Abstract

In order to construct flat-top magneto-optical isolators (MOIs), we have performed a theoretical study on the case of transmission-type one-dimensional magnetophotonic crystals (MPCs). We have introduced high performance MPC structures with flat-top responses and with the capability of adjusting to perfect MOIs. The adjustment is carried out by tuning the applied magnetic field. All introduced MOIs are sufficiently thin with acceptable transmission bandwidth. In the best case, we have achieved a 19.42 μm-thick perfect MOI with the flat-top width of 7.2 nm. For practical purposes, we have also considered the influence of the error in thickness of individual layers on the operational parameters of the MOIs and investigated the possibility of compensating the deviations by the magnetic adjustment.

© 2012 OSA

1. Introduction

Optical isolator is an inevitable element in telecommunication systems. This nonreciprocal device eliminates unwanted back-reflections that typically create instabilities such as mode hop, amplitude modulation, power spikes, and frequency shifts. These instabilities can permanently damage equipments such as lasers. Optical isolators generally, consist of two linear polarizers with polarization axes offset equal to 45°, and a non-reciprocal polarization-rotation element placed between the polarizers. The resultant device can produce a 90° polarization rotation for light in a round-trip. In order to access integrable optical isolators, many techniques and designs such as nonreciprocal micro-ring resonators [1, 2], nonlinear couplers [3, 4], photonic crystals (PCs) [5, 6], nonreciprocal waveguides [7, 8], nonreciprocal optical resonators on silicon- or Ce:YIG/Silicon-on-insulator substrates [9, 10], devices based on nonreciprocal phase shifts [11], photonic transitions [12, 13], surface plasmons [14, 15] and Mach-Zehnder interferometers [16, 17] have been employed.

One of the best candidates for integrated isolators are the magneto-optical (MO) isolators based on magnetophotonic crystals (MPCs) [1825]. When a PC contains magnetic substances an MPC is constructed. In these structures, existence of photonic band gaps (PBGs) can be employed to enhance the MO effects, such as Faraday and MO Kerr responses. Because of PBG, certain wavelengths of light are strongly reflected from such structures. However, in presence of defect layers, transmission resonances are created within the gap, which allow some lightwaves with previously forbidden wavelengths to propagate inside the structure.

There are some theoretical works indicating possibility of designing magneto-optical isolators (MOIs) using 1-D MPC structures having multiple defects. These MOIs suffer either from narrow bandwidths [18, 22, 25] or from large thicknesses in spite of having flat-top bandwidths [24]. Devices built upon MPC structures with bandwidths only in a fraction of a nanome-ter at central wavelengths, would encounter instabilities due to the wavelength fluctuations. In this paper, we introduce adjustable thin MPCs containing only few number of magnetic defect layers that are capable of providing the exact characteristics of T=100% and θF =45° for perfect MOIs and have a sufficiently flat-top bandwidth for stable operation. The functioning of MPC-based MOIs as devices operating at certain conditions (θF =45°) may be deviated by fabrication errors. Therefore, we will also study the stability of our introduced flat-top MOIs against minor thickness errors of their individual layers and show how the adjustment technique can compensate the influence of construction inaccuracies.

2. Theory

To introduce proper adjustable MPCs we have used a 4×4 transfer matrix method (TMM). In compare to this numerical method, an analytical approach may provide a better insight about the correlation between different components of the system under consideration, but in contrast, the results of TMM are exact, it is not restricted to especial cases and no important simplifying assumption is employed into the method. The TMM utilizes two fundamental 4×4 matrices accounting for propagation of light through each layer and boundary conditions at interfaces in the structure [26]. To explain this method, we consider a beam of light impinging on the top of the multilayer from the air. If Pi is the electric field at the bottom surface in the ith layer, then a relation between electric field in air, Pa, and that in semi-infinite substrate, Ps, can be given by

AaPa=A1D1P1=A1D1A11A1P1=A1D1A11A2D2P2=i=1m(AiDiAi1)AsPs.
In this exposition, the matrix Ai is the 4×4 medium boundary matrix for ith layer of multilayer structure and similarly Aa and As represent the boundary matrices of air and substrate mediums, respectively. It makes a relation between the tangential components of the electric and magnetic fields with the s and p components of the electric field. The other matrix, Di, is the 4×4 medium propagation matrix which connects the s and p components of the electric field at the two surfaces of the ith layer. The general form of the medium boundary matrix is as below [27]:
A=(1010γy(βy1+αz2αyαzβz)αzγy(βy1+αz2αyαz+βz)αzγ(αyβy+αzβz)nγ(αyβy+αzβz)nnαzγ(βyαyαz+βz)nαzγ(βyαyαzβz)),
where αz=cosθ, αy=sinθ, βz=cosϕ, βy=sinϕ, γy=i2αy2Q and γ=i2nQ. θ and ϕ represent the incident angle and magnetization orientation angle, respectively. In addition, n and Q are refractive index and MO constant, respectively, that a magnetic medium is specified by them. At a wavelength of λ, the medium propagation matrix for such a magnetic layer with thickness d is in the form:
D=(Ucosδ(i)Usinδ(i)00Usinδ(i)Ucosδ(i)0000U1cosδ(r)U1sinδ(r)00U1sinδ(r)U1cosδ(r)),
where U=exp[−i(2π/λ)nαzd], δ(i)=(2π/λ)nQd(gi/αz), δ(r)=(2π/λ)nQd(gr/αz), gi=cos(ϕθ) and gr=cos(ϕ + θ). If we rewrite Eq. (1) as:
Pa=Aa1i=1m(AiDiAi1)AsPs(GHIJ)Ps,
then the MO Fresnel reflection and transmission coefficients can be determined utilizing the 2 × 2 matrices G and I:
(tsstsptpstpp)=G1,(rssrsprpsrpp)=IG1.
The Fresnel factors and consequently the MO responses, depend on the thickness and optical constants of distinct layers of the MPC. The refractive indices for a propagating electromagnetic wave through a magnetic layer are determined by its dielectric tensor. Although nonmagnetic constituents of an MPC are usually isotropic media having diagonal dielectric tensors, its magnetic layers are described by the magnetization-dependent nondiagonal tensors exhibiting magnetic anisotropy. For the magnetization directed along the z-axis, the dielectric tensor of a magnetic medium is given by
εM=(ε1iε20iε2ε1000ε1),
in which, the nondiagonal term, ε2, corresponds to the magnetic gyration and have a linear dependence on the magnetization. In Eq. (6), for simplicity we have assumed εxx=εyy=εzzε1. Furthermore, regarding the operational wavelength range, the relative permeability is taken equal to unity.

MPCs that are able to operate at transmission-mode are indispensable for fulfilling the MOI characteristics, provided that they can represent the appropriate optical and MO properties of T=100% and θF =45°. In order to design perfect MOIs, firstly, we introduce high performance MPC structures with Faraday rotations larger than what is required for MOIs. Then, we will adapt them to be specific for MOIs. We do this adaption by adjusting the gyration parameter of the magnetic media [18]. This adjustment can be possible in Ce:YIG because its gyration parameter is proportional to its magnetization which can be changed by the external magnetic field. It is known that the strength of the magnetostatic interaction between the individual magnetic layers can be changed, and that a system of magnetostatically related films represents some increase in the saturation magnetic field compared with single layer films [28]. However, we can neglect this because our procedure is carried out as an external adjustment in which desired response will be obtained by varying the applied magnetic field.

