Abstract

We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the dominant electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing waves and a subwavelength spherical scatterer is scanned inside the resulting resonator. The resonant Bloch frequencies shift depending on the electric field at the position of the scatterer. To map the electric field component Ez we measure the frequency shift in the reflection and transmission spectrum of the slab versus the scatterer position. Very good agreement is found between measurements and calculations without any adjustable parameters.

© 2012 OSA

1. Introduction

Photonic crystals attract a tremendous deal of interest as they offer to radically control the light propagation [1] and emission of light [2]. In photonic crystals the dielectric constant varies periodically on the order of the wavelength [3]. Due to this periodicity, the light propagates in the form of Bloch modes [3, 4]. An intriguing capability of photonic crystals is to shape the local radiative density of electromagnetic states (LDOS) inside the crystal, which is the key for controlling the interaction of light with matter [5]. Manipulating the LDOS allows, for example, the inhibition or the enhancement of spontaneous emission of embedded light sources [613]. This forms the basis for investigating the strong-coupling cavity regime in quantum electrodynamics [14]. Such manipulations also have far-reaching technological implications, such as the development of efficient micro scale lasers, LEDs or solar cells [1522].

The field strength of the Bloch modes inside the photonic crystal at the locations of the emitters determine the local character of the LDOS [5]. Bloch mode fields of ideal photonic crystals, i.e., assuming a perfect periodicity, can be calculated by numerical methods such as finite-difference time domain (FDTD) [23]. However, all real photonic crystals suffer inevitably from unpredictable non-periodic local deviations both due to fabrication errors and, also fundamentally, due to thermodynamical arguments [4, 24]. While interesting steps have been presented towards including such deviations by using two-dimensional scanning electron microscope images, complete three-dimensional deviations cannot be effectively included into numerical calculations [25, 26]. A measurement is the only way to analyze the electromagnetic field inside a real photonic crystal. To eventually also characterize the LDOS of photonic crystals the field measurement method should resolve the direction and absolute value of the individual field components (Ex, Ey, Ez, Hx, Hy, Hz). A method to measure the absolute field strength of an eigenmode inside a real photonic crystal, however, has not been reported to date.

So far the only optical method to map local fields is near-field scanning optical microscopy (NSOM) [2745].The technique relies on scanning a small tip of a tapered optical fiber above the surface of a photonic crystal that collects part of the evanescent field with subwavelength resolution. However, NSOM suffers from several drawbacks. First, while the method has been used to measure individual field components [3537] it is restricted to probe local fields outside the crystal near its surfaces while the field deep inside the crystal cannot be mapped. Thus one needs to make assumptions about the scattering from the internal fields under study to the detected evanescent fields. In case of three-dimensional crystals, relating the fields at the surface to the derived fields in the bulk is even more challenging [38] than in the widely studied two-dimensional slab systems. Second, NSOM measurements are strongly affected by a number of background effects [3943] making absolute field measurements very difficult. Even in most sophisticated NSOM methods which provide nearly background free detection schemes absolute fields have not been reported [44, 45]. What is desirable is to devise a method that can probe the absolute strength of the electromagnetic field inside a photonic crystal.

Here we demonstrate a method to measure the absolute strength of the electromagnetic field distribution inside a photonic crystal. Our method relies on measuring the resonant frequencies of Bloch standing waves in a photonic crystal of finite length that is enclosed by two mirrors. A subwavelength scatterer placed inside the crystal scatters the electromagnetic field which shifts the frequency of the Bloch resonances proportionally to the square of the electric and magnetic field strength at the scatterer position [4649]. By measuring the frequency shifts as a function of the spatial position of the scatterer, we obtain maps of the field strengths versus position. We demonstrate the method at microwave frequencies where fabrication errors are relatively small. Furthermore, in this frequency range the typical structure sizes are sufficiently large that a scatterer can be conveniently scanned through the crystal. To simplify the demonstration we deliberately choose a photonic crystal design where a single field component inside the microwave photonic crystal slab dominates throughout most of the crystal. Using a spherical, metallic bead as a scatterer we thus map the dominant electric field component Ez inside a photonic crystal slab.

