Abstract

We present the results of theoretical and experimental characterization of a designed and manufactured dual-mode highly birefringent microstructured fiber. We also demonstrate the measured values of polarimetric temperature and strain sensitivity of both the fundamental and second order modes. As the mode field of the second order mode has a strong interaction with the fiber air holes, we observed a significant (over two orders of magnitude) increase in the polarimetric strain sensitivity of this mode in comparison to the fundamental mode. The enhanced strain sensitivity together with the low temperature sensitivity makes our fiber very attractive for application as extremely sensitive temperature independent strain transducers.

© 2012 OSA

1. Introduction

Microstructured fibers (MSF) also called photonic crystal fibers (PCF) are a subject of extensive research for over a decade [1]. This is mainly due to the fact that by changing the topology and distribution of the air holes, the fiber guiding properties can be significantly modified and tailored to desired purposes. It has been already reported that PCFs can be successfully used in various fields of photonics, e.g. supercontinuum generation [2], fiber lasers [3] or as dispersion compensating and bend-insensitive fibers [4, 5]. Furthermore MSFs find application in sensing and metrology as the fiber temperature and mechanical (i.e. strain, pressure, etc.) sensitivities also depend on the air filling factor, lattice period, size, shape and location of the air holes [6, 7]. Additionally, dedicated design of the air hole lattice can enable very stable propagation of higher order modes. In [8] Ju presented a photonic crystal fiber with two-mode propagation at a very broad wavelength range of over 650 nm (as opposed to approximately 150 nm reported for conventional elliptical core fibers), which was successfully implemented in a two-mode interferometer sensor for axial strain measurements.

One of the recently very popular types of microstructured fibers which are often used in optical fiber sensors are highly birefringent (HB) MSFs presented for the first time in [9]. It has been reported that the modal birefringence (B) in HB MSF can be an order of magnitude higher than in traditional (i.e. PANDA, bow-tie or elliptical core) highly birefringent fibers (with B ≈3.85 ∙ 10−3 reported in [9]). The birefringence in MSFs can be achieved either by introducing an asymmetrical perturbation in the cladding hexagonal lattice [911] or using stress applying parts (SAPs) [12] similarly to how it is realized in traditional birefringent polarization maintaining (PM) fibers [13]. While the values of birefringence in the second approach are at a level similar to conventional PM fibers (with B ≈1.5 ∙ 10−3 reported in [12]), in the first approach values of B can easily exceed the level of 10−3 at a wavelength of λ = 1.55µm. Furthermore, due to the fact that the birefringence in HB MSFs realized by an asymmetric air hole lattice perturbation is not introduced by SAPs, thus no stress is introduced by the difference in thermal expansion coefficients between pure silica and doped regions. The polarimetric temperature sensitivity of such fibers can be significantly lower than in conventional HB fibers [6], which makes them very attractive in temperature independent mechanical (i.e. strain, pressure, elongation) sensing [1416].

One of the disadvantages of polarimetric optical fiber sensors is the inconveniency of the phase shift or birefringence change measurement. However, combining HB fibers, with fiber Bragg gratings – FBG (with their specific properties including mechanical sensitivity of the Bragg wavelength or the easiness of multiplexing FBGs in multiple arrays), allows for construction of novel and convenient fiber optic sensors, which can be easily monitored on spectrometers or commercially available interrogation units [1719].

In this paper, we present a highly birefringent MSF dedicated for reliable FBG inscription (due to its high core Ge doping and specific geometry, which minimizes the negative effects of scattering and defocusing the FBG inscription beam [20]) – see Fig. 1 . Furthermore, the fiber presented in our experiment has a stabile dual (fundamental and second order) mode propagation. As reported in [21] higher order modes in microstructured fibers are strongly dependent on the air-silica cladding properties and can be more sensitive to external environmental changes than the fundamental mode. As the second order mode maxima in our fiber [Figs. 2(b) and 2(d)] are closer to the cladding hollow regions and are subjected to higher strain distributions, we expect the second order mode polarimetric strain sensitivity to significantly increase in comparison to the fundamental mode sensitivity.

 

Fig. 1 SEM image of the investigated HB MSF cross-section.

Download Full Size | PPT Slide | PDF

 

Fig. 2 Experimental near field distribution of: E11 fundamental mode (a), E21 second order mode (b) and electric field distribution according to simulations of the E11 (c) and E21 mode (d) of the investigated HB MSF.

