Abstract

We present the design and experimental comparison of femtogram L3-nanobeam photonic crystal cavities for optomechanical studies. Two symmetric nanobeams are created by placing three air slots in a silicon photonic crystal slab where three holes are removed. The nanobeams’ mechanical frequencies are higher than 600 MHz with ultrasmall effective modal masses at approximately 20 femtograms. The optical quality factor (Q) is optimized up to 53,000. The optical and mechanical modes are dispersively coupled with a vacuum optomechanical coupling rate g0/2π exceeding 200 kHz. The anchor-loss-limited mechanical Q of the differential beam mode is evaluated to be greater than 10,000 for structures with ideally symmetric beams. The influence of variations on the air slot width and position is also investigated. The devices can be used as ultrasensitive sensors of mass, force, and displacement.

©2012 Optical Society of America

1. Introduction

Cavity optomechanics, a subject studying the coherent interaction of optical and mechanical degrees of freedom of various optical cavities, has been a recent research focus [14]. Its applications include laser cooling of mesoscopic systems to their motional quantum mechanical ground state [513], photon–phonon translation and storage of light pulses [1416], and quantum precision measurements of microwave and optical photons [1719]. Photonic crystals (PhC) are a versatile cavity platform widely used for light–matter and light–structure interactions, e.g., cavity quantum electrodynamics [20,21], nonlinear optics [2224], and cavity optomechanics [25,26]. Enabled by large optical gradient forces [2729], high-Q PhC cavities exhibit strong optomechanical interactions in both one-dimensional (1D) [30] and two-dimensional (2D) [3133] geometries.

In this paper we investigate for the first time the theoretical design of a “nanobeam-in-cavity” and compare the numerical simulation with our recent experimental observations [34]. A nanobeam mechanical resonator is embedded within a PhC nanocavity to obtain a small modal mass and large optomechanical coupling. The mechanical modes are localized in a volume smaller than that of the optical modes, with femtogram masses. The mechanical properties are readily and deterministically tuned, and compared with our measurements in the presence of fabrication imperfections [35,36]. The strong optical scattering from the embedded nanobeams requires reengineering of the photonic band structure and fine tuning of the radiation light cone to optimize the optical Q, as supported by our experimental observations. We further analyze the optomechanical coupling for several nanobeam-in-cavity geometries, where the coupling rate gom/2π ranging from 4.8 to 15.5 GHz/nm (vacuum optomechanical coupling rate g0/2π of 124.1 kHz to 326.6 kHz) is found in theory and experiment.

2. Optical design: band structure and radiation suppression

Nanobeams are widely used to build high-frequency nanomechanical resonators [3739]. As shown in Fig. 1 , our nanobeam-in-cavity consists of two nanobeams embedded in a PhC slab where three air slots are placed in the region of three missing holes of a triangular lattice. Since a PhC cavity based on three missing air holes in an otherwise perfect triangular lattice is usually referred to as an L3 cavity [40,41], we name ours an “L3-nanobeam cavity.” The nanobeams introduce strong perturbation to the original L3 cavity, resulting in significant modification of the optical characteristics [42]: First, the effective refractive index in the cavity region is reduced by the slots, which shifts the cavity resonance away from the bandgap and makes it difficult to localize the optical energy in a small volume; Second, the sharp edges of the slots result in a large radiation energy leakage [40]. Careful designs are thus required to restore a high optical Q after introducing the slots. We overcome the adverse effects and optimize the cavity with the following strategies: First, the y distance of wwg is increased, i.e., made wider than the width of a single-missing-row (W1) waveguide, which compensates the effect of reduced effective refractive index. The holes in the cavity row are enlarged accordingly to provide a reliable in-plane field confinement in the x direction. The holes surrounding the cavity are shifted to tune the optical field profile such that the vertical radiation scattering is minimized [40]. Numerical modeling proved the effectiveness of the above implementations and that the optical field of this L3-nanobeam cavity is indeed different from that of a regular L3 cavity [40]. For simplicity, it is straightforward to construct symmetric structures with wb = wb1 = wb2 and was = was1 = was2 = was3.

 figure: Fig. 1

Fig. 1 Geometry of the L3-nanobeam cavity. (a) Overview of the device. (b) Zoom-in of the beam region. a is the lattice constant of the triangular PhC; sx1, sx2, and sx3 are the hole offsets in the x direction; sy is the hole offset in the y direction; wb1 and wb2 are beam widths; was1, was2, and was3 are slot widths. (c) Scanning electron micrograph of a fabricated beam-cavity.

Download Full Size | PPT Slide | PDF

The intrinsic properties of different regions of the L3-nanobeam structures are studied by band structure analysis with MPB [43], a vectorial eigensolver of Maxwell’s equations with periodic boundary conditions computed by preconditioned conjugate-gradient minimization of the block Rayleigh quotient in a planewave basis. It is well known that the localized modes of a regular L3 cavity can be viewed as Fabry–Pérot modes from a guided TE-like y-odd band of a W1 waveguide. (Note that here “y-odd” refers to the odd (phase = −1) mirror symmetry with respect to the y = 0 plane for the vector fields.) Similarly, the optical modes of the L3-nanobeam cavity are also based on a slotted waveguide band. Figure 2(a) shows the band structure of the TE-like modes for the PhC lattice, where a quasicomplete bandgap covers the C band and provides confinement for the optical field in the y direction. Figure 2(b) shows the band structure of the slotted waveguide for the TE-like y-odd waveguide modes, where solid and dashed lines correspond to (was, wb) = (60 nm, 80 nm) and (was, wb) = (60 nm, 60 nm), respectively. The waveguide width wwg is selected to be 1.35×3a, allowing the slot waveguide band to be well located at the center of the PhC bandgap. Figure 2(c) shows the mode-edge frequency versus the waveguide width wwg. The gray regions indicate the slab mode continua of the PhC lattice. A regular W1 waveguide has a propagating TE-like y-odd band inside the PhC bandgap; however, when the slots are introduced, the slotted W1 waveguide band shifts up, pushing its bandedge into the upper PhC slab continuum. By increasing wwg from 3a to 1.35×3a, the waveguide band moves back to the center of the bandgap and the optical field is guided again by the nanobeam PhC waveguide [Fig. 2(d) and 2(e)]. The Ey field is highly localized inside the slots, similar to that of other air-slot PhC waveguides [44]. The intensity |Ey|2 across the waveguide is shown in Fig. 2(f), where the origin (y = 0) denotes the center of the middle slot. The boundary conditions result in sharp slopes at the air–silicon interfaces. The three peaks correspond to the highly concentrated field inside the three slots. The center peak is weaker than the outer ones, providing an asymmetry across the silicon nanobeams, a prerequisite for taking advantage of the gradient optical force for related beam motions [27].

 figure: Fig. 2

Fig. 2 (a) TE-like bands of a PhC slab with a triangular lattice of air holes where lattice constant a = 430 nm, hole radius r = 0.29a, refractive index of silicon nsi = 3.48, and silicon slab thickness h = 220 nm. (b) TE-like y-odd waveguide band for the slotted W1.35 waveguide with wwg = 1.35×3a, (was, wb) = (60 nm, 80 nm) (red solid line) and (was, wb) = (60 nm, 60 nm) (red dashed line). Red circles indicate the bandedges. (c) Waveguide bandedge frequency versus the waveguide width wwg. The gray regions indicate the PhC slab mode continua. The inset illustrates the geometry. (d),(e) Field distribution of Ey at the bandedge as indicated by the upper and lower red circles in (b), respectively. (f) Ey intensity profile along the y direction, i.e., perpendicular to the slots. The solid line is obtained from (d) and the dashed from (e), cut from center of the hot optical spots.