2. Measurement method

To map the electromagnetic field, a photonic crystal is placed between two mirrors. The mirrors restrict the electromagnetic field in the photonic crystal to discrete longitudinal Bloch modes with associated resonance frequencies ν0 and wave numbers kz. To measure the electromagnetic field we place a scatterer inside the photonic crystal and measure the shift of the resonance frequencies. We chose a scatterer in the Rayleigh regime with a small size parameter x ≪ 1, with x = 2πR/λ. Here, R is the radius of the object and λ the wavelength. In this regime the field is approximately constant throughout the scatterer volume, thereby the scattering can be treated within the electrostatic approximation to calculate the resulting frequency shift Δν due to the scatterer. Using a spherical metallic scatterer with a radius R we obtain [4648].

Δν(r)=12μ0H(r)2ε0E(r)2UπR3ν0
where E(r) and H(r) are the unperturbed electric and magnetic fields at the location r of the scatterer, respectively. U is the total energy stored inside the unperturbed cavity, ε0 is the permittivity and μ0 the permeability of free space. If we measure the frequency shift versus the scatterer location Δν(r) we will map, in a general photonic crystal, the electromagnetic field quantity (12μ0H(r)2ε0E(r)2).

In certain photonic crystal geometries, however, certain field components can strongly dominate, hence only these field components are mapped by using a spherical scatterer. For instance, in the crystal we use here, the Ez field dominates, i.e., the Ez field strength is much greater than all other field components and the frequency shift becomes

Δν(r)ε0Ez(r)2UπR3ν0
Solving for the Ez component yields
Ez(r)=Δν(r)UπR3ε0ν0.
Equation (3) shows that it is possible to map the absolute strength of the Ez field component by measuring the frequency shift of the longitudinal resonances Δν versus the bead position and by determining the total energy stored in the cavity U for a specific input power Pin.

3. The photonic crystal slab

The unit cell of the photonic crystal slab we used (Fig. 1(a)) is designed to provide a dominant Ez component in the structure, which is also required for its intended application in a photonic free-electron laser [50]. The unit cell is a supercell which is surrounded by a metallic waveguide creating a two dimensional photonic crystal slab. A rectangular lattice of metal rods with a central line defect at x = 0 forms the basis of the supercell. Along the z-direction the rectangular lattice has a lattice constant of az = 7.5mm and the lattice constant is ax = 6.75mm along the x-direction. Inside the supercell the third transverse row of rods is missing. Thus the supercell consists of 12 rods and has a length of az,eff = 22.5mm, indicated in Fig. 1(a). The diameter of the rods is 4 mm and the surrounding waveguide has a width of w = 47.25mm and a height of h = 20mm.

 

Fig. 1 (a) Schematic three-dimensional view of the photonic crystal slab indicating the defining geometry parameters. Metallic rods are placed inside a rectangular metallic waveguide. The dashed line indicates the size of the supercell. (b) Calculated band structure of the photonic crystal slab showing the four lowest TE-like modes having a non-zero Ez component of the electric field.

Download Full Size | PPT Slide | PDF

To calculate the band structure of the photonic crystal slab a FDTD method is used [51]. In the calculations the photonic crystal slab is taken to be infinitely long along the z-direction by applying appropriate periodic boundary conditions to the unit cell. All metal parts are treated as perfect electric conductors which is well justified in the microwave range. Figure 1(b) shows the results for the four lowest-frequency TE-like modes, i.e., modes with a non-zero longitudinal electric field component Ez. Due to the z-periodicity of the slab, the dispersion in the first Brillouin zone, i.e., for normalized wave numbers (az,eff kz) between 0 and 2π, repeats with increasing wave number [3]. Furthermore, the finite transverse size of the waveguide results in a lowest allowed normalized frequency of 0.61 for mode 1. No other TE-like modes exist below this cut-off frequency.

For a comparison with experimental field mapping data we calculate the local Ez field distribution of mode 1 and mode 2. The FDTD method is applied at the resonant frequency of mode 1 and 2 for a normalized wave number of az,eff kz = 0 which corresponds to a normalized frequency of 0.61 and 0.71 respectively. Figure 2(a) through 2(d) show the Ez field pattern of the modes at two transverse planes at different z coordinates. The first plane is taken through the center of the first row of rods (z = 0.5az) and the second plane is taken in the empty row of the unit cell (z = 2.5az) where mapping is performed. As expected, the field pattern is symmetric due to the symmetry of the photonic crystal slab. Furthermore, throughout all field patterns it is observed that mode 2 has a field node at the center of the waveguide which will explain a certain effect in the experimental data later on.