Download Full Size | PPT Slide | PDF

2. Fiber modeling and experimental characterization

The dual-mode MSF evaluated in our work had an “in-line” air hole structure (see Fig. 1.), cladding diameter of approximately 100 µm and a 7 mol% Ge-doped core (a similar, but single mode fiber, was presented in a paper by Geernaert [20]). We used the commercially available Lumerical MODE solutions software package to solve the wave equation with a finite difference method. We used a simulation area of 64 μm × 36 μm with Perfectly Matched Layer (PML) boundaries. The grid spacing was chosen to be 0.1 μm in the fiber core area and 0.3 μm in the rest of the simulation area in order to optimize the simulation accuracy and efficiency. Our results show (Table 1 ) stable propagation of the first and second order mode [E11 and E21 with simulated electric field distributions presented in Fig. 2(c) and Fig. 2(d)] in the third telecom window (with the confinement losses below 1 dB/m at λ = 1.55 μm). The confinement losses of the third and fourth mode (E31 and E12) simulated at the same wavelength increase by an order of magnitude (reaching several dB/m) therefore are hardly guided even at short distances.

Tables Icon

Table 1. Simulated and measured values of the effective refractive index (neff), confinement losses and modal birefringence of the first four propagated modes.

The experimental fiber characterization, including beat length and in consequence birefringence measurements demands selective excitation of the particular (i.e. E11 and E21) spatial modes. In the experimental set-up we used a tunable laser source coupled with an XYZ and angle translation stage to the fiber under test. The excited fundamental and second order modes were observed by the use of a near-IR camera and their experimental near field distributions are presented in Fig. 2(a) and Fig. 2(b). The measurements of beat length were performed for the two modes with the lateral force method presented schematically in Fig. 3 and described in more detail in [22, 23].

 

Fig. 3 Schematic diagram of the lateral force method set-up for measuring the phase modal birefringence [23].

Download Full Size | PPT Slide | PDF

To measure the phase modal birefringence of a particular mode only one polarization mode needs to be coupled into the investigated HB fiber (this was achieved with a polarizer – P). Subsequently an applied point-like lateral force at approximately half of the fiber length induced a significant energy coupling from the initially excited mode to the mode with orthogonal polarization. The fiber beat length (LB) is then defined as the displacement of the force application point along the tested fiber, at which the output polarization state reaches the initial state. The phase modal birefringence (B) is calculated as the quotient of the wavelength (λ) to the beat length (B = λ / LB). The results of the beat length and phase modal birefringence measured at λ = 1.55 µm are given in Table 1. Furthermore, the phase modal birefringence measured and simulated at a wavelength range between 1.3 µm and 1.62 µm are presented Fig. 4 and as one can see show very good agreement of the experimental values and the theoretical model.

 

Fig. 4 Measured and simulated phase modal birefringence of fundamental and second order mode of examined HB MSF.

Download Full Size | PPT Slide | PDF

3. Measurements of temperature and strain polarimetric sensitivity

The optical fiber polarimetric sensitivity can be experimentally defined as [22]:

Kξ=dΔϕdξL
where Δϕ is the phase shift induced by an external perturbation change between the polarization modes and L is the fiber length exposed to the external perturbation ξ.

The measurement set-up used in our experiment is presented in Fig. 5 . Similarly to the phase modal birefringence measurements, both the fundamental and second order modes needed to be excited selectively as explained in more detail in the previous section of this paper. We used a polarization analyzer as a detector, which resolved the output light into the Stokes parameters, which were plotted on the Poincaré sphere. Any change of the phase shift between the orthogonal polarizations in the fiber correspond to rotations of the sphere, with one rotation on the sphere being equivalent to a 2π phase shift (Δϕ = 2π□∙ ΔM, where ΔM is the number of rotations around the Poincaré sphere). After a simple transformation of the Eq. (1) the polarimetric sensitivities to temperature and strain can be given by Eq. (2) and Eq. (3), respectively:

KT=2πΔMLTΔT
Kε=2πΔMLεΔL
where LT and Lε are the lengths of fiber exposed to temperature and stain changes respectively, ΔT is the temperature change and ΔL is the fiber elongation.

