

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902 (2010).
[CrossRef] [PubMed]

D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. Matsko, and L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol.21, 3052–3061 (2003).
[CrossRef]

Zhao, X.

Zurawsky, W.

App. Phys. Lett. (1)

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006).
[CrossRef]

Appl. Phys. Lett. (5)

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83, 2739–2741 (2003).
[CrossRef]

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lemaitre, and P. Senellart, “High-q whispering-gallery modes in gaas/alox microdisks,” Appl. Phys. Lett.86, 021103 (2005).
[CrossRef]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett.90, 051108 (2007).
[CrossRef]

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett.98, 083105 (2011).
[CrossRef]

V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, and Y. D. Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett.96, 091103 (2010).
[CrossRef]

Europhys. Lett. (1)

Y. Dumeige, “Stopping and manipulating light using a short array of active microresonators,” Europhys. Lett.86, 14003 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes-part ii: applications,” IEEE J. Sel. Top. Quantum Electron.12, 15–32 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-q photonic-crystal nanocavity,” Nat. Photonics1, 49–52 (2007).
[CrossRef]

Nature (London) (3)

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)425, 944–947 (2003).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature (London)424, 839–846 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature (London)421, 925–928 (2003).
[CrossRef]

Nature Phys. (1)

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature Phys.3, 406–410 (2007).
[CrossRef]

Opt. Express (7)

Opt. Lett. (2)

Phys. Rev. A (5)

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004).
[CrossRef]

Y. Dumeige, A. M. Yacomotti, P. Grinberg, K. Bencheikh, E. Le Cren, and J. A. Levenson, “Microcavity-quality-factor enhancement using nonlinear effects close to the bistability threshold and coherent population oscillations,” Phys. Rev. A85, 063824 (2012).
[CrossRef]

G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A56, 2385–2389 (1997).
[CrossRef]

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A24, 411–423 (1981).
[CrossRef]

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

Phys. Rev. B (1)

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B71, 165118 (2005).
[CrossRef]

Phys. Rev. E (1)

M. Soljačić, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E71, 026602 (2005).
[CrossRef]

Phys. Rev. Lett. (10)

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986).
[CrossRef] [PubMed]

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett.109, 113903 (2012).
[CrossRef] [PubMed]

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett.105, 223902 (2010).
[CrossRef]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95, 143601 (2005).
[CrossRef] [PubMed]

P. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett.95, 253601 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003).
[CrossRef] [PubMed]

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett.102, 083601 (2009).
[CrossRef] [PubMed]

A. M. Yacomotti, P. Monnier, F. Raineri, B. B. Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902 (2010).
[CrossRef] [PubMed]

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, “Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-q photonic crystal resonators,” Phys. Rev. Lett.96, 093901 (2006).
[CrossRef] [PubMed]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301, 200–202 (2003).
[CrossRef] [PubMed]

Other (2)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

E. Kapon, Semiconductor Laser I: Fundamentals (Academic Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

3D representation of the L3 PhC nanocavity with embedded quantum wells, and with the tapered fiber on top for the optical coupling.

Fig. 2
Fig. 2

Measured pump (a), modulation amplitude (b) reflections and group delay (c) for δ = 240 MHz and for different laser wavelengths. Pin is the laser power. (d), (e) and (f) are the corresponding theoretical predictions.

Fig. 3
Fig. 3

Measured modulation amplitude reflection under nonlinear interaction for a pump wavelength near the optimal wavelength λM and a power of 10 mW (full circles). The vertical dashed line at δ = 220 MHz indicates the HWHM. The corresponding theoretical prediction is represented by the continuous line.

Tables (1)

Tables Icon

Table 1 Comparison of the results with the initial properties of the L3 PhC nanocavity. HWHM stands for Half Width at Half Maximum of the resonance.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q Q i [ 1 + Γ ( n g n b 1 ) ]
n g α 0 c τ r 2 I 0 ( 1 + I 0 ) 3 ,
d a d t = [ j 1 2 τ l + 1 2 τ a 0 N N t ( 1 + j α H ) ] a + 1 τ e s in d N d t = N τ r 1 τ r | a | 2 | a sat | 2 ( N N t ) .

Metrics