Abstract

Strong polarization dependence in the optical transmission through a bull’s eye with a central elliptical aperture in a thin Au film is analyzed numerically by finite difference time domain (FDTD) method. Focusing on the impacts of the structural anisotropy, detailed investigation of polarization dependent enhanced optical transmission (EOT) of light is discussed in terms of the resonance intensity variations caused by the incident light polarization and the geometrical parameters of bull’s eye. We found that the light polarized along the minor axis of the elliptic aperture has significantly larger EOT by more than three orders of magnitude than the other orthogonal polarization, which can be further utilized in polarized EOT devices.

© 2012 OSA

1. Introduction

Since the first report of extraordinary optical transmission (EOT) through nano-hole arrays in metal films [1] the sub-wavelength patterns on metal-dielectric interfaces have generated significant research interests due to their unique optical properties: highly localized and spectrally selective transmission that can find various applications from sensing to opto-electronics devices [24]. Driving force of these unique optical properties is known to be surface Plasmon (SP), a form of collective behavior between electromagnetic wave and free electron confined at the metal-dielectric interface. Among the variety of metal aperture structures, bull’s eyes that consisted of a circular aperture surrounded by concentric grooves on thin metal films have drawn much attention. The periodic metal grooves act like an antenna for the incoming light by converting it to SP and enhancing transmission through the aperture by coupling SPs to the incident light. This combination of the central aperture and concentric metal grooves enabled various applications: ultra fast photodetector [5], vertical-cavity surface-emitting lasers and quantum cascade lasers [68], sub-wavelength optical wave plates [9], plasmonic photon sorter [10], and sub-wavelength light source for nanolithography [11].

In prior studies on bull’s eyes, the effects of structural parameters such as the corrugation period, depth, width, number of the grooves and the aperture diameter on EOT have been investigated in detail [1215]. An anisotropic bowtie aperture with circular grooves has been reported to reduce the divergence of the near-field [16]. Despite these extensive efforts, there have been only a few reports on the polarization dependence. Prior polarization studies have been limited only to elliptical and rectangular nano-hole arrays [17, 18], single sub-wavelength aperture on a metallic film without any corrugations [19] nano-hole structures with multiple grating geometry [20], a metallic hole surrounded by double spiral dielectric gratings [21] and Archimedes’ spiral grooves on a silver film impinged by a circularly polarized light [22].

In this study, we focus on the fundamental issue in bull’s eyes: how the EOT is affected by the geometrical anisotropy in the central aperture and its interaction with the polarization of incident light in bull’s eye structure, for the first time to the best knowledge of the authors. Polarization dependence in EOT and its controllability in bull’s eye structure would open a new avenue of applications of single polarization photonic devices, and polarization selective sensors.

Schematic diagram for the proposed bull’s eye in this study is shown in Fig. 1(a) . Here we assume a free-standing double side corrugated Au film with an elliptical nano-hole at the center. The elliptical hole is characterized by the diameters on the x and y axes denoted by d1 and d2, respectively. The concentric circular grooves are characterized by geometrical parameters as shown in Fig. 1(b): the film thickness, t, grooves depth, s, grooves width, w, period of grooves, p, and the distance from the center of the hole to the first groove, denoted as a. Figure 1(c) is a schematic diagram of the illumination condition and the EOT outputs corresponding to two orthogonal polarizations, where we assume a uniform plane wave is normally incident on the bull’s eye. The relative EOT for the light polarized along the y axis, or equivalently vertical polarization, shows a significantly stronger EOT than the other polarization. In the following sections, we will discuss in detail how the sub-wavelength scale variations in the geometrical parameters of the proposed elliptic bull’s eye affect the polarization dependence in EOT.

 

Fig. 1 (a) Schematic diagram of the proposed elliptical bull’s eye in a free standing Au film. The diameters of the elliptical hole are denoted as d1 and d2 along the x and y axes, respectively. (b) Schematic cross section of the elliptical bull’s eye. The width, depth, and period of the grooves along with the Au-film thickness are denoted as w, s, p, and t respectively. The distance from the aperture center to the center of the first groove is a. The bull’s eye contains 6 grooves on both sides of the Au film. (c) Schematic representation of the illumination condition and its output. We assumed the normal incidence of a plane wave over the bull’s eye with d1 > d2.