 

Fig. 5 Schematic diagram of the set-up for polarimetric strain and temperature sensitivity measurements.

Download Full Size | PPT Slide | PDF

The results of polarimetric sensitivity to temperature are given in Table 2 . As one can see, the temperature sensitivity of the second order mode is an order of magnitude higher than the sensitivity of the fundamental mode, but is still an order of magnitude lower than the temperature sensitivity of conventional HB PM fibers (i.e. bow-tie, PANDA and elliptical core fibers) [24]. Furthermore the sign of KT in conventional HB fibers is negative, which means that the birefringence decreases against temperature due to thermal stress release. As mentioned in the introduction to this paper the thermal properties, therefore the sign and value of KT in microstructured fibers strongly depend on the air hole arrangement and fiber geometry. Our results of low and positive polarimetric sensitivity to temperature at λ = 1.55 µm are in agreement with the recently reported experimental and numerical results for fibers with similar “in-line” air hole geometry [19, 25].

Tables Icon

Table 2. Polarimetric sensitivity to strain (Kε) and temperature (KT) of the fundamental (E11) and second order (E21) modes measured at λ = 1.55 µm.

The polarimetric strain sensitivity measurement results are presented in the second column of Table 2. The Kε value for the fundamental mode is relatively low and the negative sign shows that the birefringence decreases with strain, which is conform to what was previously reported by Luyckx [19] for a similar single-mode HB MSF. An interesting effect is observed for the second order mode for which the polarimetric strain sensitivity changes its sign and increases over two orders of magnitude in comparison to the fundamental mode. We expect this to be related to the fact that the higher order modes in the investigated fiber are in a strong interaction with the regions around the cladding air holes where the local strain distributions caused by external elongation reach the maximum. The positive dependency of the polarimetric sensitivity, therefore the modal birefringence, to external strain is a very strong advantage when considering the use of such a fiber in FBG based strain transducers. As we previously reported in [26] in dual-mode birefringent fibers, unpolarized light which is launched into the MSF yields two Bragg peaks (λB1 and λB2 one for each orthogonally polarized mode) for the fundamental mode and two Bragg peaks for the second order mode, with the Bragg peak separation between the two polarization modes corresponding to the mode birefringence. The positive relationship between Kε and the externally applied strain means that the work range of our transducer will be limited by the fiber strain resistance and not by the value of B (as in a sensor reported in [19] where Kε has a negative sign).

4. Conclusion

In this work we report a reliable microstructured fiber dedicated for FBG inscription and characterized by very high, well defined and controllable birefringence of the second order mode. We present the results of theoretical modeling including numerical calculations of confinement losses and birefringence of the first four modes (E11, E21, E31 and E12, respectively). Furthermore, we show the experimental values of beat length and birefringence of the first two modes at a large wavelength range from 1.30 µm to 1.65 µm measured with the lateral force method, which are in a very good agreement with the numerical simulation. Additionally, we demonstrate (basing on experimental results) that the dual-mode MSF has very low polarimetric temperature sensitivity for fundamental mode and also relatively low for second order mode. Moreover, the polarimetric strain sensitivity is low for fundamental mode, however very high (two orders of magnitude larger) for second order mode. Therefore we prove, that higher order modes can exhibit significantly higher sensitivities to external strain, if they are located closer to the MSF hollow regions than the fundamental mode and that the presented fiber allows for the construction of a temperature independent very sensitive strain transducer.

Acknowledgements

The work described in this paper was partially supported by the EU FP7 as the COST action TD1001, by the Polish Ministry of Science and Higher Education within the Innovative Economy Programme as the key project POIG.01.03.01-14-016/08-06 and research project NR02 0074 10, as well as by the Polish Agency for Enterprise Development within the Innovative Economy Programme as projects POIG.01.04.00-06-017/11 and POIG.01.04.00-18-008/10.

References and links

1. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef]   [PubMed]  

2. L. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]  

3. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express 11(1), 48–53 (2003). [CrossRef]   [PubMed]  

4. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, 2003).

5. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]  

6. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010). [CrossRef]   [PubMed]  

7. T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009). [CrossRef]  

8. J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16(11), 2472–2474 (2004). [CrossRef]  

9. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000). [CrossRef]   [PubMed]  

10. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001). [CrossRef]  

11. M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44(13), 2652–2658 (2005). [CrossRef]   [PubMed]  

12. J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12(5), 956–960 (2004). [CrossRef]   [PubMed]  

13. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986). [CrossRef]  

14. W. J. Bock and W. Urbanczyk, “Measurements of sensitivity of birefringent holey fiber to temperature, elongation, and hydrostatic pressure,” Proc. of the 21st IEEE-Instrumentation and Measurement Technology Conference2, 1228–1232 (2004).

15. D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12(19), 4490–4495 (2004). [CrossRef]   [PubMed]  

16. C. H. L. Zhao, X. Yang, Ch. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004). [CrossRef]  

17. C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Opt. Lett. 31(15), 2260–2262 (2006). [CrossRef]   [PubMed]  

18. T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009). [CrossRef]  

19. G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009). [CrossRef]  

20. T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008). [CrossRef]  

21. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Bragg gratings in photonic crystal fibres: strain and temperature characterization,” Proc. SPIE 5855, 302–305 (2005). [CrossRef]  

22. T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005). [CrossRef]  

23. T. Nasilowski, K. Skorupski, M. Makara, G. Statkiewicz-Barabach, P. Mergo, P. Marc, and L. Jaroszewicz, “Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre,” Proc. SPIE 7753, 77533O, 77533O-4 (2011). [CrossRef]  

24. F. Zhang and J. W. Y. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 32(13), 2213–2218 (1993). [CrossRef]   [PubMed]  

25. T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007). [CrossRef]  

26. T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  2. L. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  3. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express 11(1), 48–53 (2003).
    [Crossref] [PubMed]
  4. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, 2003).
  5. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  6. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
    [Crossref] [PubMed]
  7. T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
    [Crossref]
  8. J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16(11), 2472–2474 (2004).
    [Crossref]
  9. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
    [Crossref] [PubMed]
  10. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
    [Crossref]
  11. M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44(13), 2652–2658 (2005).
    [Crossref] [PubMed]
  12. J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12(5), 956–960 (2004).
    [Crossref] [PubMed]
  13. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [Crossref]
  14. W. J. Bock and W. Urbanczyk, “Measurements of sensitivity of birefringent holey fiber to temperature, elongation, and hydrostatic pressure,” Proc. of the 21st IEEE-Instrumentation and Measurement Technology Conference2, 1228–1232 (2004).
  15. D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12(19), 4490–4495 (2004).
    [Crossref] [PubMed]
  16. C. H. L. Zhao, X. Yang, Ch. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
    [Crossref]
  17. C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Opt. Lett. 31(15), 2260–2262 (2006).
    [Crossref] [PubMed]
  18. T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
    [Crossref]
  19. G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
    [Crossref]
  20. T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
    [Crossref]
  21. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Bragg gratings in photonic crystal fibres: strain and temperature characterization,” Proc. SPIE 5855, 302–305 (2005).
    [Crossref]
  22. T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
    [Crossref]
  23. T. Nasilowski, K. Skorupski, M. Makara, G. Statkiewicz-Barabach, P. Mergo, P. Marc, and L. Jaroszewicz, “Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre,” Proc. SPIE 7753, 77533O, 77533O-4 (2011).
    [Crossref]
  24. F. Zhang and J. W. Y. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 32(13), 2213–2218 (1993).
    [Crossref] [PubMed]
  25. T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
    [Crossref]
  26. T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
    [Crossref]

2012 (1)

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

2011 (1)

T. Nasilowski, K. Skorupski, M. Makara, G. Statkiewicz-Barabach, P. Mergo, P. Marc, and L. Jaroszewicz, “Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre,” Proc. SPIE 7753, 77533O, 77533O-4 (2011).
[Crossref]

2010 (1)

2009 (3)

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

2008 (1)

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

2007 (1)

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
[Crossref]

2006 (3)

2005 (3)

C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Bragg gratings in photonic crystal fibres: strain and temperature characterization,” Proc. SPIE 5855, 302–305 (2005).
[Crossref]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
[Crossref]

M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44(13), 2652–2658 (2005).
[Crossref] [PubMed]

2004 (4)

J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12(5), 956–960 (2004).
[Crossref] [PubMed]

D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12(19), 4490–4495 (2004).
[Crossref] [PubMed]

C. H. L. Zhao, X. Yang, Ch. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16(11), 2472–2474 (2004).
[Crossref]

2003 (2)

2001 (1)

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

2000 (1)

1993 (1)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Anuszkiewicz, A.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

Arriaga, J.