Download Full Size | PPT Slide | PDF

Next, to create a cavity mode, we confine the field in the x direction by replacing the infinitely long slots with ones of the planned beam length, surrounded by “mirror” air holes [45]. Figure 3(a) shows the TE-like y-odd guided band for the “mirror” waveguide with hole radius rwg = 160 nm. Figure 3(b) shows that the edge of this guided band is pushed up by using a larger radius. Comparing Fig. 3(a) and Fig. 2(b), we find that the band of the “mirror” waveguide sits well above that of the slot waveguide. Their zero overlap in frequency range is important for suppressing the optical energy leakage via the “mirror” waveguide. Based on the above guidelines, a selected set of geometrical parameters are: (a, r, h, wwg, rwg) = (430 nm, 0.29a, 220 nm, W1.35, 160 nm), which are used for further optimization of the cavity mode.

 figure: Fig. 3

Fig. 3 (a) Band structure of the TE-like y-odd band for the “mirror” waveguide with hole radius rwg = 160 nm. (b) Waveguide bandedge frequency versus the waveguide hole radius rwg. The inset illustrates the geometry.

Download Full Size | PPT Slide | PDF

From the band structure design and calculations, we have created a localized cavity made by ensuring the in-plane modal confinement. In what follows we use finite-difference time-domain (FDTD) method to simulate the L3-nanobeam cavities [46] and optimize their optical Q by shifting the surrounding holes iteratively [40]. This will further suppress the excess radiation loss caused by the sharp transitions at cavity edges. A spatial resolution of 21.5 nm is used in combination with subpixel averaging. The starting optical Q for nanobeams with (was, wb, Ls) = (60 nm, 80 nm, 1.8a) is around 2.0 × 103. As shown in Fig. 4(a) , shifting the adjacent holes towards the nanobeams with sx1 = −0.18a increases the optical Q to 7.3 × 103. Further tuning of sx2, sx3, and sy leads to an optical Q of 1.95 × 104. This optimized geometry with hole offsets (sx1, sx2, sx3, sy) = (−0.18a, −0.06a, 0.22a, −0.15a) will be subsequently referred to as “Design 1.” It is worth noting that sy is not trivial in this L3-nanobeam cavity design: a variation of sy from 0 to −0.15a actually doubles the optical Q. Based on Design 1, we fabricated the devices [34] and observed experimental optical Q values around 104. The highest experimental loaded optical Q is 1.5 × 104 and the corresponding unloaded Q is 1.7 × 104 as inferred from the normalized on-resonance transmission of 0.015. This experimental value is marked in Fig. 4(d) for comparison and its deviation from the simulation is due to surface roughness scattering in the fabricated samples. Following a similar optimization process, cavities with thinner nanobeams (was, wb, Ls) = (60 nm, 60 nm, 1.9a) exhibit an even higher optical Q of 5.22 × 104 with hole offsets (sx1, sx2, sx3, sy) = (−0.3a, −0.02a, 0.1a, 0), which will be subsequently referred to as “Design 2”. We note that this is over two orders-of-magnitude improvement over conventional W1 L3-nanobeam cavities without tuning the wwg nor the cavity parameters. These two designs with different beam geometries demonstrate the achievable high optical Q of such L3-nanobeam cavities.

 figure: Fig. 4

Fig. 4 Optimization process for the cavity with (was, wb) = (60 nm, 80 nm) by tuning hole positions of sx1, sx2, sx3, and sy respectively in series, as shown in panels (a) to (d). For an air slot length Ls of 1.8a, the maximum optical Q of 1.95 × 104 is achieved with (sx1, sx2, sx3, sy) = (−0.18a, −0.06a, 0.22a, −0.15a) [Design 1]. With a similar optimization process, cavities with (was, wb) = (60 nm, 60 nm) achieve a higher optical Q of 5.22 × 104 with (Ls, sx1, sx2, sx3, sy) = (1.9a, −0.3a, −0.02a, 0.1a, 0) [Design 2]. Solid lines indicate the optical Q, while the dashed lines indicate the normalized resonant frequency. The red dot in Panel (d) indicates the measured unloaded optical Q of the nanobeam cavity based on Design 1 from experiments.

Download Full Size | PPT Slide | PDF

To further investigate the cavity mode, the modal distributions of the Ey component for different Q values are analyzed using spatial Fourier transform (FT) [40] as shown in Fig. 5 . The fields have an odd symmetry in the x direction, leading to a negligible portion inside the radiation light cone as indicated by the red circles [47]. Spatial components at Kx ≈0 of the leaky fields are thus greatly suppressed. From Fig. 5(d) to 5(f), the leaky components inside the light cone are reduced as the optical Q increases. This indicates that the enhanced optical Q during the optimization process results not only from a smoother field profile but also from a more delocalized field [see Fig. 5(a)5(c)]. The optical modal volumes for the two designs in Fig. 5(b) and 5(c) are 0.079 µm3 and 0.12 µm3, or 0.021 (λ0/nair)3 and 0.032 (λ0/nair)3 respectively, where λ0 is the free-space resonant wavelength and nair is the refractive index of air. The small optical modal volumes compared to other high-Q PhC cavities [40] are actually a result of predominantly localized modal energy inside the air slots.

 figure: Fig. 5

Fig. 5 (a)−(c) Modal distribution of the Ey field. (d)−(f) Corresponding spatial Fourier transformation (FT) for cavities with increasing optical Q. (a) and (d) correspond to (Ls, sx1) = (1.8a, −0.18a) in Fig. 4(a) with an optical Q of 7.3 × 103. (b) and (e) correspond to the optimized geometry Design 1. (c) and (f) correspond to the optimized geometry Design 2.