Download Full Size | PPT Slide | PDF

2. Results

In order to investigate transmission characteristics of the proposed bull’s eye, FDTD method was applied to solve the time dependent Maxwell equations in the vicinity of the proposed bull’s eye structure using a commercially available program [23]. The total simulation size for FDTD analysis was 9 × 9 × 1.5 μm3 and the mesh-grid resolution of 10 nm was chosen to provide numerically converging consistent results. A frequency domain power monitor is located above the upper surface and is used to measure transmission through the aperture. Perfectly matched layer conditions were adopted to absorb parasitic reflections. We assumed double-sided six concentric grooves on Au film and geometrical parameters were t = 300 nm, s = 60 nm, w = 300 nm, a = 600 nm, and p = 600 nm, which are similar to prior circular bull’s eyes [24]. In this study, we introduced the sub-wavelength scale anisotropy in the central aperture such that d1 = 300 nm, and d2 varied from 150 to 300 nm. Note that the range of d2 was chosen, considering the state of art process capability used in bull’s eye fabrication [25]. Using FDTD method, the transmission properties in the far and near field were thoroughly investigated for two orthogonal polarizations; horizontal and vertical polarization as defined in Fig. 1(c). The spectral range of the incident light was 400 to 1000 nm.

2.1 Angular distribution of transmission intensity

Figure 2 shows the angular distribution of transmission through the proposed bull’s eye. The wavelength of the incident wave was set at the structural resonance wavelength λ = 670 nm, which was mainly determined by the metallic groove period p = 600 nm [12]. Here ε denotes the ellipticity of the anisotropic aperture, ε = (d1-d2)/d1, and θ is the collection angle along the x-z plane for the Horizontal polarization and the y-z plane for the Vertical polarization measured from the normal axis as shown in Fig. 1(b). In Fig. 2(a) the EOT of the horizontally polarized light rapidly decreased by increasing the anisotropy in the aperture, or equivalently increasing ε. In contrast, EOT of the vertical polarization increased with the growing ε as in Fig. 2(b). The collection angle for the transmitted light did not change significantly and remained in the range of a full-width at half-maximum (FWHM) divergence of ± 2.5°.

 

Fig. 2 Plots of transmission intensity versus the collection angle for the proposed bull’s eye for (a) horizontal polarization, and (b) vertical polarization.

Download Full Size | PPT Slide | PDF

In Fig. 2, we could observe a highly polarization dependent EOT. For example at the ellipticity of ε = 1/2, the EOT peak intensity for the horizontal polarization was two orders of magnitude smaller than that for the vertical polarization, which resulted in the polarization extinction ratio, Iv/Ih of ~187 at θ = 0°. Here, Iv and Ih are the peak EOT intensities for the vertical and horizontal polarization, respectively. The strong polarization dependence of transmission resembles previous reports on transmission through a subwavelength slit surrounded by surface corrugations [24], and metallic nanowire gratings [26]. In the case of vertical polarization, Fig. 2(b), the peak transmission intensity for ε = 1/2, 1/3, and 1/6 were ~2, 1.75 and 1.3 times greater than that of circular bull’s eye with ε = 0. These results are consistent with prior observations, when the electric field of the incident light is aligned along the minor axis of a single elliptic aperture, as in Fig. 1(c), the electric and magnetic dipoles are excited strongly on the surfaces of the metal film [27].

2.2 Dependence on the structural parameters of elliptic bull’s eye; s, w, p, and a

In the following analyses, we focused on the peak EOT intensity at θ = 0°. In Fig. 3 , we investigated the effect of groove depth, s, on EOT with other structural parameters set at w = 300 nm, p = 600 nm, a = 600 nm, t = 300 nm. EOT for horizontal and vertical polarization are summarized in Fig. 3(a), (b), respectively. Each data point is the EOT peak intensity at the corresponding resonance wavelengths, which were found by FDTD analyses. The dot-dash lines are fittings. We found that maximum EOT was achieved with s≈50 nm for both polarizations.