Avdeev, I. V.

Bails, M. M.

Bartelt, H.

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

Becker, M.

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

Berghmans, F.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
[Crossref]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
[Crossref]

M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44(13), 2652–2658 (2005).
[Crossref] [PubMed]

Birks, T. A.

Bjarklev, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Bouwmans, G.

Broeng, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Canning, J.

C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Opt. Lett. 31(15), 2260–2262 (2006).
[Crossref] [PubMed]

C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Bragg gratings in photonic crystal fibres: strain and temperature characterization,” Proc. SPIE 5855, 302–305 (2005).
[Crossref]

Chah, K.

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

Chen, K. P.

Coen, S.

L. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

De Waele, W.

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Degrieck, J.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

Demokan, M. S.

C. H. L. Zhao, X. Yang, Ch. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16(11), 2472–2474 (2004).
[Crossref]

Dudley, L. M.

L. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Folkenberg, J. R.

Geernaert, T.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

Genty, G.

L. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Golojuch, G.

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
[Crossref]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
[Crossref]

Groothoff, N.

C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Bragg gratings in photonic crystal fibres: strain and temperature characterization,” Proc. SPIE 5855, 302–305 (2005).
[Crossref]

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Jakobsen, C.

Jaroszewicz, L.

T. Nasilowski, K. Skorupski, M. Makara, G. Statkiewicz-Barabach, P. Mergo, P. Marc, and L. Jaroszewicz, “Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre,” Proc. SPIE 7753, 77533O, 77533O-4 (2011).
[Crossref]

Jaroszewicz, L. R.

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Jewart, C.

Jin, W.

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16(11), 2472–2474 (2004).
[Crossref]

C. H. L. Zhao, X. Yang, Ch. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Ju, J.

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16(11), 2472–2474 (2004).
[Crossref]

Kang, J. U.

Kim, D. H.

Klimek, J.

Knight, J.

Knight, J. C.

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Levitan, S. P.

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Lit, J. W. Y.

Lu, Ch.

C. H. L. Zhao, X. Yang, Ch. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Luyckx, G.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

Lyytikainen, K.

C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Bragg gratings in photonic crystal fibres: strain and temperature characterization,” Proc. SPIE 5855, 302–305 (2005).
[Crossref]

Makara, M.

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

T. Nasilowski, K. Skorupski, M. Makara, G. Statkiewicz-Barabach, P. Mergo, P. Marc, and L. Jaroszewicz, “Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre,” Proc. SPIE 7753, 77533O, 77533O-4 (2011).
[Crossref]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
[Crossref]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
[Crossref]

M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44(13), 2652–2658 (2005).
[Crossref] [PubMed]

Mangan, B. J.

Marc, P.

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

T. Nasilowski, K. Skorupski, M. Makara, G. Statkiewicz-Barabach, P. Mergo, P. Marc, and L. Jaroszewicz, “Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre,” Proc. SPIE 7753, 77533O, 77533O-4 (2011).
[Crossref]

Martelli, C.

C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Bragg gratings in photonic crystal fibres: strain and temperature characterization,” Proc. SPIE 5855, 302–305 (2005).
[Crossref]

Martynkien, T.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
[Crossref]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
[Crossref]

M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44(13), 2652–2658 (2005).
[Crossref] [PubMed]

McMillen, B.

Mergo, P.

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

T. Nasilowski, K. Skorupski, M. Makara, G. Statkiewicz-Barabach, P. Mergo, P. Marc, and L. Jaroszewicz, “Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre,” Proc. SPIE 7753, 77533O, 77533O-4 (2011).
[Crossref]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
[Crossref]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
[Crossref]

Mortensen, N. A.

Murawski, M.

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

Nasilowski, T.

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

T. Nasilowski, K. Skorupski, M. Makara, G. Statkiewicz-Barabach, P. Mergo, P. Marc, and L. Jaroszewicz, “Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre,” Proc. SPIE 7753, 77533O, 77533O-4 (2011).
[Crossref]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
[Crossref]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
[Crossref]

M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44(13), 2652–2658 (2005).
[Crossref] [PubMed]

Nielsen, M. D.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Olszewski, J.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
[Crossref]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
[Crossref]

M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44(13), 2652–2658 (2005).
[Crossref] [PubMed]

Ortigosa-Blanch, A.