Download Full Size | PPT Slide | PDF

3. Mechanical design: eigenmodes and elastic radiation leakage

Doubly clamped beams have been widely used to build mechanical resonators [3739]. Their high mechanical quality factor Qm and mechanical frequency fm are very useful for optomechanical applications, such as mass sensing, force sensing, and cooling/amplification of mechanical vibrations [48]. Depending on specific geometry, the frequency of the silicon nanobeams used here is around 1 GHz for the fundamental in-plane mode. The mechanical Q is affected by various loss mechanisms, e.g., clamping, thermoelastic damping, defect motions, and fluidic loss, etc. Among all the sources, clamping loss is usually a major loss channel for doubly clamped beams [39]. We compute the complex frequencies of mechanical modes of the L3-nanobeam cavity with the eigenvalue module in COMSOL 4.2a, a multiphysics solver based on a finite-element method [49]. The mechanical Q is then easily derived. The simulated geometry is identical to that used in the optical modeling. PMLs are applied at the boundaries of computation domain as an efficient impedance-matched nonphysical material for absorbing the radiating elastic waves without reflection [35,36,50]. Its implementation is based on complex coordinate scaling and has also been widely used in electromagnetic simulations [46]. The outer edges of the PMLs are fixed, and the thickness of the PMLs is set approximately to one elastic wavelength. As shown in Fig. 6(a) , the minimum mesh element size is 2.4 nm and the mesh element growth rate is 1.3. The maximum mesh element size is 20 nm in the beam region and 60 nm in other regions. The resolution of the curvature is 0.2. With these settings, every mesh element is thus at least 89 times smaller than the wavelengths of the transverse and longitudinal elastic waves, which are 9.66 μm and 5.34 μm, respectively, in silicon at 1 GHz. The effectiveness of absorption by the PMLs is confirmed [36] by applying harmonic point forces to a photonic crystal membrane.

 figure: Fig. 6

Fig. 6 (a) Top view of the meshed structure used in the finite-element analysis. Fixed boundary conditions are applied outside the PMLs. The top and bottom surfaces are set as free boundaries. (b),(c) Normalized displacement field intensity (log scale) for the differential and common mode of Design 1, respectively. The insets are zoom-ins of the localized beam motion showing the displacements in linear scale. (d),(e) Corresponding von Mises stress field (log scale). (f) Radiating longitudinal elastic wave excited by the differential beam motion (Media 1). (g) Radiating transverse wave excited by the common beam motion (Media 2). In (f) and (g), the displacement fields (linear scale) are overlaid with structural deformation.

Download Full Size | PPT Slide | PDF

Figure 6 illustrates the in-plane mechanical modes of the nanobeams. For the L3-nanobeam cavity, the two nanobeams are clamped to the pliant PhC slab and are thus mechanically coupled via the anchors, resulting in a differential and a common mode [30]. For Design 1, the computed complex frequencies fm of these eigenmodes are 9.61 × 108 + i4.24 × 104 Hz and 9.58 × 108 + i9.94 × 106 Hz, respectively. These compare well with an analytical estimate from fm=CE/ρ(wb/Ls2) [39], where the Young’s modulus E is 170 GPa and the density ρ is 2330 kg/m3 for single-crystal silicon. C is a constant dependent on the mode and the beam clamping conditions at the ends of the beam. For the fundamental mode of a doubly clamped beam, C = 1.07 (for a Poisson’s ratio of 0.28) and the estimated frequency is 1.2 GHz for a beam with the dimensions of Design 1, which is slightly higher due to the finite mechanical compliance at the clamping points in the COMSOL computations.

Furthermore, we note that the clamping-loss-limited mechanical Q for the differential mode (1.13 × 104) is more than two orders of magnitude higher than that for the common mode (only 48). This significant Q difference can be explained by the mechanical displacement field and stress field as shown in Fig. 6(b)6(g). Figure 6(b) and 6(c) are snapshots of the mechanical displacement intensity (log scale) for the differential and common modes. The displacement intensity is defined as I=Re(u)2+Re(v)2+Re(w)2 where u, v, and w are the displacements in the x, y and z directions, respectively. The difference resides not only in the beam motion but also in the radiating elastic waves propagating in the PhC membrane: First, the amplitude of the radiating elastic waves for the differential mode is much smaller than that for the common mode, which directly explains the much higher Q of the differential mode than the common mode. Second, the radiation pattern for the common mode is similar to that produced by an in-plane harmonic point force driving the membrane in the y direction, while the radiation pattern for the differential mode is more interference-like. The loss channels are also different for these two modes, as illustrated by the stress fields in Fig. 6(d) and 6(e). The differential mode has much more localized field around the anchor region than the common mode. This is attributed to the fact that the two nanobeams pull the anchors in opposite directions for the differential mode, whereas they pull in the same direction for the common mode. The different forces induce the excited elastic waves with different phases for the two modes. Further inspection of the propagating elastic waves reveals their different nature. As shown in Fig. 6(f) and 6(g) (movies attached separately), the lattice holes move along the propagation direction for the differential mode, but move laterally with respect to the propagation direction for the common mode. This indicates that longitudinal waves are excited by the differential beam motion while transverse waves are excited by the common beam motion, which are in agreement with their different stress fields. The above investigation points to a greatly suppressed radiation loss for the differential mode. In parallel with the numerical designs, we measured the fabricated samples of Design 1 [34] which show mechanical Q values up to 1230 in vacuum [34]. The discrepancy in the Q values is mainly caused by fabrication imperfections, as illustrated in detail in Section 4.

Compared with Design 1, Design 2 employs thinner and longer nanobeams (wb, Ls) = (60 nm, 1.9a). The simulated frequency is 693.9 MHz for the differential mechanical mode, about 268 MHz lower than that of Design 1. The mechanical Q calculated from the complex frequency is 4.99 × 104, more than four times higher than that of Design 1. Its transfer function between the force and displacement obtained from the frequency−response module in COMSOL 4.2a is shown in Fig. 7(a) . A harmonic point force oscillating along the y direction is applied at the center of one beam, where the displacement amplitude is also monitored. The transfer intensity is the peak-normalized square of the displacement amplitude and a mechanical Q of 4.53 × 104 is obtained by the Lorentzian fitting, which matches well (within 9%) with that from the complex-frequency computations. Similarly, the mechanical Q fitted from the transfer intensity of Design 1 is 1.09 × 104, which also matches well (within 4%) with that derived from the complex frequency (1.13 × 104). The small discrepancies arise from the computational errors between different solvers. The π-phase transition across the resonance also provides the mechanical Q from its maximum phase slope 2Qm/fm, which is essentially the same as the fitted value from transfer intensity. The transfer function method thus confirms the results obtained by the eigenvalue solver, albeit more computational intensive. The above numerical results from two different designs have shown a large frequency tuning range and a strong dependence of mechanical Q on the beam width. Such dependence is exhibited in Fig. 7(b), where the beam width varies from 50 to 70 nm for Design 2. The mechanical frequencies change linearly with a slope of 9.45 MHz/nm and 9.91 MHz/nm for the differential and common mode, respectively. The slight difference between their slopes is a result of varying mechanical coupling strength of the two beams: wider beams with larger elastic constant exert larger forces to the clamping points yielding stronger coupling and larger frequency difference. The L3-nanobeam cavities possess high frequencies for beam width wb less than 100 nm with a linear frequency dependence on wb according to fmwb/Ls2. Furthermore, the mechanical Q increases from 1.72 × 104 to 2.03 × 105 as the beam width decreases from 70 to 50 nm. This is most likely due to the fact that beams with a smaller elastic constant and a smaller mass apply less force to the anchor region and that the stress field is more localized with a reduced beam cross-sectional area. These two factors lead to weaker residual loss (and thus higher Q) for the differential modes, while they do not affect much on the common mode Q. It should be noted that, even with the beam width variation, the optical Q values remain above 4.36 × 104 as shown in Table 1 . The overall resonant wavelength shift is about 19 nm, corresponding to an average of 0.95 nm per 1 nm increase in beam width.

 figure: Fig. 7

Fig. 7 (a) Transfer function obtained by forced frequency−response analysis. The phase, the transfer intensity, and its Lorentzian fit are plotted in blue dashed line, blue square markers, and red solid line, respectively. (b) Mechanical frequency fm and quality factor Qm versus the beam width for both the differential and common mode. Design 2 with wb = 60 nm is used here.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Optomechanical properties of the L3-nanobeam cavities. Design 1 and Design 2 refer to the two structures obtained in optical Q optimization for different beam geometries.