 

Fig. 2 Transverse Ez-eigenmode patterns of the photonic crystal slab for mode 1 and mode 2 at two cross sections (xy-plane) inside the unit cell. First, through the first row of rods (at z = 0.5az, (a) and (b)). Second, at a cross section through the empty part of the waveguide (at z = 2.5az, (c) and (d)). The normalized wave number for both patterns is kzaz,eff = 0 and the corresponding normalized frequency for (a) is 0.61 and for (b) 0.71.

Download Full Size | PPT Slide | PDF

4. Experimental setup

A schematic view of the experimental setup is shown in Fig. 3. The photonic crystal, described in section 3, is placed between two highly reflective alumimun mirrors to form a resonator. The longitudinal resonator contains 15 unit cells of the photonic crystal in total. The first mirror is positioned at a distance of 0.5az from the center of the first row of rods and the second mirror is positioned at a distance of 1.5az from the last row of rods.

 

Fig. 3 Schematic view of the setup to measure the electromagnetic field inside the photonic crystal slab by a scatterer. The Fig. shows a cross section through the photonic crystal slab at y = 0. The photonic crystal slab is sandwiched between two aluminum mirrors (bold black). The input and output antennas are mounted at the center of both mirrors. To map the Ez field component along the x-direction a spherical metallic scatterer, which is mounted on a string, can be moved throughout the photonic crystal slab.

Download Full Size | PPT Slide | PDF

The photonic crystal slab is fabricated as follows. A channel with a rectangular cross section of 47.25mm × 20mm is milled into a solid aluminum block (bottom plate) and is covered with an aluminum top plate. Both parts contain holes for mounting the rods. The rods are hollow brass cylinders with an inner diameter of 2 mm and an outer diameter of 4 mm. With screws extending from the top plate through the rods into the bottom plate the rods are positioned. This also provides an electrical connection between the rods and the waveguide. The total positioning accuracy for the rods is estimated to a maximum of about 100μm, corresponding to a high precision of about 1.4% relative to the inter rod distances.

To measure the resonant frequencies of the photonic crystal slab cavity, a Hertzian dipole antenna [52] is mounted at the center of each mirror (see Fig. 3). Both antennas point along the z–direction to excite or detect modes with a non-zero Ez field component. One antenna acts as an emitter labeled “in” in Fig. 3 while the other antenna acts as a receiver for transmission measurements labeled “out” in Fig. 3. As a compromise between minimal loading of the resonator by the antennae and sufficient coupling to the modes, the length of both antennae was selected as 4 mm. Note that with the antenna position in the center of the mirror, modes with an Ez field node in the center cannot be excited such as mode 2 shown in Fig. 2(c).

The other end of both antennae is connected to a network analyzer via coaxial SMA cables. The network analyzer is formed by a tunable microwave source with a maximum frequency of 20 GHz (Wiltron, model 69147A), two directional couplers (Krytar, model 2610) and two microwave power meters (Anritsu, model ML1438A with power heads MA2444A and MA2424B). To compensate for frequency dependent losses in cables and other components the network analyzer is calibrated before the measurements. The accuracy is estimated to about 10%, as re-connecting coaxial cables typically has an effect in this magnitude. Using this setup we measure the reflection and transmission spectra of the photonic crystal slab cavity. For the measurements the frequency resolution is set to 250 kHz and the input power Pin from the network analyzer is 1 mW.

To map the electromagnetic field inside the photonic crystal slab the scatterer is scanned through various locations inside the resonator. The scatterer is a stainless steel bead with a radius of R = 2 mm which sits on a 0.3 mm thick nylon string. As shown in Fig. 3 the string runs through two small holes (300μm) in the opposing side walls. The holes are positioned in the center of the side walls (y = 0) and at z = 2.5az inside the 3rd unit cell, as counted from the input side. At the position of the holes in the inner surface of the side walls a 4 mm deep cylindrical cavity with a diameter of 4.5 mm is fabricated in which the bead can fit completely. One end of the string is attached to a weight to keep the string straight via tension, and the other end of the string is mounted on a translation stage. The translation stage is used to position the bead with a relative accuracy of better than 0.05 mm. The absolute position is calibrated using the position at which the scatterer just completely disappears within the cylindrical cavity, and the error in this position is estimated to be smaller than 0.1 mm.