We may consider the applied magnetic field to be directed along the normal to the films where decreasing of magnetic field can alter the gyration parameter from its maximum at saturation magnetization to a lower value. For a magnetic garnet thin film with a single-axis anisotropy perpendicular to the surface of the film, reduction of normal magnetic field from saturation may lead to appearance of magnetic domains. For a typical domain size less than 5 μm [29], the incident light with a spot size of ∼2 mm comes up against an ensemble of antiparallel magnetic domains in magnetic garnet thin layers. In such a case, the magnetic layer can be substituted with an equivalent single-domain magnetic film whose magnetization vector is the statistical summation of magnetization in various domains. Consequently, when the spot size is very larger than the domain width, the dielectric tensor of the magnetic medium is in the form of Eq. (6) and thus the operation of the adjustable MOIs will be reliable. However, in some technical situations we may have to make use of a light beam with relatively small spot size. On the other hand, for uniaxial garnet films with a large perpendicular anisotropy field, controlling of gyrotropy with the normal external field will be difficult. For these situations, applying an oblique saturation magnetic field is recommended for which the magnitude of magnetization vector is preserved and a longitudinal component of magnetization comes to existence. In fact, the adjustment is carried out by rotation of magnetization vector.

In the presence of a longitudinal component of magnetization, another off-diagonal matrix element will emerge in the dielectric tensor of the magnetic layer [18,30]. When the magnetization vector is rotated in y–z plane, the gyration parameter, ε2, acquires components proportional to polar and longitudinal components of magnetization, as ε2xy ∝ M|| and ε2xz ∝ M. Therefore, the permittivity tensor will get the form:

εM=(ε1iε2xyiε2xziε2xyε10iε2xz0ε1),
in which ε2xy=ε2 cosϕ and ε2xz=ε2 sinϕ. When the applied magnetic field has a transverse component, the rotation angle of magnetization, ϕ, will be the adjustment parameter. In following section, we will introduce flat-top adjustable magneto-optical MPCs which are able to be adjusted to perfect MOIs by oblique saturation fields. In this way, we achieve specific characteristics of an ideal MOI for the Faraday rotation and transmittance. We also emphasize that when designing MOIs, another important parameter that must be kept in mind is the ellipticity, ψF. To avoid any degradation in the device performance, the ellipticity should be small. The results presented here include this parameter to be assured of desirable operation of each structure, when working as a perfect MOI.

3. Results and discussion

For construction of MPCs, we utilize Si and SiO as dielectric layers and Ce:YIG as magnetic layer. During the past few years, Ce-modified yttrium iron garnet Ce:YIG has been increasingly used in various MO applications particularly in magnetophotonic crystal-based devices [24,3135]. The growing interest toward the epitaxial growth of these materials in the form of thin films or etched films, for applications in integrated optics stems from their high Faraday rotation and good optical transparency in the visible and in the infrared spectral region, together with their compatibility with waveguide optics, low propagation losses, low saturation magnetic fields, and low production costs [36, 37]. The magnetic Ce:YIG layer has dielectric tensor elements ε1=4.884 and ε2=9×10−3 at λ =1550 nm [24]. We consider its thickness to be λ/2nCe:YIG where, nCe:YIG represents the refractive index of Ce:YIG layer. At this optical communication wavelength, Si and SiO layers have refraction indices nSi=3.48 [38] and nSiO=1.85 [39], and their thicknesses are set to λ/4nSi and λ/4nSiO, respectively. Hereafter, we denote SiO, Si and Ce:YIG layers as L (low index), H (high index) and M (magnetic), respectively. In some MPCs we may also utilize SiO2 or gadolinium gallium garnet (GGG) instead of SiO as L layer.

We are going to introduce adjustable MO isolators based on multi-cavity MPCs which are thin enough and show an acceptable transmission bandwidth. Cavity-type MPCs can be constructed by incorporating magnetic layers into dielectric PBG structures. They are capable of providing unique optical and MO characteristics by exploiting properties of band gaps and defects [34, 4045]. It should be noticed that the bandwidth may be enhanced by increasing the number of defects in MPC structures [24]. Therefore, firstly, we introduce several multi-cavity MPC structures as basic ones and then based on them, we obtain structures with flat-top responses. The basic structures are as follows:

  • S(1) ≡(H/L)3/M/(L/H)8/M/(H/L)8/M/(L/H)3,
  • S(2) ≡(H/L)3/M/(L/H)7/M/(H/L)3/M/(L/H)3/M/(H/L)7/ M/(L/H)3,
  • S(3) ≡(H/L)2/M/(L/H)6/M/(H/L)6/M/(L/H)2,
  • and
  • S(4) ≡(H/L)2/M/(L/H)5/M/(H/L)5/M/(L/H)2.

As the first structure, we consider an MPC in the form of S(1)/M/S(1), which we call it S1(1). The total thickness of this MPC is 16.59 μm and there are 95 layers in the structure. As can be seen from Fig. 1(a), the transmittance and the Faraday rotation of S1(1) at ϕ =0 are T=97.09% and θF =75.09°, respectively, and the bandwidth of this structure is about 1.5 nm. By rotating the applied saturation magnetic field and hence, adjusting the magnetization rotation angle of Ce:YIG layers, S1(1) can reveal the properties of a perfect MOI. This happens at the magnetization rotation angle of ϕ =52.97° for which the off-diagonal elements of the dielectric tensor are ε2xy=5.420×10−3 and ε2xz=7.184×10−3. Figure 1(b) illustrates the operational parameters of this MPC as functions of ϕ and as can be seen, the adjusted S1(1) shows a negligible ellipticity, a nearly complete transmittance T=99.03% and the Faraday rotation of θF =45°. According to Fig. 1(c), this perfect MOI with acceptable bandwidth of 2 nm provides good performance at 1550 nm.

 

Fig. 1 The magneto-optical spectra of the structure S1(1) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S1(1) as functions of ϕ.

Download Full Size | PPT Slide | PDF

In order to enhance the transmission bandwidth, we have also carried out a research on contrast between refractive indices of the dielectric layers. In this way, we fixed the high refractive index and varied the refractive index of L layers. By replacing SiO by GGG with refractive index of 1.926 [24], hence reducing the contrast between dielectric layers, the MO responses will be as T=99.7% and θF =54.05°. We call this structure S2(1), whose corresponding adjusted MOI has MO responses as T=99.82% and θF =45°. These responses are achieved at ε2xy=7.515×10−3 and ε2xz=4.951×10−3 which are corresponding to the magnetization rotation of ϕ =33.38°. Figure 2(a) shows the MO properties of this adjustable MOI whose total thickness is 16.20 μm. It can be seen that reducing the contrast between dielectric layers has led to a perfect MOI with larger transmission bandwidth around 2.5 nm. We have also examined another MPC structure constructed upon the basic structure S(1) with GGG as L layer. This MPC, S3(1), is in the form of S(1)/M/S(1)/M/S(1) and has the MO responses as T=99.57% and θF =81.12°. By tuning the applied magnetic field we obtain a perfect isolator with T=99.89% and θF =45°. These results are attained for ϕ =56.1° with ε2xy=5.020×10−3 and ε2xz=7.470×10−3. The MOI S3(1) has the total thickness of 24.48 μm and its ellipticity is close to zero. According to Fig. 2(b), this MOI has 2 nm bandwidth with a high bandwidth flatness that is its superiority over the earlier ones.