Percival, R.

Poturaj, K.

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

Rothhardt, M.

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

Russell, P.

Russell, P. St. J.

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Simonsen, H. R.

Skorupski, K.

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

T. Nasilowski, K. Skorupski, M. Makara, G. Statkiewicz-Barabach, P. Mergo, P. Marc, and L. Jaroszewicz, “Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre,” Proc. SPIE 7753, 77533O, 77533O-4 (2011).
[Crossref]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

Sonnenfeld, C.

Statkiewicz, G.

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
[Crossref]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
[Crossref]

M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44(13), 2652–2658 (2005).
[Crossref] [PubMed]

Statkiewicz-Barabach, G.

T. Nasilowski, K. Skorupski, M. Makara, G. Statkiewicz-Barabach, P. Mergo, P. Marc, and L. Jaroszewicz, “Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre,” Proc. SPIE 7753, 77533O, 77533O-4 (2011).
[Crossref]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

Szczurowski, M.

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

Szczurowski, M. K.

Szpulak, M.

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
[Crossref]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
[Crossref]

M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44(13), 2652–2658 (2005).
[Crossref] [PubMed]

Szymanski, M.

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

Tarnowski, K.

Tenderenda, T.

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

Terryn, H.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Thienpont, H.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
[Crossref]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
[Crossref]

M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44(13), 2652–2658 (2005).
[Crossref] [PubMed]

Urbanczyk, W.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
[Crossref]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
[Crossref]

M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44(13), 2652–2658 (2005).
[Crossref] [PubMed]

Van Paepegem, W.

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

Voet, E.

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Wadsworth, W.

Wadsworth, W. J.

Wojcik, J.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
[Crossref]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
[Crossref]

Wójcik, J.

Yang, X.

C. H. L. Zhao, X. Yang, Ch. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Zhang, F.

Zhao, C. H. L.

C. H. L. Zhao, X. Yang, Ch. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (6)

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16(11), 2472–2474 (2004).
[Crossref]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

C. H. L. Zhao, X. Yang, Ch. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009).
[Crossref]

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008).
[Crossref]

J. Appl. Phys. B (1)

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005).
[Crossref]

J. Lightwave Technol. (2)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[Crossref]

Meas. Sci. Technol. (1)

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (3)

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012).
[Crossref]

T. Nasilowski, K. Skorupski, M. Makara, G. Statkiewicz-Barabach, P. Mergo, P. Marc, and L. Jaroszewicz, “Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre,” Proc. SPIE 7753, 77533O, 77533O-4 (2011).
[Crossref]

C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Bragg gratings in photonic crystal fibres: strain and temperature characterization,” Proc. SPIE 5855, 302–305 (2005).
[Crossref]

Rev. Mod. Phys. (1)

L. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Other (2)

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, 2003).

W. J. Bock and W. Urbanczyk, “Measurements of sensitivity of birefringent holey fiber to temperature, elongation, and hydrostatic pressure,” Proc. of the 21st IEEE-Instrumentation and Measurement Technology Conference2, 1228–1232 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM image of the investigated HB MSF cross-section.

Fig. 2
Fig. 2

Experimental near field distribution of: E11 fundamental mode (a), E21 second order mode (b) and electric field distribution according to simulations of the E11 (c) and E21 mode (d) of the investigated HB MSF.

Fig. 3
Fig. 3

Schematic diagram of the lateral force method set-up for measuring the phase modal birefringence [23].

Fig. 4
Fig. 4

Measured and simulated phase modal birefringence of fundamental and second order mode of examined HB MSF.

Fig. 5
Fig. 5

Schematic diagram of the set-up for polarimetric strain and temperature sensitivity measurements.

Tables (2)

Tables Icon

Table 1 Simulated and measured values of the effective refractive index (neff), confinement losses and modal birefringence of the first four propagated modes.

Tables Icon

Table 2 Polarimetric sensitivity to strain (Kε) and temperature (KT) of the fundamental (E11) and second order (E21) modes measured at λ = 1.55 µm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

K ξ = dΔϕ dξ L
K T = 2πΔM L T ΔT
K ε = 2πΔM L ε ΔL

Metrics