5. Dispersion measurement

Before measuring the Ez field component of the photonic crystal slab resonator we verified the appropriate description of the slab by the FDTD model. Specifically, to confirm the crystal dispersion we measured the resonance frequencies of the different longitudinal and transverse modes without a scatterer inside the photonic crystal. Measuring the dispersion is based on determining the longitudinal resonance frequencies of a finite-length photonic crystal consisting of n unit cells and assigning wave numbers to each observed resonance frequency [53]. For the assignment we consider the phase advance δϕ of standing waves per round trip in the resonator. At each longitudinal resonance the phase advance per round trip along the z-direction is a multiple of π:

δϕ=naz,effkz=mπm=1,2
Here naz,eff is the geometrical length of the resonator and kz is the wave number. As the resonator mirrors enclose 15 unit cells of the photonic crystal, n = 15 longitudinal resonances with a finite wavelength are expected [53] having a normalized wave number az,eff kz of
0<az,effkz=mnππ.
From the calculations shown in Fig. 1(b) the frequency of the considered modes is seen to be a monotonously increasing or decreasing function of the wave number which renders the resonances denumerable. By using Eq. (5), a normalized wave number can be associated to each longitudinal resonance frequency, from which the dispersion of that transverse mode is obtained.

Figure 4 shows the measured transmission and reflection power spectrum of the unperturbed photonic crystal slab resonator in the range from 8GHz to 14GHz on a logarithmic power scale. For most of the measured frequencies the reflection is close to 0 dB meaning that it is equal to the input power of 1 mW. Due to the resonator a radiation field can only build up at frequencies where longitudinal resonances of a transverse photonic crystal mode exist. In both spectra we clearly observe the resonances belonging to the longitudinal resonances. As expected for such resonances the frequency of reflection and transmission resonances agree very well with each other.

 

Fig. 4 Transmission and reflection spectrum of the photonic crystal slab without a scatterer between 8.0 GHz and 13.5 GHz. The peaks correspond to the various longitudinal modes for each transverse mode.

Download Full Size | PPT Slide | PDF

By comparing the transmission levels of the various detected resonances we identify which resonance belongs to the same transverse mode. Four frequency ranges can be distinguished in Fig. 4. From 8.0GHz to 9.8GHz sharp resonances appear with an averaged normalized transmission of about −15 dB. From 9.9GHz to 10.7GHz the transmission is very low (< −40dB) and only one weak and broad resonance is observed. However, this is not a stop band of the slab, but a mode that cannot be effectively excited with a centered Hertzian dipole antenna due to its mode symmetry (Fig. 2). From 10.8GHz to 11.8GHz another set of resonances appears. This set of resonances is easily distinguished from the following set between 11.8GHz to 13.3GHz whose average transmission level (−10dB) is much higher.

In total three different sets of resonances are identified as three different transverse modes. To retrieve the dispersion of each transverse mode we assign a wave number to the longitudinal resonances of each transverse mode. As an example for this process we concentrate on the frequency range from 8.0GHz to 9.8GHz. Fig. 5(a) shows a zoom into the reflection and transmission spectrum for this frequency range. For our photonic crystal slab of 15 unit cells, we expect from theory to observe 15 longitudinal resonances with a finite wavelength belonging to mode 1. Indeed, inspecting the transmission and reflection spectra, 15 resonances are observed. The first resonance is only clearly visible in the reflection spectrum. Furthermore, the resonances above the tenth one are only visible in the transmission spectrum due to a lower signal-to-noise ratio in the reflected signal.

 

Fig. 5 (a) Zoom into transmission and reflection spectrum of the photonic crystal slab depicted in Fig. 4. The spectra clearly show the different longitudinal modes for transverse mode 1. The labeling depicts the number of anti-nodes, m, along the propagation direction. (b) Measured band structure of the photonic crystal slab for the four lowest frequency TE-like eigenmodes (symbols) compared to the calculated values from Fig. 1(b)

Download Full Size | PPT Slide | PDF

Using these considerations we have used Eq. (5) to assign wave numbers to each measured resonance frequency of mode 1, as plotted in Fig. 5(b). The agreement with the theoretical dispersion (solid lines) is excellent. To assign also wave numbers to higher order modes we take into account, as was explained above, that mode 2 is not effectively excited with the centered Hertzian dipole antenna. Furthermore, the resonances of mode 4 can only be partly observed. Mode 4 overlaps in frequency with mode 3, but mode 3 couples better to the antenna as can be seen from the higher transmission level of mode 3. Hence, only mode 3 is detected where both modes overlap.