 

Fig. 2 The transmittance and Faraday rotation absolute value of the adjustable MOIs (a) S2(1) and (b) S3(1) as functions of wavelength.

Download Full Size | PPT Slide | PDF

By using the basic structure S(2) we can further improve the transmission bandwidth. Figure 3 shows the MO properties of the structure S1(2) which is in the form of S(2)/M/S(2). At saturation normal magnetic field the transmittance and the Faraday rotation of S1(2) are T=98.85% and θF =56.68°, respectively, and as can be seen from Fig. 3(a) the bandwidth of this structure is around 2.5 nm. There are 115 layers in the structure with the total thickness of 20.54 μm. By varying the magnetization orientation angle to ϕ =37.34° (equivalent to the off-diagonal elements of the dielectric tensor ε2xy=7.155×10−3 and ε2xz=5.458×10−3), it can be observed from Fig. 3(b) that S1(2) with an approximately complete transmittance T=99.03% and θF =45°, operates as a perfect MOI. The ellipticity of this MOI is negligible, too. According to Fig. 3(c), the bandwidth of the structure S1(2) after adjusting to an MOI increases to about 3 nm. However, we can achieve a higher bandwidth using the basic structure S(2) by increasing the repetition number. For example, the structure S2(2)S(2)/M/S(2)/M/S(2) with about 3 nm bandwidth and T=98.33% and θF =84.83°, after adjustement to a nearly perfect MOI shows an enhanced transmission bandwidth around 3.5 nm (see Fig. 4). Nevertheless, this improvement is acquired at the cost of making the structure thicker.

 

Fig. 3 The magneto-optical spectra of the structure S1(2) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S1(2) as functions of ϕ.

Download Full Size | PPT Slide | PDF

 

Fig. 4 The magneto-optical spectra of the structure S2(2) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S2(2) as functions of ϕ.

Download Full Size | PPT Slide | PDF

Utilizing the basic structure S(3), we have introduced another MPC that operates as a perfect MOI with a large transmission bandwidth, a considerable flatness and a negligible ellipticity. This MPC with the total thickness of 32.32 μm is in the form of S(3)/M/S(3)/M/S(3)/M/S(3)/M/S(3), which we call it S1(3). As can be seen from Fig. 5(a), at magnetization rotation of ϕ =0 the transmittance and the Faraday rotation of S1(3) are T=99.16% and θF =53.2°, respectively, and the bandwidth of this structure is 6.4 nm. By rotating the applied magnetic field, hence changing the rotation angle of saturation magnetization vector to ϕ =32.26°, this structure with θF =45° and T=99.03% reveals the properties of a perfect MOI. Figures 5(b) and 5(c) show that as well as the S1(3) structure under normal saturation field, the ellipticity of the corresponding MOI is negligible and its transmission bandwidth is about 6.4 nm.

 

Fig. 5 The magneto-optical spectra of the structure S1(3) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S1(3) as functions of ϕ.

Download Full Size | PPT Slide | PDF

Hitherto, we exhibited some MPC structures with sufficiently good transmission bandwidth and the capability of functioning as ideal optical isolators. Although, the proposed MOIs confirm the importance of structural formula for desirable operation, however, the employed materials are also very pivotal as well. To show this feature, we point to the structure S1(4) in the form of S(4)/M/S(4)/M/S(4). This 19.42 μm-thick MPC has 95 layers in the structure and its L layer has been considered to be SiO2 with refractive index 1.495 [25]. S1(4) represents a light transmission more than 95% accompanied with a saturation Faraday rotation around 50°. Furthermore, the bandwidth of this structure is 7.1 nm (Fig. 6(a)). Figure 6(b) shows the operational parameters of this MPC as functions of ϕ. As can be seen from Fig. 6(c), by adjusting the rotation angle of magnetization vector to ϕ =25.65° that is equivalent to the off-diagonal elements of the dielectric tensor ε2xy=8.113×10−3 and ε2xz=3.895×10−3, S1(4) operates as a nearly perfect MOI with θF =45° and an approximately complete transmittance T=96.01%. According to Fig. 6, this adjustment leads to 7.2 nm transmission bandwidth for this MOI with an ellipticity close to zero. The superiority of this MOI rather than the MOI S1(3) is a larger bandwidth, lower thickness, fewer number of layers and smaller required magnetic field rotation angle for adjustment. This advantage has been reached by incorporating SiO2 in the MPC structure S1(4), while the other mentioned materials cannot provide such a performance when incorporated in S1(4) structure. On the other hand, by reduction of the refractive index contrast of adjacent layers and increase in refractive index of certain layers, we cannot achieve thin MOIs with comparatively acceptable operation.

 

Fig. 6 The magneto-optical spectra of the structure S1(4) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S1(4) as functions of ϕ.

Download Full Size | PPT Slide | PDF

It should be noted that, the flatness of transmission bandwidth is an important parameter in designing of flat-top MOIs. The transmission spectra can be analyzed by defining a ripple factor and a Faraday rotation flatness parameter that are as follows, respectively:

RT=TmaxTminTmax+TminandRF=θmaxθminθmax+θmin,
in which, Tmax and Tmin correspond to the maximum and minimum values of the transmission, and θmax and θmin represent the maximum and minimum values of the Faraday rotation angle within the transmission bandwidth. Table 1 shows these parameters for all introduced adjustable MOIs. The results in table 1 indicate that increasing the number of magnetic defects in an MPC structure may increase the transmission bandwidth, but this is not accepted as a rule. Indeed, the deterministic features are the structural formula and the employed materials in the MPC structure.

Tables Icon

Table 1. Characteristics of the adjustable MOIs.

3.1. The effect of thickness error

For a practical purpose, the influence of the error in thickness of individual layers on the operational parameters of the MOIs should be considered. In the fabrication process of multilayers, the layers are not quite sharp and so, their surface roughness may lead to a deviation in the operation of the devices. Hence, in order to inspect the performance deviation of the introduced MOIs, we consider a set of random thickness errors for the layers. In this technique, surface of each layer is divided into 100 equal parts and a random roughness error is allocated to each one of these portions. This type of error apportioning represents a real form of interface roughness and gives a good estimate for practical results by evaluating the statistical average of a large number of random calculations for the Faraday rotation and the transmittance.