4. Dispersive optomechanical coupling and influence of beam asymmetry

In the L3-nanobeam cavities, the optical and mechanical modes are mutually coupled. The optical gradient force created by the injected photons inside the cavity modifies the static positions and dynamic response of the mechanical beams, while the nanobeams vibration changes the phase of the optical cavity field producing a shift of the optical resonance. Both these effects are directly related to an optomechanical coupling rate, which characterizes the strength of optomechanical transductions [1,39]. The dispersive optomechanical coupling rate is defined as gom = dωo/dx where ωo is the angular frequency of the optical mode and x represents the amplitude of the mechanical motion. The corresponding vacuum optomechanical coupling rate is defined as g0 = gomxzm, where xzm is the zero-point motion of the mechanical mode given by xzm=/2meffΩm with meff the effective modal mass and Ωm the angular mechanical frequency (2πfm). For regular cavities like microtoroids, microdisks, and Fabry–Pérot etalons, gom is easily determined from their characteristic lengths [1]. For cavities with complicated geometries like our L3-nanobeam cavities, gom is numerically calculated based on the unperturbed optical and mechanical fields by using first-order perturbed solutions of Maxwell’s equations with shifting boundaries [51,52]. Reference [30] provides an expression with consistent definitions of effective modal volume Vm and mass meff. Table 1 lists all the numerical results, where two features are worth noting: For different designs, the common mode always has slightly larger Vm and meff than the differential mode due to the mechanical mode delocalization as previously discussed. The gom/2π for the common mode is zero, since the effective refractive index of the cavity region does not change, to the first order, with the in-plane beams’ motion as dictated by symmetry. Properties for two example structures based on Design 2 in Fig. 7(b) are also included in Table 1. The structure with wb = 50 nm possesses the smallest effective mass, while the one with wb = 70 nm achieves the maximum optomechanical coupling rate. Due to their high optomechanical coupling and high mechanical Q, the differential modes can easily be detected by optical transduction in experiments [27,30,34].

Variations from fabrication: So far we have been focusing on symmetric structures with two identical beams. As both nanobeam width and slot width are below 100 nm, tiny variations from the ideal design can cause deviation from the expected properties. To evaluate such effects from, e.g., fabrication imperfections, the center slot of Design 1 is shifted laterally such that the two nanobeams now have different beam widths. Figure 8(a) shows that the higher-frequency mode (Mode 1) originates from the differential motion of the two beams and thus exhibits a higher mechanical Q than the lower-frequency mode (Mode 2) until the center slot shift sc reaches 2.0 nm. Note that the mechanical Q of Mode 1 drops to around 1,000 with sc = 0.25 nm, i.e., only a 0.5 nm difference in the beam width. It continues to drop to around 100, similarly to that of Mode 2 when sc is larger than 1.0 nm. The decoupling of the two beams with increased sc is also reflected by the beam frequencies, both of which exhibit a linear dependence for sc larger than 0.5 nm, each approaching the frequency of an individual beam. When sc reaches 3.0 nm, the frequency difference between the two branches is as large as 50.8 MHz. Figure 8(b)8(e) show the displacement fields of the nanobeams for the two modes with sc = 0.25 nm (b,c) and sc = 3.0 nm (d,e). The coupled and uncoupled beam motions are evident, which is consistent with the frequency behavior shown in Fig. 8(a). It should be noted that such a 3-nm lateral shift of center slot only slight changes the optical Q, but considerably alters the optomechanical coupling rates for both mechanical modes to approximately one half of that of the differential mode of Design 1 [see Table 1].

 figure: Fig. 8

Fig. 8 (a) Mechanical frequency fm and quality factor Qm versus the center-slot displacement sc. Design 1 corresponds to the structure with sc = 0. Mode 1 originates from the differential mode, while Mode 2 originates from the common mode. (b)–(e) Zooms of the displacement fields of the nanobeams with sc = 0.25 nm (b,c) and sc = 3.0 nm (d,e).

Download Full Size | PPT Slide | PDF

Table 1 summarizes the optomechanical properties of several typical devices numerically studied in this paper. The experimental results reported in Ref [34]. are in good agreement with the simulation predictions. Fabricated based on Design 1, the sample exhibits a loaded optical Q of 1.0 × 104, a mechanical frequency around 1 GHz, and a mechanical Q of 1230 in vacuum for the differential mode [34]. The common mode is not observed in the optical transduction measurement due to its small optomechanical coupling rate and a very low mechanical Q. The mode decoupling is also experimentally demonstrated in samples with intentional asymmetry: when the center slot is shifted laterally by 3.0 nm in the layout design, two mechanical peaks are observed with their mechanical Q values both around 55. It is evident that the differential mode of high mechanical Q benefits from the overall symmetry of the double beams. In our simulations here, the higher optical and mechanical Q values are obtained for ideally fabricated structures. In practice, however, the unavoidable structural imperfections during fabrication always deteriorate the device performance. Taking account of the loss to the coupling waveguides, the measured optical Q agrees very well with the simulated value. The optical Q should be further improved by implementation of Design 2 where a 4-fold enhancement is expected. Actually, cavities with thinner beams generally possess higher optimized Q values due to the weaker perturbation. For example, a cavity (was, wb, Ls, sx1, sx2, sx3, sy) = (48 nm, 48 nm, 1.9a, −0.335a, −0.085a, 0.115a, 0), labeled as “HiQ48nm” in Table 1, exhibits an optical Q of 1.02 × 105. On the mechanical part, we have observed a drop of mechanical Q from 1230 in vacuum to 580 in air [34]. It is clear that air damping plays a major role in ambient conditions. Under vacuum conditions, while the mechanical Q of devices reported by other groups [5,6,53] is limited by thermoelastic damping (TED), the TED-limited mechanical Q of our devices is estimated by COMSOL to be 7.08 × 104 for the fundamental differential mode of Design 1 at room temperature [49]. Under cryogenic conditions, the Q value is even larger [5,6]. Thus, it is safe to exclude TED as the main loss mechanism. On the other hand, since the significant Q drop and mode decoupling of center-slot-shifted cavities are well predicted by analysis in Fig. 8, it is concluded that clamping loss should be the main loss mechanism for our devices measured in vacuum and the relatively low measured Q values are basically due to the uncontrollable fabrication imperfections.