With these considerations we can assign normalized wave numbers to mode 3 and mode 4, as well. Also for these modes the agreement with the theoretical dispersion (solid lines) is excellent. In conclusion, the excellent agreement for mode 1 to mode 4 indicates an appropriate description of the fabricated slab with FDTD calculations.

6. Electric field measurements

We measure the longitudinal electric field inside the photonic crystal slab by measuring the frequency shift of an individual longitudinal resonance due to a spherical metal scatterer inside the crystal. By scanning the position of the scatterer we can map the electric field distribution. Note that the measured frequency shift Δν is referenced to the resonance frequency of the resonator loaded by the nylon string alone. The effect of the nylon string is small as it results in a shift of only 250kHz.

Figure 6(a) and 6(b) show two examples of the measured frequency shift Δν for mode 1 due to the scatterer. The frequencies of the two longitudinal resonances are 8.16GHz and 8.42GHz, respectively. The uncertainty of the frequency shift is 250kHz due to the frequency resolution of the network analyzer. In both measurements the frequency shift remains always smaller or equal to zero, as we expect from Eq.(2) for a mode with a dominating Ez field component. Towards the edge of the waveguide the frequency shift Δν approaches zero. As can be seen from Fig. 2, the electric field Ez is at these location close to zero and consequently also the frequency shift. The strongest frequency shift of about 4.75MHz and 2.25MHz, respectively, is reached in both examples at about 7.0mm from the center. In between two rows of rods the strongest Ez field component along the x-direction is generally not located at the center of the waveguide but located slightly off the center, see Fig. 2.

 

Fig. 6 Measured frequency shift Δν induced by placing the spherical scatterer at that location for mode 1 at a longitudinal resonance frequencies of ν = 8.16GHz (a) and ν = 8.42GHz (b). The corresponding wave number is kzaz,eff=115π and kzaz,eff=615π, respectively. The resulting electric field component Ez calculated from the measured frequency shift shown in (a) and (b) is shown in (c) and (d), respectively. The measured electric field component Ez (symbols) is compared to the calculated electric field (lines).

Download Full Size | PPT Slide | PDF

To calculate the longitudinal electric field Ez from the measured frequency shift we apply Eq. (3). However, this requires to determine the total energy stored inside the cavity U. To retrieve U we use the definition of the quality factor:

Q=2πν0UPdiss.
Exactly at resonance the dissipated power per cycle Pdiss is equal to the input power Pin from the network analyzer. To retrieve the experimental Q-values we determine the full width half maximum of each transmission resonance νFWHM shown in Fig. 5(a) and use Q = ν0/νFWHM.

Figure 6(c) and 6(d) show the resulting electric field strength Ez (square dots) determined for the two longitudinal resonances of mode 1 at a frequency of 8.16GHz and 8.42GHz, respectively. For a comparison, the figure displays also the Ez field strength from the FDTD calculations presented in section 2 (black line). Uncertainties for the measured field values are determined by using the Gaussian error propagation law. We assume that the dominating errors are the uncertainty in input power of about 10% and the frequency resolution of 250 kHz. All other uncertainties are much smaller and do not significantly contribute to the error bars of the measurement.

Figure 6(c) shows the results for a longitudinal resonance with a frequency of 8.16 GHz. The overall shape of the electric field shows an excellent agreement to the calculated field strength. Furthermore, also the absolute values agree within the range of the measurement accuracy, although no adjustable parameter is used in the calculations. Figure 6(d) shows an example at a higher frequency of 8.42 GHz. The agreement between FDTD calculations and experiment is again very good. This holds both for the shape of the profile and also for the absolute values. Minor deviations are visible at the waveguide center. The small difference between electric field maximum and central electric field value at the center is calculated to be about 7 V/mm which is not resolved in the measurements. In addition, the measured absolute field value is slightly lower. We tentatively attribute both effects to the fact that at a higher frequency (shorter wavelength) influences due to non-periodic variations in the photonic crystal become more important. Nevertheless, in both examples a good agreement between experiment and theory is found.

The two discussed examples for mapping the electric field component Ez illustrate the capability of the method to map the absolute strength of an electric field component inside a photonic crystal. The good agreement between the measurements and calculations further clearly demonstrates that a field mapping inside a photonic crystal is possible.