It has been realized that all introduced structures in this paper can provide the operational parameter values of perfect MOIs. Among them, we select the structure S1(4) to exert the thickness error. In fact, according to the purpose of this manuscript that is the design of flat-top adjustable MOIs, the structure having larger bandwidth is desired. On the other hand, the parameters such as number of defects, total number of layers and total thickness are important for miniaturization. Even more, this MPC requires the smallest magnetic field rotation angle for adjustment. From these regards, we focus just on the MOI structure S1(4) for error analysis. At first, we consider a random thickness error between −0.2 nm and 0.2 nm for every layer in each portion [18, 46, 47]. In this case, regarding the existence of 95 layers in S1(4), the maximum possible difference in the heights of the proposed sections could be 38 nm. For 0.2 nm thickness error, the average values of the Faraday rotation and transmission of the MPC S1(4) are θF =49.85° and T=93.38%. It can easily be seen that approximately the same results are achieved for a very higher number of segments, hence, this MPC structure can confidently be adjusted to find a Faraday rotation of 45°. By changing the rotation angle of magnetization to ϕ =25.77°, the structure S1(4) operates as a nearly perfect MOI with θF =45°, a negligible ellipticity and an approximately complete transmittance T=93.97%. According to Fig. 7(a), the transmission bandwidth of this MOI has not been varied by 0.2 nm thickness error of individual layers. This reveals that in addition to making transformation of MPCs to MOIs, the adjustment procedure can effectively compensate the undesirable influence of thickness error on the operation of the MOIs.

 

Fig. 7 The transmittance, Faraday rotation and ellipticity spectra of the MOI S1(4) in the presence of a set of (a) 0.2 nm and (b) 1 nm surface roughness errors as functions of wavelength.

Download Full Size | PPT Slide | PDF

It should be indicated that the amount of 0.2 nm thickness error is the least one and is inevitable even if a high-resolution method is employed for fabrication of multilayered MPCs. Therefore, for a more practical purpose, we have also studied the effect of a set of random thickness errors between −1 nm and 1 nm for each part of the layers. In this case, the maximum possible difference in the heights of the proposed portions in the structure S1(4) could be 190 nm. After applying the mentioned thickness error, the MPC S1(4) achieves an average Faraday rotation of θF =50.65° and an average transmittance of T=63.27%. By changing the rotation angle of magnetization from ϕ =0° to ϕ =27.26°, the MO parameters are converted to θF =45° and T=63.55%. Thus, the structure S1(4) is able to be readjusted to an MOI with θF =45° even in the presence of 1 nm thickness error for individual layers, but the amount of the transmission is far from T=100%. However, this amount of transmission is completely acceptable for optical isolators in practice [48]. Figure 7(b) illustrates that the average value of ellipticity is increased and the transmission bandwidth is lessened by growing the roughness. Although, S1(4) still operates as an acceptable practical MOI, but our error analysis indicates that a high-resolution method is required for constructing the multilayered MOIs as devices operating in certain conditions.

4. Conclusions

We have investigated the transmission properties of several MPCs to elucidate the possibility of designing adjustable flat-top MOIs with the operating parameters of T≈100% and θF =45°. The adjustment to an MOI is carried out by rotating the applied saturation magnetic field. The established perfect MOIs are thin and contain a low number of magnetic defect layers. The form of these MOIs verifies that the structural formula as well as the materials constructing them is very crucial for achieving flat-top responses with acceptable flatness. On the other hand, a concurrent reduction of the MPC thickness and enhancement of the transmission bandwidth is not attained by increasing the refractive index contrast of the adjacent layers in the structure. We have also considered a thickness error for each layer to evaluate the performance deviation of the introduced MOIs. Our results indicate that for minor error values in thickness, the introduced MOIs have the capability of readjusting to practical MOIs. However, the error analysis proposes a high-resolution fabrication technique for construction of nearly ideal flat-top MOIs.

References and links

1. M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740–11745 (2011). [CrossRef]   [PubMed]  

2. H. Zhu and C. Jiang, “Optical isolation based on nonreciprocal micro-ring resonator,” J. Lightwave Technol. 29, 1647–1651 (2011). [CrossRef]  

3. Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt. 12, 015403 (2010). [CrossRef]  

4. A. Alberucci and G. Assanto, “All-optical isolation by directional coupling,” Opt. Lett. 33, 1641–1643 (2008). [CrossRef]   [PubMed]  

5. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008). [CrossRef]  

6. Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photon. Nanostruct.: Fundam. Appl. 4, 132–140 (2006). [CrossRef]  

7. S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express 17, 9276–9281 (2009). [CrossRef]   [PubMed]  

8. T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor waveguide isolators,” J. Lightwave Technol. 26, 291–301 (2008).G. Roelkens [CrossRef]  

9. S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012). [CrossRef]   [PubMed]  

10. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011). [CrossRef]  

11. R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun. 282, 862–866 (2009). [CrossRef]  

12. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009). [CrossRef]  

13. Z. Yu and S. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron. 16, 459–466 (2010). [CrossRef]  

14. A. E. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express 17, 278–292 (2009). [CrossRef]   [PubMed]  

15. J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).

16. H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer,” J. Lightwave Technol. 26, 3166–3172 (2008). [CrossRef]  

17. Y. Shoji and T. Mizumoto, “Wideband operation of Mach-Zehnder interferometric magneto-optical isolator using phase adjustment,” Opt. Express 20, 13446–13450 (2007). [CrossRef]  

18. M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Adjustable magneto-optical isolator with high transmittance and large Faraday rotation,” J. Opt. Soc. Am. B 28, 2637–2642 (2011). [CrossRef]  

19. T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A 375, 2185–2188 (2011). [CrossRef]  

20. S. M. Hamidi and M. M. Tehranchi, “High transmission enhanced Faraday rotation in coupled resonator magneto-optical waveguides,” J. Lightwave Technol. 28, 2139–2145 (2010). [CrossRef]  

21. X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE 5644, 563 (2005). [CrossRef]  

22. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun. 219, 271–276 (2003). [CrossRef]  

23. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn. 38, 3246–3248 (2002). [CrossRef]  

24. M. Levy, H. C. Yang, M. J. Steel, and J. Fujita, “Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement,” J. Lightwave Technol. 19, 1964–1969 (2001). [CrossRef]  

25. M. J. Steel, M. Levy, and R. M. Osgood Jr., “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE. Photon. Technol. Lett. 12, 1171–1173 (2000). [CrossRef]  

26. Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum. 71, 1243–1255 (2000). [CrossRef]  

27. J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys. 68, 4203–4207 (1990). [CrossRef]  

28. M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn. 44, 323–328 (2008). [CrossRef]  

29. F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B 15, 1343–1346 (1997). [CrossRef]  

30. S. Visnovsky, Optics in Magnetic Multilayers and Nanostructures (Taylor & Francis Group, 2006).

31. T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71, 1640–1642 (1997). [CrossRef]  

32. T. Uno and S. Nage, “Growth of magneto-optic Ce:YIG thin films on amorphous silica substrates,” J. Europ. Ceramic Soc. 21, 1957–1960 (2001). [CrossRef]  