 

Fig. 3 Comparison of transmission intensity versus the groove depth, s, through the elliptic bull’s eye (w = 300 nm, p = 600 nm, a = 600 nm, t = 300 nm) for (a) horizontal polarization, and (b) vertical polarization.

Download Full Size | PPT Slide | PDF

Compared with Shuford et al’s report [15] where the optimum groove depth, sopt, for a circular aperture surrounded by circular groove structures was ~15% of the groove period, p, our result was found to be about ~8% (soptimal = 50 nm for p = 600 nm), which is less by a factor of two. The difference is attributed to the step grooves and an elliptical aperture in the proposed bull’s eye in contrast to sinusoidal grooves and a circular aperture in prior reports. In Fig. 3 we could achieve a high EOT polarization extinction ratio, Iv/Ih = 798 at soptimal = 50 nm and ε = 1/2.

In Fig. 4 , we summarized the dependence of EOT on the groove width w. For both polarizations, we achieved the maximum EOT at the groove width w≈300 nm, which is about a half of the groove period p, consistent to the prior circular bull’s eye s [13]. In the vertical polarization, the maximum EOT peak is observed at ε = 1/2 and w≈300 nm which is 298 times stronger than that of the horizontal polarization.

 

Fig. 4 Comparison of transmission intensity versus groove width, w, in the proposed elliptic bull’s eye (s = 60 nm, p = 600 nm, a = 600 nm, t = 300 nm) for (a) horizontal polarization, and (b) vertical polarization.

Download Full Size | PPT Slide | PDF

Among structural parameters, the groove periodicity, p, defines not only the dimension of the structure but also the resonance wavelength [13]. The periodic metallic corrugation has the role of coupling the incident light to SPs which focus the electromagnetic fields in the aperture to provide EOT. Figure 5 summarizes the impacts of the groove period, p, on EOT intensity. The maximum EOT occurred when p≈2w (w = 300 nm), which is consistent to previous studies [13, 14]. In the vertical polarization, the maximum EOT intensity was observed at ε = 1/2, with p≈650 nm, and the polarization extinction ratio, Iv/Ih, was 563.

 

Fig. 5 Comparison of transmission intensity versus the groove periodicity p in the proposed elliptic bull’s eye (s = 60 nm, w = 300 nm, a = 600 nm, t = 300 nm) for (a) horizontal polarization, (b) vertical polarization.

Download Full Size | PPT Slide | PDF

We then investigated the effect of the distance from the aperture center to the center of the first groove, a, and the results are summarized in Fig. 6 . The maximum EOT occurred at a≈550 nm for both polarizations, which is close to the period of the groove, p, in good agreement with the previous results [13]. Similar to discussion on other parameters, we observed highly polarization dependent EOT such that vertical polarization showed a dominant peak whose intensity is 284 times larger at ε = 1/2.

 

Fig. 6 Comparison of transmission intensity versus the distance from central hole to the center of the first groove a in the proposed elliptic bull’s eye (s = 60 nm, p = 600 nm, w = 300 nm, t = 300 nm) for (a) horizontal polarization and (b) vertical polarization.

Download Full Size | PPT Slide | PDF

In Fig. 7 , we summarized transmission spectra for various ellipticities, ε, in horizontal and vertical polarizations. As shown in the inset of Fig. 7(a), the spectral at ε = 0 composed of two peaks. The peak near 490 nm is related to interplay between the real part of the conduction electron dielectric function and the imaginary part of the d-electron dielectric function [28] and it didn’t change with the structural parameter variations. The stronger transmission peak due to the SP excitation was observed near 675 nm, which was affected by the ellipticity as in Fig. 7(b).

 

Fig. 7 EOT spectral for various ellipticities in (a) horizontal polarization, and (b) vertical polarization. The inset is the spectral at ε = 0. The geometrical parameters of the bull’s eye were: s = 60 nm, w = 300 nm, p = 600 nm, a = 600 nm, t = 300 nm.