5. Conclusions

We have numerically demonstrated a novel L3-nanobeam cavity, which consists of two mechanical nanobeams embedded in a PhC membrane where three holes are removed. 3D modeling with PMLs is employed for both optical and mechanical simulations. With ab initio calculation and comprehensive optimization, an optical Q up to 5.2 × 104 is obtained. Designs with optical Q larger than 105 are also achieved for cavities with reduced nanobeam widths. The fundamental in-plane mechanical modes of the high-optical-Q designs are also analyzed systematically. The mechanical frequencies approach 1 GHz and can easily be tuned by slightly varying the beam width while maintaining a high optical Q. The anchor-loss-limited mechanical Q for the differential mode is higher than 104. The elastic radiation waves are shown to be transverse for the common mode and longitudinal for the differential mode. The effects on mode decoupling and mechanical Q due to the fabrication imperfections are also studied. The optical transduction efficiency of the differential mode is very high with vacuum optomechanical coupling rates over 200 kHz. In principle, an ultrahigh-Q optical cavity can be designed based on the mode-gap effect [54] by engineering the slotted waveguide band shown in Fig. 2. However, the mechanical frequency is expected to be much lower because of the much longer beams. Compared with the single-slot structure with ultrahigh optical Q [3032], our designs target at highly localized mechanical modes inside a PhC nanocavity and exhibit high mechanical frequencies with femtogram modal masses. Conceptually, the L3-nanobeam cavities represent a new type of nano-optomechanical systems created by directly placing ultrasmall mechanical resonators into a photonic nanocavity. Such femtogram-mass, high-optical-Q, high-mechanical-Q structures are promising for optomechanical applications, especially in the ultrasensitive measurements involving mass, force, and displacement.

Acknowledgments

The authors thank Xingshng Luan, Di Wang, Jie Gao and James F. McMillan for helpful discussions on the optical and mechanical simulations. This work is supported by Defense Advanced Research Projects Agency (DAPPA) DSO with program manager Dr. J. R. Abo-Shaeer under the ORCHID program (contract number C11L10831). M.P. acknowledges a Rubicon fellowship from The Netherlands Organization for Scientific Research (NOW)/Marie Curie Cofund Action.

References and links

1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008). [CrossRef]   [PubMed]  

2. I. Favero and K. Karrai, “Optomechanics of deformable optical devices,” Nat. Photonics 3(4), 201–205 (2009). [CrossRef]  

3. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010). [CrossRef]  

4. F. Marquardt, “Optomechanics: push towards the quantum limit,” Nat. Phys. 4(7), 513–514 (2008). [CrossRef]  

5. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012). [CrossRef]   [PubMed]  

6. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011). [CrossRef]   [PubMed]  

7. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011). [CrossRef]   [PubMed]  

8. J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6(9), 707–712 (2010). [CrossRef]  

9. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010). [CrossRef]   [PubMed]  

10. Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009). [CrossRef]  

11. S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5(7), 485–488 (2009). [CrossRef]  

12. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008). [CrossRef]  

13. I. Wilson-Rae, P. Zoller, and A. Imamoğlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92(7), 075507 (2004). [CrossRef]   [PubMed]  

14. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010). [CrossRef]   [PubMed]  

15. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011). [CrossRef]   [PubMed]  

16. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8(3), 203–207 (2012). [CrossRef]  

17. C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a resonant microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008). [CrossRef]  

18. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011). [CrossRef]   [PubMed]  

19. G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision far below the standard quantum limit,” Phys. Rev. A 82, 061804(R) (2010).

20. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006). [CrossRef]  

21. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008). [CrossRef]   [PubMed]  

22. P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010). [CrossRef]  

23. J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18(15), 15484–15497 (2010). [CrossRef]   [PubMed]  

24. J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008). [CrossRef]  

25. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high- Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006). [CrossRef]   [PubMed]  

26. Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010). [CrossRef]   [PubMed]  

27. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008). [CrossRef]   [PubMed]  

28. M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011). [CrossRef]   [PubMed]  

29. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef]   [PubMed]  

30. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef]   [PubMed]  

31. J. Zheng, Y. Li, M. S. Aras, A. Stein, K. L. Shepard, and C. W. Wong, “Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities,” Appl. Phys. Lett. 100(21), 211908 (2012). [CrossRef]  

32. A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010). [CrossRef]  

33. E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106(20), 203902 (2011). [CrossRef]   [PubMed]  

34. X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012), doi: [CrossRef]   [PubMed]  

35. D. Bindel and S. Govindjee, “Elastic PMLs for resonator anchor loss simulation,” Tech report UCB / SEMM-2005/01.

36. U. Basu and A. K. Chopra, “Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation,” Comput. Methods Appl. Mech. Eng. 192(11-12), 1337–1375 (2003). [CrossRef]  

37. A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4(7), 445–450 (2009). [CrossRef]   [PubMed]  

38. M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007). [CrossRef]   [PubMed]  

39. M. Poot and H. S. J. van der Zant, “Mechanical systems in the quantum regime,” Phys. Rep. 511(5), 273–335 (2012). [CrossRef]  

40. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005). [CrossRef]   [PubMed]  

41. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009). [CrossRef]   [PubMed]  

42. T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006). [CrossRef]   [PubMed]  

43. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001). [CrossRef]   [PubMed]  

44. J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010). [CrossRef]  

45. B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004). [CrossRef]  

46. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]  

47. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002). [CrossRef]   [PubMed]  

48. G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008). [CrossRef]  

49. COMSOL Group, http://www.comsol.com/

50. M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009). [CrossRef]   [PubMed]  

51. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002). [CrossRef]   [PubMed]  

52. C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004). [CrossRef]  

53. K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9(1), 117–125 (2000). [CrossRef]  

54. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
    [Crossref] [PubMed]
  2. I. Favero and K. Karrai, “Optomechanics of deformable optical devices,” Nat. Photonics 3(4), 201–205 (2009).
    [Crossref]
  3. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
    [Crossref]
  4. F. Marquardt, “Optomechanics: push towards the quantum limit,” Nat. Phys. 4(7), 513–514 (2008).
    [Crossref]
  5. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
    [Crossref] [PubMed]
  6. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
    [Crossref] [PubMed]
  7. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
    [Crossref] [PubMed]
  8. J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6(9), 707–712 (2010).
    [Crossref]
  9. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
    [Crossref] [PubMed]
  10. Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
    [Crossref]
  11. S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5(7), 485–488 (2009).
    [Crossref]
  12. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
    [Crossref]
  13. I. Wilson-Rae, P. Zoller, and A. Imamoğlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92(7), 075507 (2004).
    [Crossref] [PubMed]
  14. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
    [Crossref] [PubMed]
  15. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
    [Crossref] [PubMed]
  16. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8(3), 203–207 (2012).
    [Crossref]
  17. C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a resonant microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
    [Crossref]
  18. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
    [Crossref] [PubMed]
  19. G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision far below the standard quantum limit,” Phys. Rev. A 82, 061804(R) (2010).
  20. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
    [Crossref]
  21. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
    [Crossref] [PubMed]
  22. P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
    [Crossref]
  23. J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18(15), 15484–15497 (2010).
    [Crossref] [PubMed]
  24. J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008).
    [Crossref]
  25. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high- Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006).
    [Crossref] [PubMed]
  26. Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
    [Crossref] [PubMed]
  27. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
    [Crossref] [PubMed]
  28. M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
    [Crossref] [PubMed]
  29. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
    [Crossref] [PubMed]
  30. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
    [Crossref] [PubMed]
  31. J. Zheng, Y. Li, M. S. Aras, A. Stein, K. L. Shepard, and C. W. Wong, “Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities,” Appl. Phys. Lett. 100(21), 211908 (2012).
    [Crossref]
  32. A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
    [Crossref]
  33. E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106(20), 203902 (2011).
    [Crossref] [PubMed]
  34. X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012), doi:
    [Crossref] [PubMed]
  35. D. Bindel and S. Govindjee, “Elastic PMLs for resonator anchor loss simulation,” Tech report UCB / SEMM-2005/01.
  36. U. Basu and A. K. Chopra, “Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation,” Comput. Methods Appl. Mech. Eng. 192(11-12), 1337–1375 (2003).
    [Crossref]
  37. A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4(7), 445–450 (2009).
    [Crossref] [PubMed]
  38. M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
    [Crossref] [PubMed]
  39. M. Poot and H. S. J. van der Zant, “Mechanical systems in the quantum regime,” Phys. Rep. 511(5), 273–335 (2012).
    [Crossref]
  40. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
    [Crossref] [PubMed]
  41. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
    [Crossref] [PubMed]
  42. T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
    [Crossref] [PubMed]
  43. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [Crossref] [PubMed]
  44. J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
    [Crossref]
  45. B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004).
    [Crossref]
  46. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  47. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002).
    [Crossref] [PubMed]
  48. G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
    [Crossref]
  49. COMSOL Group, http://www.comsol.com/
  50. M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009).
    [Crossref] [PubMed]
  51. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
    [Crossref] [PubMed]
  52. C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
    [Crossref]
  53. K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9(1), 117–125 (2000).
    [Crossref]
  54. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
    [Crossref] [PubMed]