7. Summary and outlook

We have demonstrated for the first time a method for mapping the absolute strength of an electromagnetic field component inside a photonic crystal. The method relies on measuring the change in resonance frequency when the photonic crystal is placed inside a resonator and the field inside the photonic crystal is perturbed by a sub-wavelength scatterer. A spherical scatterer is applied to measure the dominating longitudinal electric field Ez in a specific photonic crystal slab. We observe a good agreement between measured and calculated electric field strength Ez without using any adjustable parameters in the calculations.

Note that if all six field components would be of comparable strength, such as in an arbitrary photonic crystal or at specific locations, this measurement method can measure each individual field component by using a metallic needle instead of a metallic bead. The metallic needle short circuits and thus probes the electric field along the orientation of the needle while leaving all other field components unaffected. For a thin metallic needle with a thickness d and a length l aligned along the z-direction one obtains [46, 47]:

Ez(r)=12Δν(r)ν01πl3ln(1+1(d/l)2)ln(11(d/l)2)21(d/l)2(1(d/l)2)3/2

In the future, this method could be applied in the near infrared or optical domain by scaling down the photonic crystal and the scatterer. Instead of a bead on a string we envision to mount a metallic or dielectric scatterer on one end of a stiff carbon nanotube whose other end is mounted to the tip of an atomic force microscope. The scatterer is then moved via moving the atomic force microscope tip. Mounting a carbon nanotube on an atomic force microscope has been demonstrated [54]. Further, atomic force microscopy allows a sufficiently high spatial resolution, demonstrated by recent measurements where an emitter directly mounted to an atomic force microscope has been used to map the emitter lifetime around a single nanorod [55]. Combining these results it should be possible to measure the shift in resonance frequency in the transmission spectrum to determine the absolute field strength inside air voids of an photonic crystal at optical frequencies.

Acknowledgments

This research is supported by the Dutch Technology Foundation STW, applied science division of NWO and the Technology Program of the Ministry of Economic Affairs. The authors further thank ESA-ESTEC for providing part of the RF-equipment. The research is also part of the strategic research orientation Applied Nanophotonics within the MESA+ Research Institute.

References and links

1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

3. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

4. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehard & Winston, 1976).

5. R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).

6. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgang, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).

7. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).

8. H. Caglayan, I. Bulu, and E. Ozbay, “Highly directional enhanced radiation from sources embedded inside three-dimensional photonic crystals,” Opt. Express 13, 7645–7652 (2005).

9. A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, and V. Sandoghdar, “Spontaneous emission in the near-field of two-dimensional photonic crystals,” Opt. Lett. 30, 3210–3212 (2005).

10. A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21, 3526–3530 (2009).

11. L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327, 1352–1355 (2010).

12. M. R. Jorgensen, J. W. Galusha, and M. H. Bart, “Strongly modified spontaneous emission rates in Diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).

13. M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).

14. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).

15. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

16. H.- G. Park, S. - H. Kim, S. - H. Kwon, Y. - G. Ju, J. - K. Yang, J. - H. Baek, S. - B. Kim, and Y. - H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).

17. H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nature Phys. 2, 484–488 (2006).

18. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15, 7506–7514 (2007).

19. P. J. M. van der Slot, T. Denis, and K. - J. Boller, “The photonic FEL: toward a handheld THz FEL,” in Proc. of the FEL 2008, V. Schaa, ed. (JACoW, 2008), pp. 231–234.

20. H. K. Park, J. R. Oh, and Y. R. Do, “2D SiNx photonic crystal coated Y3Al5O12 : Ce3+ ceramic plate phosphor for high-power white light-emitting diodes,” Opt. Express 19, 25593–25601 (2011).

21. M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).

22. D. - H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).

23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

24. A. F. Koenderink and W. L. Vos, “Optical properties of real photonic crystals: anomalous diffuse transmission,” J. Opt. Soc. Am. B 22, 1075–1084 (2005).

25. D. Englund and J. Vuckovic, “Direct analysis of photonic nanostructures,” Opt. Express , 14, 3472–3483 (2006).

26. U. K. Khankhoje, S. - H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21, 065202 (2010).

27. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time” Science 294, 1080–1082 (2001).

28. S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).

29. L. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, “Near-field scanning optical microscopy of photonic crystal nanocavities,” Appl. Phys. Lett. 82, 1676–1678 (2003).

30. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width” Phys. Rev. Lett. 92, 113903 (2004).