Download Full Size | PPT Slide | PDF

The near field intensity profiles were obtained in the log scale in Fig. 8(a), and (b) . Here we assumed s = 60 nm, w = 300 nm, p = a = 600 nm, t = 300 nm, d1 = 300 nm and d2 = 150 nm, with ε = 1/2. A plane wave was incident normal to the proposed bull’s eye at the resonance wavelength λ = 670 nm. When the structure is illuminated in the horizontal polarization, Fig. 8(a), the induced electric dipole is relatively weak and the primary source of radiation is the induced magnetic quadruple [27]. In general, quadrapolar sources are weak radiators, thus accounting for the weakness of transmission through an elliptical aperture illuminated by a plane wave. In the case of vertical polarization, Fig. 8(b), we can expect more electrical charges and stronger surface currents and also a greater separation of the two magnetic dipoles to provide higher EOT [27]. Furthermore, the periodic grooves which act as a resonant antenna further enhanced the polarization dependent EOT at the wavelengths determined by the periodic corrugations, efficiently coupling to SPs.

 

Fig. 8 Near field intensity profile in log scale for (a) horizontal polarization and (b) vertical polarization. Color bar shows near field intensity with an arbitrary unit. (c) maximum polarization extinction ratio spectrum (d) polarization extinction ratio, Iv/Ih, as a function of the nano-hole ellipticity, ε.

Download Full Size | PPT Slide | PDF

In Fig. 8(c), we plotted the EOT spectra for the vertical and horizontal polarizations for the optimal structural parameters (w = 300 nm, p = 650 nm, a = 550 nm, t = 300nm, s = 50 nm). The proposed device provided a unique optical characteristics with a high polarization extinction ratio over 1000, along with a highly directive beaming property as shown in Fig. 2. We summarized the polarization extinction ratio, Iv/Ih, as a function of the aperture ellipticity, ε, in Fig. 8(d) for the optimal parameters. We found monotonic and rapid increase of the polarization extinction ratio with increasing ellipticity, ε. The light polarized along the minor axis of the elliptic aperture had an EOT significantly larger by more than three orders of magnitude than the other orthogonal polarization. These results are consistent with prior observations in a single elliptic aperture without concentric grooves [27]. When the electric field of the incident light is aligned along the minor axis of the aperture, the electric and magnetic dipoles are excited strongly on the upper surface of the metal film, which produces even stronger dipoles on the lower facet of the film [27]. In our proposed device, the metallic grooves further enhance EOT to produce higher polarization dependence.

3. Conclusion

By introducing sub-wavelength scale anisotropy in the central aperture of a metallic bull’s eye structure, we were able to demonstrate that the polarization dependence in the EOT could be flexibly controlled. When the polarization of the incident plane was along the minor axis of the aperture with an ellipticty of ε = 1/2, we observed the EOT larger by over ~1000 times than that of the other orthogonal polarization. The proposed elliptic bull’s eye could provide unique highly polarization selective transmission, which was not demonstrated in prior circularly symmetric bull’s eye structures. Polarization dependence in EOT and its flexible control in bull’s eye structure would open new EOT applications such as single polarization photonic devices, and polarization selective plasmonic sensors.

Acknowledgment

This work was supported in part by the Brain Korea 21 Project, in part by the National Research Foundation of Korea (NRF) and grant funded by the Korea government (MEST) (No. 2011-00181613 and 2012M3A7B4049800), in part by the Seoul R&BD Program (No.PA110081M0212351), and in part by the LG Display (2011-8-2160).

References and links

1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]  

2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef]   [PubMed]  

3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008), http://www.physicstoday.org/resource/1/phtoad/v61/i5/p44_s1?isAuthorized=no. [CrossRef]  

4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef]   [PubMed]  

5. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/. [CrossRef]  

6. B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91(2), 021103 (2007), http://apl.aip.org/resource/1/applab/v91/i2/p021103_s1. [CrossRef]  

7. N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1. [CrossRef]  

8. N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009). [CrossRef]  

9. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008). [CrossRef]   [PubMed]  

10. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008). [CrossRef]  

11. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008). [CrossRef]   [PubMed]  

12. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401. [CrossRef]   [PubMed]  

13. O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010). [CrossRef]   [PubMed]  

14. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003). [CrossRef]   [PubMed]  

15. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1–2), 11–18 (2006). [CrossRef]  

16. P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Improving near-field confinement of a bowtie aperture using surface plasmon polaritons,” Appl. Phys. Lett. 98(22), 223106 (2011). [CrossRef]  

17. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004). [CrossRef]   [PubMed]  

18. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004). [CrossRef]   [PubMed]  

19. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004). [CrossRef]  

20. N. Sedoglavich, J. C. Sharpe, R. Künnemeyer, and S. Rubanov, “Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry,” Opt. Express 16(8), 5832–5837 (2008). [CrossRef]   [PubMed]  

21. S. Y. Lee, I. M. Lee, J. Park, C. Y. Hwang, and B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt. 50(31), G104–G112 (2011). [CrossRef]   [PubMed]  

22. T. Ohno and S. Miyanishi, “Study of surface plasmon chirality induced by Archimedes’ spiral grooves,” Opt. Express 14(13), 6285–6290 (2006). [CrossRef]   [PubMed]  

23. FDTD Lumerical Solutions Inc, www.lumerical.com.

24. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef]   [PubMed]  

25. M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1266–1277 (2005). [CrossRef]  

26. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001). [CrossRef]  

27. A. R. Zakharian, M. Mansuripur, and J. Moloney, “Transmission of light through small elliptical apertures,” Opt. Express 12(12), 2631–2648 (2004). [CrossRef]   [PubMed]  

28. V. Halté, A. Benabbas, and J. Y. Bigot, “Optical response of periodically modulated nanostructures near the interband transition threshold of noble metals,” Opt. Express 14(7), 2909–2920 (2006). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008), http://www.physicstoday.org/resource/1/phtoad/v61/i5/p44_s1?isAuthorized=no .
    [Crossref]
  4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  5. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
    [Crossref]
  6. B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91(2), 021103 (2007), http://apl.aip.org/resource/1/applab/v91/i2/p021103_s1 .
    [Crossref]
  7. N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
    [Crossref]
  8. N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
    [Crossref]
  9. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
    [Crossref] [PubMed]
  10. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
    [Crossref]
  11. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
    [Crossref] [PubMed]
  12. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
    [Crossref] [PubMed]
  13. O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
    [Crossref] [PubMed]
  14. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
    [Crossref] [PubMed]
  15. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1–2), 11–18 (2006).
    [Crossref]
  16. P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Improving near-field confinement of a bowtie aperture using surface plasmon polaritons,” Appl. Phys. Lett. 98(22), 223106 (2011).
    [Crossref]
  17. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
    [Crossref] [PubMed]
  18. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [Crossref] [PubMed]
  19. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
    [Crossref]
  20. N. Sedoglavich, J. C. Sharpe, R. Künnemeyer, and S. Rubanov, “Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry,” Opt. Express 16(8), 5832–5837 (2008).
    [Crossref] [PubMed]
  21. S. Y. Lee, I. M. Lee, J. Park, C. Y. Hwang, and B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt. 50(31), G104–G112 (2011).
    [Crossref] [PubMed]
  22. T. Ohno and S. Miyanishi, “Study of surface plasmon chirality induced by Archimedes’ spiral grooves,” Opt. Express 14(13), 6285–6290 (2006).
    [Crossref] [PubMed]
  23. FDTD Lumerical Solutions Inc, www.lumerical.com .
  24. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [Crossref] [PubMed]
  25. M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1266–1277 (2005).
    [Crossref]
  26. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
    [Crossref]
  27. A. R. Zakharian, M. Mansuripur, and J. Moloney, “Transmission of light through small elliptical apertures,” Opt. Express 12(12), 2631–2648 (2004).
    [Crossref] [PubMed]
  28. V. Halté, A. Benabbas, and J. Y. Bigot, “Optical response of periodically modulated nanostructures near the interband transition threshold of noble metals,” Opt. Express 14(7), 2909–2920 (2006).
    [Crossref] [PubMed]

2011 (2)

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Improving near-field confinement of a bowtie aperture using surface plasmon polaritons,” Appl. Phys. Lett. 98(22), 223106 (2011).
[Crossref]

S. Y. Lee, I. M. Lee, J. Park, C. Y. Hwang, and B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt. 50(31), G104–G112 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[Crossref]

2008 (6)

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[Crossref]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008), http://www.physicstoday.org/resource/1/phtoad/v61/i5/p44_s1?isAuthorized=no .
[Crossref]