2012 (5)

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
[Crossref] [PubMed]

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8(3), 203–207 (2012).
[Crossref]

J. Zheng, Y. Li, M. S. Aras, A. Stein, K. L. Shepard, and C. W. Wong, “Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities,” Appl. Phys. Lett. 100(21), 211908 (2012).
[Crossref]

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012), doi:
[Crossref] [PubMed]

M. Poot and H. S. J. van der Zant, “Mechanical systems in the quantum regime,” Phys. Rep. 511(5), 273–335 (2012).
[Crossref]

2011 (6)

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106(20), 203902 (2011).
[Crossref] [PubMed]

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref] [PubMed]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

2010 (11)

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6(9), 707–712 (2010).
[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[Crossref]

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision far below the standard quantum limit,” Phys. Rev. A 82, 061804(R) (2010).

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18(15), 15484–15497 (2010).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (9)

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009).
[Crossref] [PubMed]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref] [PubMed]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4(7), 445–450 (2009).
[Crossref] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[Crossref] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

I. Favero and K. Karrai, “Optomechanics of deformable optical devices,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
[Crossref]

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5(7), 485–488 (2009).
[Crossref]

2008 (8)

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

F. Marquardt, “Optomechanics: push towards the quantum limit,” Nat. Phys. 4(7), 513–514 (2008).
[Crossref]

C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a resonant microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
[Crossref]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[Crossref] [PubMed]

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008).
[Crossref]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
[Crossref]

2007 (1)

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

2006 (3)

T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[Crossref] [PubMed]

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high- Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (3)

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004).
[Crossref]

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[Crossref]

I. Wilson-Rae, P. Zoller, and A. Imamoğlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92(7), 075507 (2004).
[Crossref] [PubMed]

2003 (1)

U. Basu and A. K. Chopra, “Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation,” Comput. Methods Appl. Mech. Eng. 192(11-12), 1337–1375 (2003).
[Crossref]

2002 (2)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (1)

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9(1), 117–125 (2000).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[Crossref] [PubMed]

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004).
[Crossref]

Alegre, T. P. M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

Allman, M. S.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Anetsberger, G.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision far below the standard quantum limit,” Phys. Rev. A 82, 061804(R) (2010).

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
[Crossref]

Ansmann, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

Aras, M. S.

J. Zheng, Y. Li, M. S. Aras, A. Stein, K. L. Shepard, and C. W. Wong, “Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities,” Appl. Phys. Lett. 100(21), 211908 (2012).
[Crossref]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

Arcizet, O.

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106(20), 203902 (2011).
[Crossref] [PubMed]

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision far below the standard quantum limit,” Phys. Rev. A 82, 061804(R) (2010).

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
[Crossref]

Asano, T.

Aspelmeyer, M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5(7), 485–488 (2009).
[Crossref]

Assefa, S.

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Bagheri, M.

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref] [PubMed]

Bahl, G.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8(3), 203–207 (2012).
[Crossref]

Barbastathis, G.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[Crossref]

Barbour, R.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Basu, U.

U. Basu and A. K. Chopra, “Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation,” Comput. Methods Appl. Mech. Eng. 192(11-12), 1337–1375 (2003).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Beveratos, A.

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106(20), 203902 (2011).
[Crossref] [PubMed]

Bialczak, R. C.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

Braive, R.

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106(20), 203902 (2011).
[Crossref] [PubMed]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Carmon, T.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8(3), 203–207 (2012).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009).
[Crossref] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chen, L.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[Crossref] [PubMed]

Chopra, A. K.

U. Basu and A. K. Chopra, “Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation,” Comput. Methods Appl. Mech. Eng. 192(11-12), 1337–1375 (2003).
[Crossref]

Chow, E. M.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9(1), 117–125 (2000).
[Crossref]

Cicak, K.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Cleland, A. N.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

Cole, G. D.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5(7), 485–488 (2009).
[Crossref]

Colman, P.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Combrie, S.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

De Rossi, A.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Deléglise, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Donner, T.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009).
[Crossref] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Englund, D.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[Crossref] [PubMed]

Faraon, A.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[Crossref] [PubMed]

Favero, I.

I. Favero and K. Karrai, “Optomechanics of deformable optical devices,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Feng, X. L.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4(7), 445–450 (2009).
[Crossref] [PubMed]

Fink, Y.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

Fiore, V.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Fushman, I.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[Crossref] [PubMed]

Gao, J.

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Gavartin, E.

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106(20), 203902 (2011).
[Crossref] [PubMed]

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision far below the standard quantum limit,” Phys. Rev. A 82, 061804(R) (2010).

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Gigan, S.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5(7), 485–488 (2009).
[Crossref]

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[Crossref] [PubMed]

Gorodetsky, M. L.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision far below the standard quantum limit,” Phys. Rev. A 82, 061804(R) (2010).

Gröblacher, S.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5(7), 485–488 (2009).
[Crossref]

Hagino, H.

Hanay, M. S.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4(7), 445–450 (2009).
[Crossref] [PubMed]

Harlow, J. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Harris, J. G. E.

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6(9), 707–712 (2010).
[Crossref]

Hertzberg, J. B.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5(7), 485–488 (2009).
[Crossref]

Hiebert, W. K.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4(7), 445–450 (2009).
[Crossref] [PubMed]

Hill, J. T.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Hofheinz, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

Husko, C.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

Imamoglu, A.