33. W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett. 5, 268–272 (2009). [CrossRef]  

34. M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt. 59, 126–130 (2012). [CrossRef]  

35. S. M. Hamidi and M. M. Tehranchi, “Cavity enhanced longitudinal magneto-optical Kerr effect in magneto-plasmonic multilayers consisting of Ce:YIG thin films incorporating gold nanoparticles,” J. Supercond. Nov. Magn. 25, 2097–2100 (2012). [CrossRef]  

36. T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74, 4877–4881 (1993). [CrossRef]  

37. M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett. 94, 181916 (2009). [CrossRef]  

38. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998). [CrossRef]  

39. F. Lopez and E. Bernabeu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films 191, 13–19 (1990). [CrossRef]  

40. H. Alisafaee and M. Ghanaatshoar, “Optimization of all-garnet magneto-optical magnetic field sensors with genetic algorithm,” Appl. Opt. 51, 5144–5148 (2012). [CrossRef]   [PubMed]  

41. M. Ghanaatshoar, M. Zamani, and H. Alisafaee, “Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance,” Opt. Commun. 284, 3635–3638 (2011). [CrossRef]  

42. M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci. Mater. Electron. 20, S43–S47 (2009). [CrossRef]  

43. M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron. E91-C, 1630–1638 (2008).

44. V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals” J. Opt. Soc. Am. B 22, 286–292 (2005). [CrossRef]  

45. S. Kahl and A. M. Grishin, “Magneto-optical rotation of a one-dimensional all-garnet photonic crystal in transmission and reflection,” Phys. Rev. B 71, 205110–205114 (2005). [CrossRef]  

46. M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt. 51, 4873–4878 (2012). [CrossRef]  

47. Y. P. Wang, D. G. Zhang, H. Zhou, and Z. B. Ouyang, “Error analysis of one-dimensional magneto-photonic crystals used as Faraday rotators,” in Symposium on Photonics and Optoelectronics, 2009. SOPO 2009 (IEEE, 2009), pp. 1–4. [CrossRef]  

48. C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express 19, 26948–26955 (2011). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express19, 11740–11745 (2011).
    [CrossRef] [PubMed]
  2. H. Zhu and C. Jiang, “Optical isolation based on nonreciprocal micro-ring resonator,” J. Lightwave Technol.29, 1647–1651 (2011).
    [CrossRef]
  3. Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
    [CrossRef]
  4. A. Alberucci and G. Assanto, “All-optical isolation by directional coupling,” Opt. Lett.33, 1641–1643 (2008).
    [CrossRef] [PubMed]
  5. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A78, 023804 (2008).
    [CrossRef]
  6. Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photon. Nanostruct.: Fundam. Appl.4, 132–140 (2006).
    [CrossRef]
  7. S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express17, 9276–9281 (2009).
    [CrossRef] [PubMed]
  8. T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor waveguide isolators,” J. Lightwave Technol.26, 291–301 (2008).RoelkensG.
    [CrossRef]
  9. S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express20, 1839–1848 (2012).
    [CrossRef] [PubMed]
  10. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
    [CrossRef]
  11. R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
    [CrossRef]
  12. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3, 91–94 (2009).
    [CrossRef]
  13. Z. Yu and S. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron.16, 459–466 (2010).
    [CrossRef]
  14. A. E. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express17, 278–292 (2009).
    [CrossRef] [PubMed]
  15. J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).
  16. H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer,” J. Lightwave Technol.26, 3166–3172 (2008).
    [CrossRef]
  17. Y. Shoji and T. Mizumoto, “Wideband operation of Mach-Zehnder interferometric magneto-optical isolator using phase adjustment,” Opt. Express20, 13446–13450 (2007).
    [CrossRef]
  18. M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Adjustable magneto-optical isolator with high transmittance and large Faraday rotation,” J. Opt. Soc. Am. B28, 2637–2642 (2011).
    [CrossRef]
  19. T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011).
    [CrossRef]
  20. S. M. Hamidi and M. M. Tehranchi, “High transmission enhanced Faraday rotation in coupled resonator magneto-optical waveguides,” J. Lightwave Technol.28, 2139–2145 (2010).
    [CrossRef]
  21. X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
    [CrossRef]
  22. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
    [CrossRef]
  23. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
    [CrossRef]
  24. M. Levy, H. C. Yang, M. J. Steel, and J. Fujita, “Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement,” J. Lightwave Technol.19, 1964–1969 (2001).
    [CrossRef]
  25. M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE. Photon. Technol. Lett.12, 1171–1173 (2000).
    [CrossRef]
  26. Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71, 1243–1255 (2000).
    [CrossRef]
  27. J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990).
    [CrossRef]
  28. M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
    [CrossRef]
  29. F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
    [CrossRef]
  30. S. Visnovsky, Optics in Magnetic Multilayers and Nanostructures (Taylor & Francis Group, 2006).
  31. T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71, 1640–1642 (1997).
    [CrossRef]
  32. T. Uno and S. Nage, “Growth of magneto-optic Ce:YIG thin films on amorphous silica substrates,” J. Europ. Ceramic Soc.21, 1957–1960 (2001).
    [CrossRef]
  33. W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009).
    [CrossRef]
  34. M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt.59, 126–130 (2012).
    [CrossRef]
  35. S. M. Hamidi and M. M. Tehranchi, “Cavity enhanced longitudinal magneto-optical Kerr effect in magneto-plasmonic multilayers consisting of Ce:YIG thin films incorporating gold nanoparticles,” J. Supercond. Nov. Magn.25, 2097–2100 (2012).
    [CrossRef]
  36. T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys.74, 4877–4881 (1993).
    [CrossRef]
  37. M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
    [CrossRef]
  38. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
    [CrossRef]
  39. F. Lopez and E. Bernabeu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films191, 13–19 (1990).
    [CrossRef]
  40. H. Alisafaee and M. Ghanaatshoar, “Optimization of all-garnet magneto-optical magnetic field sensors with genetic algorithm,” Appl. Opt.51, 5144–5148 (2012).
    [CrossRef] [PubMed]
  41. M. Ghanaatshoar, M. Zamani, and H. Alisafaee, “Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance,” Opt. Commun.284, 3635–3638 (2011).
    [CrossRef]
  42. M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci. Mater. Electron.20, S43–S47 (2009).
    [CrossRef]
  43. M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).
  44. V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals” J. Opt. Soc. Am. B22, 286–292 (2005).
    [CrossRef]
  45. S. Kahl and A. M. Grishin, “Magneto-optical rotation of a one-dimensional all-garnet photonic crystal in transmission and reflection,” Phys. Rev. B71, 205110–205114 (2005).
    [CrossRef]
  46. M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012).
    [CrossRef]
  47. Y. P. Wang, D. G. Zhang, H. Zhou, and Z. B. Ouyang, “Error analysis of one-dimensional magneto-photonic crystals used as Faraday rotators,” in Symposium on Photonics and Optoelectronics, 2009. SOPO 2009 (IEEE, 2009), pp. 1–4.
    [CrossRef]
  48. C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express19, 26948–26955 (2011).
    [CrossRef]

2012 (5)

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt.59, 126–130 (2012).
[CrossRef]