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[Crossref]

N. Sedoglavich, J. C. Sharpe, R. Künnemeyer, and S. Rubanov, “Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry,” Opt. Express 16(8), 5832–5837 (2008).
[Crossref] [PubMed]

2007 (2)

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91(2), 021103 (2007), http://apl.aip.org/resource/1/applab/v91/i2/p021103_s1 .
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (2)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
[Crossref]

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1266–1277 (2005).
[Crossref]

2004 (4)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

A. R. Zakharian, M. Mansuripur, and J. Moloney, “Transmission of light through small elliptical apertures,” Opt. Express 12(12), 2631–2648 (2004).
[Crossref] [PubMed]

2003 (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
[Crossref] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

2001 (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Aussenegg, F. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[Crossref]

Baba, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Benabbas, A.

Bigot, J. Y.

Blanchard, R.

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[Crossref]

Bogy, D. B.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008), http://www.physicstoday.org/resource/1/phtoad/v61/i5/p44_s1?isAuthorized=no .
[Crossref]

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Capasso, F.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[Crossref]

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[Crossref]

Chen, L.

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91(2), 021103 (2007), http://apl.aip.org/resource/1/applab/v91/i2/p021103_s1 .
[Crossref]

Cryan, M. J.

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1266–1277 (2005).
[Crossref]

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Diehl, L.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[Crossref]

Ditlbacher, H.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[Crossref]

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Ebbesen, T. W.

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
[Crossref] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[Crossref]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008), http://www.physicstoday.org/resource/1/phtoad/v61/i5/p44_s1?isAuthorized=no .
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
[Crossref] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Edamura, T.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[Crossref]

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[Crossref]

Enoch, S.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Ersoy, O. K.

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Improving near-field confinement of a bowtie aperture using surface plasmon polaritons,” Appl. Phys. Lett. 98(22), 223106 (2011).
[Crossref]

Fan, J.

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[Crossref]

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
[Crossref]

Furuta, S.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[Crossref]

Garcia-Vidal, F. J.

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
[Crossref] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref] [PubMed]

Genet, C.

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
[Crossref] [PubMed]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[Crossref]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008), http://www.physicstoday.org/resource/1/phtoad/v61/i5/p44_s1?isAuthorized=no .
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Gotschy, W.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[Crossref]

Gray, S. K.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1–2), 11–18 (2006).
[Crossref]

Guo, B.

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91(2), 021103 (2007), http://apl.aip.org/resource/1/applab/v91/i2/p021103_s1 .
[Crossref]

Halté, V.

Heard, P. J.

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1266–1277 (2005).
[Crossref]

Hill, M.

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1266–1277 (2005).
[Crossref]

Hwang, C. Y.

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
[Crossref]

Ivanov, P. S.

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1266–1277 (2005).
[Crossref]

Kan, H.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[Crossref]

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[Crossref]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Koerkamp, K. J.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Krenn, J. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[Crossref]

Kuipers, L.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Künnemeyer, R.

Lamprecht, B.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[Crossref]

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[Crossref]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Lee, B.

Lee, I. M.

Lee, S. Y.

Leitner, A.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[Crossref]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Mahboub, O.

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
[Crossref]

Mansuripur, M.

Martin-Moreno, L.

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Martín-Moreno, L.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
[Crossref] [PubMed]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Miyanishi, S.

Moloney, J.

Ohashi, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
[Crossref]

Ohno, T.

Palacios, S. C.

Pan, L.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Park, J.

Pflügl, C.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[Crossref]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Ratner, M. A.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1–2), 11–18 (2006).
[Crossref]

Rodrigo, S. G.

Rorison, J. M.

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1266–1277 (2005).
[Crossref]

Rubanov, S.

Sanz, D. C.

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1266–1277 (2005).
[Crossref]

Schatz, G. C.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1–2), 11–18 (2006).
[Crossref]

Schider, G.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[Crossref]

Sedoglavich, N.

Segerink, F. B.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Sharpe, J. C.

Shuford, K. L.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1–2), 11–18 (2006).
[Crossref]

Siyuan Yu,

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1266–1277 (2005).
[Crossref]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[Crossref]

Song, G.