31. H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).

32. M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14, 1643–1657 (2006).

33. S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).

34. J. Dahdah, M. Pilar-Bernal, N. Courjal, G. Ulliac, and F. Baida, “Near-field observations of light confinement in a two dimensional lithium niobate photonic crystal cavity,” J. Appl. Phys. 110, 074318 (2011).

35. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

36. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15, 11781–11789 (2007).

37. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).

38. E. Flück, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).

39. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).

40. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J. - J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).

41. P. J. Valle, J. - J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648–656 (1999).

42. K. D. Weston and S. K. Buratto, “A reflection near-field scanning optical microscope technique for subwavelength resolution imaging of thin organic films,” J. Phys. Chem. B 101, 5684–5691 (1997).

43. D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, “Optical-force-induced artifacts in scanning probe microscopy,” Opt. Lett. 36, 4758–4760 (2011).

44. M. Labardi, S. Patane, and M. Allegrini, “Artifact-free near-field optical imaging by apertureless microscopy,” Appl. Phys. Lett. 77, 621–623 (2000).

45. M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).

46. L. C. Maier, Field Strength Measurements in Resonant Cavities (Massachusetts Institute of Technology, 1949).

47. L. C. Maier and J. C. Slater, “Field strength measurements in resonant cavities,” J. Appl. Phys., 23, 68–77 (1952).

48. C. C. Johnson, Field and Wave Electrodynamics (McGraw-Hill, 1965).

49. R. A. Marsh, M. A. Shapiro, R. J. Temkin, V. A. Dolgashev, L. L. Laurent, J. R. Lewandowski, A. D. Yeremian, and S. G. Tantawi, “X-band photonic band-gap accelerator structure breakdown experiment,” Phys. Rev. STAB 14, 021301 (2011).

50. T. Denis, P. J. M. van der Slot, and K. - J. Boller, “Experimental design of a single beam photonic free-electron laser,” in Proc. of the FEL 2009, S. Waller, ed. (JACoW, 2009), pp. 431–434.

51. Concerto V7.5, Cobham Ltd., UK, http://www.cobham.com

52. B. Guru and H. Hiziroglu, Electromagnetc Field Theory and Fundamentals (PWS Publishing Company, 1997).

53. H. Guo, Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. Granatstein, “A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits,” IEEE Trans. Microwave Theory Tech. 40, 2086–2094 (1992).

54. M. Kageshima, H. Jensenius, M. Dienwiebel, Y. Nakayama, H. Tokumoto, S. P. Jarvis, and T. H. Oosterkamp, “Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe,” Appl. Surf. Sci. 188, 440–444 (2002).