S. M. Hamidi and M. M. Tehranchi, “Cavity enhanced longitudinal magneto-optical Kerr effect in magneto-plasmonic multilayers consisting of Ce:YIG thin films incorporating gold nanoparticles,” J. Supercond. Nov. Magn.25, 2097–2100 (2012).
[CrossRef]

M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012).
[CrossRef]

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express20, 1839–1848 (2012).
[CrossRef] [PubMed]

H. Alisafaee and M. Ghanaatshoar, “Optimization of all-garnet magneto-optical magnetic field sensors with genetic algorithm,” Appl. Opt.51, 5144–5148 (2012).
[CrossRef] [PubMed]

2011 (7)

T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011).
[CrossRef]

M. Ghanaatshoar, M. Zamani, and H. Alisafaee, “Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance,” Opt. Commun.284, 3635–3638 (2011).
[CrossRef]

M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express19, 11740–11745 (2011).
[CrossRef] [PubMed]

H. Zhu and C. Jiang, “Optical isolation based on nonreciprocal micro-ring resonator,” J. Lightwave Technol.29, 1647–1651 (2011).
[CrossRef]

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Adjustable magneto-optical isolator with high transmittance and large Faraday rotation,” J. Opt. Soc. Am. B28, 2637–2642 (2011).
[CrossRef]

C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express19, 26948–26955 (2011).
[CrossRef]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

2010 (3)

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

Z. Yu and S. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron.16, 459–466 (2010).
[CrossRef]

S. M. Hamidi and M. M. Tehranchi, “High transmission enhanced Faraday rotation in coupled resonator magneto-optical waveguides,” J. Lightwave Technol.28, 2139–2145 (2010).
[CrossRef]

2009 (8)

A. E. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express17, 278–292 (2009).
[CrossRef] [PubMed]

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3, 91–94 (2009).
[CrossRef]

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express17, 9276–9281 (2009).
[CrossRef] [PubMed]

W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009).
[CrossRef]

M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci. Mater. Electron.20, S43–S47 (2009).
[CrossRef]

2008 (6)

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor waveguide isolators,” J. Lightwave Technol.26, 291–301 (2008).RoelkensG.
[CrossRef]

A. Alberucci and G. Assanto, “All-optical isolation by directional coupling,” Opt. Lett.33, 1641–1643 (2008).
[CrossRef] [PubMed]

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
[CrossRef]

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A78, 023804 (2008).
[CrossRef]

H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer,” J. Lightwave Technol.26, 3166–3172 (2008).
[CrossRef]

2007 (1)

Y. Shoji and T. Mizumoto, “Wideband operation of Mach-Zehnder interferometric magneto-optical isolator using phase adjustment,” Opt. Express20, 13446–13450 (2007).
[CrossRef]

2006 (1)

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photon. Nanostruct.: Fundam. Appl.4, 132–140 (2006).
[CrossRef]

2005 (3)

V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals” J. Opt. Soc. Am. B22, 286–292 (2005).
[CrossRef]

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

S. Kahl and A. M. Grishin, “Magneto-optical rotation of a one-dimensional all-garnet photonic crystal in transmission and reflection,” Phys. Rev. B71, 205110–205114 (2005).
[CrossRef]

2003 (1)

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

2002 (1)

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

2001 (2)

2000 (2)

M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE. Photon. Technol. Lett.12, 1171–1173 (2000).
[CrossRef]

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71, 1243–1255 (2000).
[CrossRef]

1998 (1)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

1997 (2)

F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
[CrossRef]

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71, 1640–1642 (1997).
[CrossRef]

1993 (1)

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys.74, 4877–4881 (1993).
[CrossRef]

1990 (2)

F. Lopez and E. Bernabeu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films191, 13–19 (1990).
[CrossRef]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990).
[CrossRef]

Alameh, K. E.

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
[CrossRef]

Alberucci, A.

Alisafaee, H.

H. Alisafaee and M. Ghanaatshoar, “Optimization of all-garnet magneto-optical magnetic field sensors with genetic algorithm,” Appl. Opt.51, 5144–5148 (2012).
[CrossRef] [PubMed]

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt.59, 126–130 (2012).
[CrossRef]

M. Ghanaatshoar, M. Zamani, and H. Alisafaee, “Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance,” Opt. Commun.284, 3635–3638 (2011).
[CrossRef]

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Adjustable magneto-optical isolator with high transmittance and large Faraday rotation,” J. Opt. Soc. Am. B28, 2637–2642 (2011).
[CrossRef]

Allen, M.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).

Assanto, G.

Bader, S. D.

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71, 1243–1255 (2000).
[CrossRef]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990).
[CrossRef]

Baets, R.

Bai, C. L.

F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
[CrossRef]

Bao-Jian, W.

W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009).
[CrossRef]

Baryshev, A. V.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Belotelov, V. I.

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
[CrossRef]

V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals” J. Opt. Soc. Am. B22, 286–292 (2005).
[CrossRef]

Bernabeu, E.

F. Lopez and E. Bernabeu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films191, 13–19 (1990).
[CrossRef]

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Bowers, J. E.

Chen, R.

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

Chung, K.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Ding, L.

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Dokukin, M. E.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Drezdzon, S. M.

S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express17, 9276–9281 (2009).
[CrossRef] [PubMed]

Egawa, M.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

Fan, S.

Z. Yu and S. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron.16, 459–466 (2010).
[CrossRef]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3, 91–94 (2009).
[CrossRef]

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photon. Nanostruct.: Fundam. Appl.4, 132–140 (2006).
[CrossRef]

Fen, L.

W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009).
[CrossRef]

Ferrera, M.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Fujita, J.

Gao, L.

T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011).
[CrossRef]

Ghadiri, H.

M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012).
[CrossRef]

Ghanaatshoar, M.

M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012).
[CrossRef]

H. Alisafaee and M. Ghanaatshoar, “Optimization of all-garnet magneto-optical magnetic field sensors with genetic algorithm,” Appl. Opt.51, 5144–5148 (2012).
[CrossRef] [PubMed]

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt.59, 126–130 (2012).
[CrossRef]

M. Ghanaatshoar, M. Zamani, and H. Alisafaee, “Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance,” Opt. Commun.284, 3635–3638 (2011).
[CrossRef]

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Adjustable magneto-optical isolator with high transmittance and large Faraday rotation,” J. Opt. Soc. Am. B28, 2637–2642 (2011).
[CrossRef]

Ghosh, S.

Grishin, A. M.

S. Kahl and A. M. Grishin, “Magneto-optical rotation of a one-dimensional all-garnet photonic crystal in transmission and reflection,” Phys. Rev. B71, 205110–205114 (2005).
[CrossRef]

Guo, X.

Hamidi, S. M.

S. M. Hamidi and M. M. Tehranchi, “Cavity enhanced longitudinal magneto-optical Kerr effect in magneto-plasmonic multilayers consisting of Ce:YIG thin films incorporating gold nanoparticles,” J. Supercond. Nov. Magn.25, 2097–2100 (2012).
[CrossRef]

S. M. Hamidi and M. M. Tehranchi, “High transmission enhanced Faraday rotation in coupled resonator magneto-optical waveguides,” J. Lightwave Technol.28, 2139–2145 (2010).
[CrossRef]

Hao, Y.