I. Wilson-Rae, P. Zoller, and A. Imamoğlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92(7), 075507 (2004).
[Crossref] [PubMed]

Ippen, E. P.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[Crossref]

Jayich, A. M.

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6(9), 707–712 (2010).
[Crossref]

Jeon, Y.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref] [PubMed]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[Crossref]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref] [PubMed]

Karrai, K.

I. Favero and K. Karrai, “Optomechanics of deformable optical devices,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Kenny, T. W.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9(1), 117–125 (2000).
[Crossref]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Kim, S.-G.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[Crossref]

Kimerling, L. C.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[Crossref]

Kippenberg, T. J.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
[Crossref] [PubMed]

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106(20), 203902 (2011).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision far below the standard quantum limit,” Phys. Rev. A 82, 061804(R) (2010).

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
[Crossref]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Kotthaus, J. P.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision far below the standard quantum limit,” Phys. Rev. A 82, 061804(R) (2010).

Krause, A.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Kuramochi, E.

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high- Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006).
[Crossref] [PubMed]

Kuzyk, M. C.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Kwong, D.-L.

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18(15), 15484–15497 (2010).
[Crossref] [PubMed]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008).
[Crossref]

Lehnert, K. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a resonant microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
[Crossref]

Lenander, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

Li, D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Li, M.

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

Li, Y.

J. Zheng, Y. Li, M. S. Aras, A. Stein, K. L. Shepard, and C. W. Wong, “Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities,” Appl. Phys. Lett. 100(21), 211908 (2012).
[Crossref]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

Lin, Q.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Lipson, M.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[Crossref] [PubMed]

Lucero, E.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

Marquardt, F.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8(3), 203–207 (2012).
[Crossref]

F. Marquardt, “Optomechanics: push towards the quantum limit,” Nat. Phys. 4(7), 513–514 (2008).
[Crossref]

Martinis, J. M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

Mayer Alegre, T. P.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

McMillan, J. F.

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18(15), 15484–15497 (2010).
[Crossref] [PubMed]

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008).
[Crossref]

Mitsugi, S.

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high- Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006).
[Crossref] [PubMed]

Naik, A. K.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4(7), 445–450 (2009).
[Crossref] [PubMed]

Neeley, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

Noda, S.

Notomi, M.

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high- Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006).
[Crossref] [PubMed]

O’Connell, A. D.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Painter, O.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002).
[Crossref] [PubMed]

Park, Y.-S.

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
[Crossref]

Pernice, W. H. P.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Pernice, W. P. H.

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref] [PubMed]

Petroff, P.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[Crossref] [PubMed]

Pfafman, T.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9(1), 117–125 (2000).
[Crossref]

Poot, M.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012), doi:
[Crossref] [PubMed]

M. Poot and H. S. J. van der Zant, “Mechanical systems in the quantum regime,” Phys. Rep. 511(5), 273–335 (2012).
[Crossref]

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref] [PubMed]

Qi, M.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[Crossref]

Rakich, P. T.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[Crossref]

Regal, C. A.

C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a resonant microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
[Crossref]

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
[Crossref]

Robert-Philip, I.

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106(20), 203902 (2011).
[Crossref] [PubMed]

Roels, J.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[Crossref]

Roukes, M. L.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4(7), 445–450 (2009).
[Crossref] [PubMed]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Rugar, D.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9(1), 117–125 (2000).
[Crossref]

Safavi-Naeini, A. H.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009).
[Crossref] [PubMed]

Sagnes, I.

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106(20), 203902 (2011).
[Crossref] [PubMed]

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Sank, D.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

Sankey, J. C.

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6(9), 707–712 (2010).
[Crossref]

Sato, Y.

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Schliesser, A.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
[Crossref]

Schwab, K. C.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5(7), 485–488 (2009).
[Crossref]

Shepard, K. L.

J. Zheng, Y. Li, M. S. Aras, A. Stein, K. L. Shepard, and C. W. Wong, “Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities,” Appl. Phys. Lett. 100(21), 211908 (2012).
[Crossref]

Shu, J.

Simmonds, R. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Sirois, A. J.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Skorobogatiy, M. A.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

Smith, H. I.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[Crossref]

Song, B.-S.

Srinivasan, K.

Stein, A.

J. Zheng, Y. Li, M. S. Aras, A. Stein, K. L. Shepard, and C. W. Wong, “Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities,” Appl. Phys. Lett. 100(21), 211908 (2012).
[Crossref]

Stipe, B. C.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9(1), 117–125 (2000).
[Crossref]

Stoltz, N.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[Crossref] [PubMed]

Stowe, T. D.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9(1), 117–125 (2000).
[Crossref]

Sugiya, T.

Sun, X.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012), doi:
[Crossref] [PubMed]

Takahashi, Y.

Tanaka, Y.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref] [PubMed]

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004).
[Crossref]

Tang, H. X.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012), doi:
[Crossref] [PubMed]

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

Taniyama, H.

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high- Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006).
[Crossref] [PubMed]

Teufel, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a resonant microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
[Crossref]

Tian, L.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Tomes, M.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8(3), 203–207 (2012).
[Crossref]

Unterreithmeier, Q. P.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision far below the standard quantum limit,” Phys. Rev. A 82, 061804(R) (2010).

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

van der Zant, H. S. J.

M. Poot and H. S. J. van der Zant, “Mechanical systems in the quantum regime,” Phys. Rep. 511(5), 273–335 (2012).
[Crossref]

Van Thourhout, D.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[Crossref]

Vanner, M. R.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5(7), 485–488 (2009).
[Crossref]

Verhagen, E.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
[Crossref] [PubMed]

Vuckovic, J.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[Crossref] [PubMed]

Wang, H.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
[Crossref]

Weides, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

Weig, E. M.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision far below the standard quantum limit,” Phys. Rev. A 82, 061804(R) (2010).

Weis, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Weisberg, O.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

Wenner, J.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

Whittaker, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Wiederhecker, G. S.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[Crossref] [PubMed]

Wilson-Rae, I.

I. Wilson-Rae, P. Zoller, and A. Imamoğlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92(7), 075507 (2004).
[Crossref] [PubMed]

Winger, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

Wong, C. W.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012), doi:
[Crossref] [PubMed]

J. Zheng, Y. Li, M. S. Aras, A. Stein, K. L. Shepard, and C. W. Wong, “Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities,” Appl. Phys. Lett. 100(21), 211908 (2012).
[Crossref]

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18(15), 15484–15497 (2010).
[Crossref] [PubMed]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008).
[Crossref]

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[Crossref]

Wu, M.-C.

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Yang, C.

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6(9), 707–712 (2010).
[Crossref]

Yang, X.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Yang, Y.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Yasumura, K. Y.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9(1), 117–125 (2000).
[Crossref]

Yu, M.

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18(15), 15484–15497 (2010).
[Crossref] [PubMed]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008).
[Crossref]

Zheng, J.

J. Zheng, Y. Li, M. S. Aras, A. Stein, K. L. Shepard, and C. W. Wong, “Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities,” Appl. Phys. Lett. 100(21), 211908 (2012).
[Crossref]

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012), doi:
[Crossref] [PubMed]

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

Zoller, P.