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91(2), 021103 (2007), http://apl.aip.org/resource/1/applab/v91/i2/p021103_s1 .
[Crossref]

Srisungsitthisunti, P.

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Improving near-field confinement of a bowtie aperture using surface plasmon polaritons,” Appl. Phys. Lett. 98(22), 223106 (2011).
[Crossref]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Sun, C.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tian, L.

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1266–1277 (2005).
[Crossref]

van Hulst, N. F.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Wang, Q. J.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[Crossref]

Wang, Y.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Xu, X.

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Improving near-field confinement of a bowtie aperture using surface plasmon polaritons,” Appl. Phys. Lett. 98(22), 223106 (2011).
[Crossref]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

Yamanishi, M.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[Crossref]

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[Crossref]

Yu, N.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[Crossref]

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[Crossref]

Zakharian, A. R.

Zhang, X.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1–2), 11–18 (2006).
[Crossref]

Appl. Phys. Lett. (4)

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Improving near-field confinement of a bowtie aperture using surface plasmon polaritons,” Appl. Phys. Lett. 98(22), 223106 (2011).
[Crossref]

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91(2), 021103 (2007), http://apl.aip.org/resource/1/applab/v91/i2/p021103_s1 .
[Crossref]

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[Crossref]

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1266–1277 (2005).
[Crossref]

J. Appl. Phys. (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
[Crossref]

Nat. Nanotechnol. (1)

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[Crossref]

Nature (3)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

Opt. Express (5)

Phys. Rev. Lett. (5)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
[Crossref] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008), http://www.physicstoday.org/resource/1/phtoad/v61/i5/p44_s1?isAuthorized=no .
[Crossref]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Other (1)

FDTD Lumerical Solutions Inc, www.lumerical.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram of the proposed elliptical bull’s eye in a free standing Au film. The diameters of the elliptical hole are denoted as d1 and d2 along the x and y axes, respectively. (b) Schematic cross section of the elliptical bull’s eye. The width, depth, and period of the grooves along with the Au-film thickness are denoted as w, s, p, and t respectively. The distance from the aperture center to the center of the first groove is a. The bull’s eye contains 6 grooves on both sides of the Au film. (c) Schematic representation of the illumination condition and its output. We assumed the normal incidence of a plane wave over the bull’s eye with d1 > d2.

Fig. 2
Fig. 2

Plots of transmission intensity versus the collection angle for the proposed bull’s eye for (a) horizontal polarization, and (b) vertical polarization.

Fig. 3
Fig. 3

Comparison of transmission intensity versus the groove depth, s, through the elliptic bull’s eye (w = 300 nm, p = 600 nm, a = 600 nm, t = 300 nm) for (a) horizontal polarization, and (b) vertical polarization.

Fig. 4
Fig. 4

Comparison of transmission intensity versus groove width, w, in the proposed elliptic bull’s eye (s = 60 nm, p = 600 nm, a = 600 nm, t = 300 nm) for (a) horizontal polarization, and (b) vertical polarization.

Fig. 5
Fig. 5

Comparison of transmission intensity versus the groove periodicity p in the proposed elliptic bull’s eye (s = 60 nm, w = 300 nm, a = 600 nm, t = 300 nm) for (a) horizontal polarization, (b) vertical polarization.

Fig. 6
Fig. 6

Comparison of transmission intensity versus the distance from central hole to the center of the first groove a in the proposed elliptic bull’s eye (s = 60 nm, p = 600 nm, w = 300 nm, t = 300 nm) for (a) horizontal polarization and (b) vertical polarization.

Fig. 7
Fig. 7

EOT spectral for various ellipticities in (a) horizontal polarization, and (b) vertical polarization. The inset is the spectral at ε = 0. The geometrical parameters of the bull’s eye were: s = 60 nm, w = 300 nm, p = 600 nm, a = 600 nm, t = 300 nm.

Fig. 8
Fig. 8

Near field intensity profile in log scale for (a) horizontal polarization and (b) vertical polarization. Color bar shows near field intensity with an arbitrary unit. (c) maximum polarization extinction ratio spectrum (d) polarization extinction ratio, Iv/Ih, as a function of the nano-hole ellipticity, ε.

Metrics