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

Harnagea, C.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Hensley, J.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).

Heo, J.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Herzinger, C. M.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Huang, X.

M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci. Mater. Electron.20, S43–S47 (2009).
[CrossRef]

Hwang, J. Y.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Inoue, M.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

Jalali, A. A.

M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci. Mater. Electron.20, S43–S47 (2009).
[CrossRef]

Jiang, C.

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Jiang, X.

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer,” J. Lightwave Technol.26, 3166–3172 (2008).
[CrossRef]

Jiang, Xi.

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

John, S.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A78, 023804 (2008).
[CrossRef]

Johs, B.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

Kahl, S.

S. Kahl and A. M. Grishin, “Magneto-optical rotation of a one-dimensional all-garnet photonic crystal in transmission and reflection,” Phys. Rev. B71, 205110–205114 (2005).
[CrossRef]

Kato, H.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

Keyvavinia, S.

Khanikaev, A. B.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Kim, J.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Kobayashi, M.

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys.74, 4877–4881 (1993).
[CrossRef]

Kotov, V. A.

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
[CrossRef]

Kromer, H.

Levy, M.

M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci. Mater. Electron.20, S43–S47 (2009).
[CrossRef]

M. Levy, H. C. Yang, M. J. Steel, and J. Fujita, “Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement,” J. Lightwave Technol.19, 1964–1969 (2001).
[CrossRef]

M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE. Photon. Technol. Lett.12, 1171–1173 (2000).
[CrossRef]

Li, G.

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

Li, Y.

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

Li, Z. Y.

Lim, P. B.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Linzon, Y.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Liu, C.

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990).
[CrossRef]

Lopez, F.

F. Lopez and E. Bernabeu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films191, 13–19 (1990).
[CrossRef]

Luo, J.

T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011).
[CrossRef]

Matsushita, T.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

McGahan, W. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

Mino, S.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71, 1640–1642 (1997).
[CrossRef]

Mizumoto, T.

Montoya, J.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).

Moog, E. R.

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990).
[CrossRef]

Morandotti, R.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Nage, S.

T. Uno and S. Nage, “Growth of magneto-optic Ce:YIG thin films on amorphous silica substrates,” J. Europ. Ceramic Soc.21, 1957–1960 (2001).
[CrossRef]

Nishimura, K.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

Osgood, R. M.

M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE. Photon. Technol. Lett.12, 1171–1173 (2000).
[CrossRef]

Ouyang, Z. B.

Y. P. Wang, D. G. Zhang, H. Zhou, and Z. B. Ouyang, “Error analysis of one-dimensional magneto-photonic crystals used as Faraday rotators,” in Symposium on Photonics and Optoelectronics, 2009. SOPO 2009 (IEEE, 2009), pp. 1–4.
[CrossRef]

Ozbay, E.

Parameswaran, K.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).

Paulson, W.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

Pignolet, A.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Pintus, P.

Qiu, G.

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

Qiu, Z. Q.

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71, 1243–1255 (2000).
[CrossRef]

Ram, R.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).

Ram, R. J.

Razzari, L.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Ross, C. A.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Sekhar, M. C.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Serebryannikov, A. E.

Shang, G. Y.

F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
[CrossRef]

Sharifian, M.

M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012).
[CrossRef]

Shintaku, T.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71, 1640–1642 (1997).
[CrossRef]

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys.74, 4877–4881 (1993).
[CrossRef]

Shoji, Y.

Y. Shoji and T. Mizumoto, “Wideband operation of Mach-Zehnder interferometric magneto-optical isolator using phase adjustment,” Opt. Express20, 13446–13450 (2007).
[CrossRef]

Shuo, L.

W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009).
[CrossRef]

Steel, M. J.

M. Levy, H. C. Yang, M. J. Steel, and J. Fujita, “Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement,” J. Lightwave Technol.19, 1964–1969 (2001).
[CrossRef]

M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE. Photon. Technol. Lett.12, 1171–1173 (2000).
[CrossRef]

Sui, Z.

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

Sun, T.

T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011).
[CrossRef]

Sun, Y.

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

Takagi, H.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Takayama, A.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

Takeda, H.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A78, 023804 (2008).
[CrossRef]

Tao, D.

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

Tate, A.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71, 1640–1642 (1997).
[CrossRef]

Tehranchi, M. M.

S. M. Hamidi and M. M. Tehranchi, “Cavity enhanced longitudinal magneto-optical Kerr effect in magneto-plasmonic multilayers consisting of Ce:YIG thin films incorporating gold nanoparticles,” J. Supercond. Nov. Magn.25, 2097–2100 (2012).
[CrossRef]

S. M. Hamidi and M. M. Tehranchi, “High transmission enhanced Faraday rotation in coupled resonator magneto-optical waveguides,” J. Lightwave Technol.28, 2139–2145 (2010).
[CrossRef]

Tian, F.

F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
[CrossRef]

Tien, M. C.

Uchida, H.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Uno, T.

T. Uno and S. Nage, “Growth of magneto-optic Ce:YIG thin films on amorphous silica substrates,” J. Europ. Ceramic Soc.21, 1957–1960 (2001).
[CrossRef]

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys.74, 4877–4881 (1993).
[CrossRef]

Van Roy, W.

Vasiliev, M.

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
[CrossRef]

Visnovsky, S.

S. Visnovsky, Optics in Magnetic Multilayers and Nanostructures (Taylor & Francis Group, 2006).

Wang, C.

C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express19, 26948–26955 (2011).
[CrossRef]

F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
[CrossRef]

Wang, M.

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer,” J. Lightwave Technol.26, 3166–3172 (2008).
[CrossRef]

Wang, N. X.

F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
[CrossRef]

Wang, Y. P.

Y. P. Wang, D. G. Zhang, H. Zhou, and Z. B. Ouyang, “Error analysis of one-dimensional magneto-photonic crystals used as Faraday rotators,” in Symposium on Photonics and Optoelectronics, 2009. SOPO 2009 (IEEE, 2009), pp. 1–4.
[CrossRef]

Wang, Z.

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photon. Nanostruct.: Fundam. Appl.4, 132–140 (2006).
[CrossRef]

Wei, H.

W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009).
[CrossRef]

Wen, X.

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

Woollam, J. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

Xu, P.

T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011).
[CrossRef]

Yang, H. C.

Yang, J.

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer,” J. Lightwave Technol.26, 3166–3172 (2008).
[CrossRef]

Yang, Ji.

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

Yoshie, T.

S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express17, 9276–9281 (2009).
[CrossRef] [PubMed]

Yu, T.

Yu, Z.

Z. Yu and S. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron.16, 459–466 (2010).
[CrossRef]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3, 91–94 (2009).
[CrossRef]

Zaezjev, M.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Zak, J.

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990).
[CrossRef]

Zaman, T. R.

Zamani, M.

M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012).
[CrossRef]

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt.59, 126–130 (2012).
[CrossRef]

M. Ghanaatshoar, M. Zamani, and H. Alisafaee, “Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance,” Opt. Commun.284, 3635–3638 (2011).
[CrossRef]

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Adjustable magneto-optical isolator with high transmittance and large Faraday rotation,” J. Opt. Soc. Am. B28, 2637–2642 (2011).
[CrossRef]

Zhang, D. G.