I. Wilson-Rae, P. Zoller, and A. Imamoğlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92(7), 075507 (2004).
[Crossref] [PubMed]

Zwickl, B. M.

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6(9), 707–712 (2010).
[Crossref]

Appl. Phys. Lett. (6)

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008).
[Crossref]

J. Zheng, Y. Li, M. S. Aras, A. Stein, K. L. Shepard, and C. W. Wong, “Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities,” Appl. Phys. Lett. 100(21), 211908 (2012).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004).
[Crossref]

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[Crossref]

Comput. Methods Appl. Mech. Eng. (1)

U. Basu and A. K. Chopra, “Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation,” Comput. Methods Appl. Mech. Eng. 192(11-12), 1337–1375 (2003).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

J. Microelectromech. Syst. (1)

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9(1), 117–125 (2000).
[Crossref]

Nano Lett. (1)

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012), doi:
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4(7), 445–450 (2009).
[Crossref] [PubMed]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref] [PubMed]

Nat. Photonics (4)

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

I. Favero and K. Karrai, “Optomechanics of deformable optical devices,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
[Crossref]

Nat. Phys. (8)

F. Marquardt, “Optomechanics: push towards the quantum limit,” Nat. Phys. 4(7), 513–514 (2008).
[Crossref]

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
[Crossref]

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5(7), 485–488 (2009).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6(9), 707–712 (2010).
[Crossref]

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8(3), 203–207 (2012).
[Crossref]

C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a resonant microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
[Crossref]

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Nature (8)

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[Crossref] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Opt. Express (8)

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref] [PubMed]

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[Crossref] [PubMed]

T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[Crossref] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref] [PubMed]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18(15), 15484–15497 (2010).
[Crossref] [PubMed]

Phys. Rep. (1)

M. Poot and H. S. J. van der Zant, “Mechanical systems in the quantum regime,” Phys. Rep. 511(5), 273–335 (2012).
[Crossref]

Phys. Rev. A (1)

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision far below the standard quantum limit,” Phys. Rev. A 82, 061804(R) (2010).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high- Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006).
[Crossref] [PubMed]

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106(20), 203902 (2011).
[Crossref] [PubMed]

I. Wilson-Rae, P. Zoller, and A. Imamoğlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92(7), 075507 (2004).
[Crossref] [PubMed]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Science (3)

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Other (2)

D. Bindel and S. Govindjee, “Elastic PMLs for resonator anchor loss simulation,” Tech report UCB / SEMM-2005/01.

COMSOL Group, http://www.comsol.com/

Supplementary Material (2)

» Media 1: MOV (650 KB)     
» Media 2: MOV (819 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Geometry of the L3-nanobeam cavity. (a) Overview of the device. (b) Zoom-in of the beam region. a is the lattice constant of the triangular PhC; sx1, sx2, and sx3 are the hole offsets in the x direction; sy is the hole offset in the y direction; wb1 and wb2 are beam widths; was1, was2, and was3 are slot widths. (c) Scanning electron micrograph of a fabricated beam-cavity.
Fig. 2
Fig. 2 (a) TE-like bands of a PhC slab with a triangular lattice of air holes where lattice constant a = 430 nm, hole radius r = 0.29a, refractive index of silicon nsi = 3.48, and silicon slab thickness h = 220 nm. (b) TE-like y-odd waveguide band for the slotted W1.35 waveguide with wwg = 1.35× 3 a , (was, wb) = (60 nm, 80 nm) (red solid line) and (was, wb) = (60 nm, 60 nm) (red dashed line). Red circles indicate the bandedges. (c) Waveguide bandedge frequency versus the waveguide width wwg. The gray regions indicate the PhC slab mode continua. The inset illustrates the geometry. (d),(e) Field distribution of Ey at the bandedge as indicated by the upper and lower red circles in (b), respectively. (f) Ey intensity profile along the y direction, i.e., perpendicular to the slots. The solid line is obtained from (d) and the dashed from (e), cut from center of the hot optical spots.
Fig. 3
Fig. 3 (a) Band structure of the TE-like y-odd band for the “mirror” waveguide with hole radius rwg = 160 nm. (b) Waveguide bandedge frequency versus the waveguide hole radius rwg. The inset illustrates the geometry.
Fig. 4
Fig. 4 Optimization process for the cavity with (was, wb) = (60 nm, 80 nm) by tuning hole positions of sx1, sx2, sx3, and sy respectively in series, as shown in panels (a) to (d). For an air slot length Ls of 1.8a, the maximum optical Q of 1.95 × 104 is achieved with (sx1, sx2, sx3, sy) = (−0.18a, −0.06a, 0.22a, −0.15a) [Design 1]. With a similar optimization process, cavities with (was, wb) = (60 nm, 60 nm) achieve a higher optical Q of 5.22 × 104 with (Ls, sx1, sx2, sx3, sy) = (1.9a, −0.3a, −0.02a, 0.1a, 0) [Design 2]. Solid lines indicate the optical Q, while the dashed lines indicate the normalized resonant frequency. The red dot in Panel (d) indicates the measured unloaded optical Q of the nanobeam cavity based on Design 1 from experiments.
Fig. 5
Fig. 5 (a)−(c) Modal distribution of the Ey field. (d)−(f) Corresponding spatial Fourier transformation (FT) for cavities with increasing optical Q. (a) and (d) correspond to (Ls, sx1) = (1.8a, −0.18a) in Fig. 4(a) with an optical Q of 7.3 × 103. (b) and (e) correspond to the optimized geometry Design 1. (c) and (f) correspond to the optimized geometry Design 2.
Fig. 6
Fig. 6 (a) Top view of the meshed structure used in the finite-element analysis. Fixed boundary conditions are applied outside the PMLs. The top and bottom surfaces are set as free boundaries. (b),(c) Normalized displacement field intensity (log scale) for the differential and common mode of Design 1, respectively. The insets are zoom-ins of the localized beam motion showing the displacements in linear scale. (d),(e) Corresponding von Mises stress field (log scale). (f) Radiating longitudinal elastic wave excited by the differential beam motion (Media 1). (g) Radiating transverse wave excited by the common beam motion (Media 2). In (f) and (g), the displacement fields (linear scale) are overlaid with structural deformation.
Fig. 7
Fig. 7 (a) Transfer function obtained by forced frequency−response analysis. The phase, the transfer intensity, and its Lorentzian fit are plotted in blue dashed line, blue square markers, and red solid line, respectively. (b) Mechanical frequency fm and quality factor Qm versus the beam width for both the differential and common mode. Design 2 with wb = 60 nm is used here.
Fig. 8
Fig. 8 (a) Mechanical frequency fm and quality factor Qm versus the center-slot displacement sc. Design 1 corresponds to the structure with sc = 0. Mode 1 originates from the differential mode, while Mode 2 originates from the common mode. (b)–(e) Zooms of the displacement fields of the nanobeams with sc = 0.25 nm (b,c) and sc = 3.0 nm (d,e).

Tables (1)

Tables Icon

Table 1 Optomechanical properties of the L3-nanobeam cavities. Design 1 and Design 2 refer to the two structures obtained in optical Q optimization for different beam geometries.

Metrics