Y. P. Wang, D. G. Zhang, H. Zhou, and Z. B. Ouyang, “Error analysis of one-dimensional magneto-photonic crystals used as Faraday rotators,” in Symposium on Photonics and Optoelectronics, 2009. SOPO 2009 (IEEE, 2009), pp. 1–4.
[CrossRef]

Zhou, C. Z.

Zhou, H.

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer,” J. Lightwave Technol.26, 3166–3172 (2008).
[CrossRef]

Y. P. Wang, D. G. Zhang, H. Zhou, and Z. B. Ouyang, “Error analysis of one-dimensional magneto-photonic crystals used as Faraday rotators,” in Symposium on Photonics and Optoelectronics, 2009. SOPO 2009 (IEEE, 2009), pp. 1–4.
[CrossRef]

Zhou, Q.

Zhu, H.

Zvezdin, A. K.

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
[CrossRef]

V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals” J. Opt. Soc. Am. B22, 286–292 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71, 1640–1642 (1997).
[CrossRef]

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Yu and S. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron.16, 459–466 (2010).
[CrossRef]

IEEE Trans. Magn. (1)

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
[CrossRef]

IEEE. Photon. Technol. Lett. (1)

M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE. Photon. Technol. Lett.12, 1171–1173 (2000).
[CrossRef]

J. Appl. Opt. (1)

M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012).
[CrossRef]

J. Appl. Phys. (4)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys.74, 4877–4881 (1993).
[CrossRef]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990).
[CrossRef]

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).

J. Europ. Ceramic Soc. (1)

T. Uno and S. Nage, “Growth of magneto-optic Ce:YIG thin films on amorphous silica substrates,” J. Europ. Ceramic Soc.21, 1957–1960 (2001).
[CrossRef]

J. IEEE Trans. Electron. (1)

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

J. IEEE. Trans. Magn. (1)

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

J. Lightwave Technol. (5)

J. Mater. Sci. Mater. Electron. (1)

M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci. Mater. Electron.20, S43–S47 (2009).
[CrossRef]

J. Mod. Opt. (1)

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt.59, 126–130 (2012).
[CrossRef]

J. Opt. (1)

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Supercond. Nov. Magn. (1)

S. M. Hamidi and M. M. Tehranchi, “Cavity enhanced longitudinal magneto-optical Kerr effect in magneto-plasmonic multilayers consisting of Ce:YIG thin films incorporating gold nanoparticles,” J. Supercond. Nov. Magn.25, 2097–2100 (2012).
[CrossRef]

J. Vac. Sci. Technol. B (1)

F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
[CrossRef]

Nat. Photonics (2)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3, 91–94 (2009).
[CrossRef]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Opt. Express (1)

S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express17, 9276–9281 (2009).
[CrossRef] [PubMed]

Opt. Commun. (3)

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

M. Ghanaatshoar, M. Zamani, and H. Alisafaee, “Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance,” Opt. Commun.284, 3635–3638 (2011).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Optoelectron. Lett. (1)

W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009).
[CrossRef]

Photon. Nanostruct.: Fundam. Appl. (1)

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photon. Nanostruct.: Fundam. Appl.4, 132–140 (2006).
[CrossRef]

Phys. Lett. A (1)

T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011).
[CrossRef]

Phys. Rev. A (1)

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A78, 023804 (2008).
[CrossRef]

Phys. Rev. B (1)

S. Kahl and A. M. Grishin, “Magneto-optical rotation of a one-dimensional all-garnet photonic crystal in transmission and reflection,” Phys. Rev. B71, 205110–205114 (2005).
[CrossRef]

Proc. SPIE (1)

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71, 1243–1255 (2000).
[CrossRef]

Thin Solid Films (1)

F. Lopez and E. Bernabeu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films191, 13–19 (1990).
[CrossRef]

Other (2)

Y. P. Wang, D. G. Zhang, H. Zhou, and Z. B. Ouyang, “Error analysis of one-dimensional magneto-photonic crystals used as Faraday rotators,” in Symposium on Photonics and Optoelectronics, 2009. SOPO 2009 (IEEE, 2009), pp. 1–4.
[CrossRef]

S. Visnovsky, Optics in Magnetic Multilayers and Nanostructures (Taylor & Francis Group, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The magneto-optical spectra of the structure S 1 ( 1 ) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S 1 ( 1 ) as functions of ϕ.

Fig. 2
Fig. 2

The transmittance and Faraday rotation absolute value of the adjustable MOIs (a) S 2 ( 1 ) and (b) S 3 ( 1 ) as functions of wavelength.

Fig. 3
Fig. 3

The magneto-optical spectra of the structure S 1 ( 2 ) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S 1 ( 2 ) as functions of ϕ.

Fig. 4
Fig. 4

The magneto-optical spectra of the structure S 2 ( 2 ) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S 2 ( 2 ) as functions of ϕ.

Fig. 5
Fig. 5

The magneto-optical spectra of the structure S 1 ( 3 ) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S 1 ( 3 ) as functions of ϕ.

Fig. 6
Fig. 6

The magneto-optical spectra of the structure S 1 ( 4 ) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S 1 ( 4 ) as functions of ϕ.

Fig. 7
Fig. 7

The transmittance, Faraday rotation and ellipticity spectra of the MOI S 1 ( 4 ) in the presence of a set of (a) 0.2 nm and (b) 1 nm surface roughness errors as functions of wavelength.

Tables (1)

Tables Icon

Table 1 Characteristics of the adjustable MOIs.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A a P a = A 1 D 1 P 1 = A 1 D 1 A 1 1 A 1 P 1 = A 1 D 1 A 1 1 A 2 D 2 P 2 = i = 1 m ( A i D i A i 1 ) A s P s .
A = ( 1 0 1 0 γ y ( β y 1 + α z 2 α y α z β z ) α z γ y ( β y 1 + α z 2 α y α z + β z ) α z γ ( α y β y + α z β z ) n γ ( α y β y + α z β z ) n n α z γ ( β y α y α z + β z ) n α z γ ( β y α y α z β z ) ) ,
D = ( U cos δ ( i ) U sin δ ( i ) 0 0 U sin δ ( i ) U cos δ ( i ) 0 0 0 0 U 1 cos δ ( r ) U 1 sin δ ( r ) 0 0 U 1 sin δ ( r ) U 1 cos δ ( r ) ) ,
P a = A a 1 i = 1 m ( A i D i A i 1 ) A s P s ( G H I J ) P s ,
( t s s t s p t p s t p p ) = G 1 , ( r ss r s p r p s r p p ) = I G 1 .
ε M = ( ε 1 i ε 2 0 i ε 2 ε 1 0 0 0 ε 1 ) ,
ε M = ( ε 1 i ε 2 x y i ε 2 x z i ε 2 x y ε 1 0 i ε 2 x z 0 ε 1 ) ,
R T = T max T min T max + T min and R F = θ max θ min θ max + θ min ,

Metrics