55. M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).

References

  • View by:
  • |
  • |
  • |

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  3. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  4. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehard & Winston, 1976).
  5. R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
  6. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgang, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
  7. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
  8. H. Caglayan, I. Bulu, and E. Ozbay, “Highly directional enhanced radiation from sources embedded inside three-dimensional photonic crystals,” Opt. Express 13, 7645–7652 (2005).
  9. A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, and V. Sandoghdar, “Spontaneous emission in the near-field of two-dimensional photonic crystals,” Opt. Lett. 30, 3210–3212 (2005).
  10. A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21, 3526–3530 (2009).
  11. L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327, 1352–1355 (2010).
  12. M. R. Jorgensen, J. W. Galusha, and M. H. Bart, “Strongly modified spontaneous emission rates in Diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).
  13. M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
  14. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
  15. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
  16. H.- G. Park, S. - H. Kim, S. - H. Kwon, Y. - G. Ju, J. - K. Yang, J. - H. Baek, S. - B. Kim, and Y. - H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
  17. H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nature Phys. 2, 484–488 (2006).
  18. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15, 7506–7514 (2007).
  19. P. J. M. van der Slot, T. Denis, and K. - J. Boller, “The photonic FEL: toward a handheld THz FEL,” in Proc. of the FEL 2008, V. Schaa, ed. (JACoW, 2008), pp. 231–234.
  20. H. K. Park, J. R. Oh, and Y. R. Do, “2D SiNx photonic crystal coated Y3Al5O12 : Ce3+ ceramic plate phosphor for high-power white light-emitting diodes,” Opt. Express 19, 25593–25601 (2011).
  21. M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
  22. D. - H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
  24. A. F. Koenderink and W. L. Vos, “Optical properties of real photonic crystals: anomalous diffuse transmission,” J. Opt. Soc. Am. B 22, 1075–1084 (2005).
  25. D. Englund and J. Vuckovic, “Direct analysis of photonic nanostructures,” Opt. Express,  14, 3472–3483 (2006).
  26. U. K. Khankhoje, S. - H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21, 065202 (2010).
  27. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time” Science 294, 1080–1082 (2001).
  28. S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
  29. L. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, “Near-field scanning optical microscopy of photonic crystal nanocavities,” Appl. Phys. Lett. 82, 1676–1678 (2003).
  30. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width” Phys. Rev. Lett. 92, 113903 (2004).
  31. H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).
  32. M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14, 1643–1657 (2006).
  33. S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
  34. J. Dahdah, M. Pilar-Bernal, N. Courjal, G. Ulliac, and F. Baida, “Near-field observations of light confinement in a two dimensional lithium niobate photonic crystal cavity,” J. Appl. Phys. 110, 074318 (2011).
  35. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).
  36. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15, 11781–11789 (2007).
  37. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
  38. E. Flück, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).
  39. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
  40. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J. - J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
  41. P. J. Valle, J. - J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648–656 (1999).
  42. K. D. Weston and S. K. Buratto, “A reflection near-field scanning optical microscope technique for subwavelength resolution imaging of thin organic films,” J. Phys. Chem. B 101, 5684–5691 (1997).
  43. D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, “Optical-force-induced artifacts in scanning probe microscopy,” Opt. Lett. 36, 4758–4760 (2011).
  44. M. Labardi, S. Patane, and M. Allegrini, “Artifact-free near-field optical imaging by apertureless microscopy,” Appl. Phys. Lett. 77, 621–623 (2000).
  45. M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
  46. L. C. Maier, Field Strength Measurements in Resonant Cavities (Massachusetts Institute of Technology, 1949).
  47. L. C. Maier and J. C. Slater, “Field strength measurements in resonant cavities,” J. Appl. Phys., 23, 68–77 (1952).
  48. C. C. Johnson, Field and Wave Electrodynamics (McGraw-Hill, 1965).
  49. R. A. Marsh, M. A. Shapiro, R. J. Temkin, V. A. Dolgashev, L. L. Laurent, J. R. Lewandowski, A. D. Yeremian, and S. G. Tantawi, “X-band photonic band-gap accelerator structure breakdown experiment,” Phys. Rev. STAB 14, 021301 (2011).
  50. T. Denis, P. J. M. van der Slot, and K. - J. Boller, “Experimental design of a single beam photonic free-electron laser,” in Proc. of the FEL 2009, S. Waller, ed. (JACoW, 2009), pp. 431–434.
  51. Concerto V7.5, Cobham Ltd., UK, http://www.cobham.com
  52. B. Guru and H. Hiziroglu, Electromagnetc Field Theory and Fundamentals (PWS Publishing Company, 1997).
  53. H. Guo, Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. Granatstein, “A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits,” IEEE Trans. Microwave Theory Tech. 40, 2086–2094 (1992).
  54. M. Kageshima, H. Jensenius, M. Dienwiebel, Y. Nakayama, H. Tokumoto, S. P. Jarvis, and T. H. Oosterkamp, “Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe,” Appl. Surf. Sci. 188, 440–444 (2002).
  55. M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).

2012 (1)

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).

2011 (7)

J. Dahdah, M. Pilar-Bernal, N. Courjal, G. Ulliac, and F. Baida, “Near-field observations of light confinement in a two dimensional lithium niobate photonic crystal cavity,” J. Appl. Phys. 110, 074318 (2011).

M. R. Jorgensen, J. W. Galusha, and M. H. Bart, “Strongly modified spontaneous emission rates in Diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).

R. A. Marsh, M. A. Shapiro, R. J. Temkin, V. A. Dolgashev, L. L. Laurent, J. R. Lewandowski, A. D. Yeremian, and S. G. Tantawi, “X-band photonic band-gap accelerator structure breakdown experiment,” Phys. Rev. STAB 14, 021301 (2011).

H. K. Park, J. R. Oh, and Y. R. Do, “2D SiNx photonic crystal coated Y3Al5O12 : Ce3+ ceramic plate phosphor for high-power white light-emitting diodes,” Opt. Express 19, 25593–25601 (2011).

D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, “Optical-force-induced artifacts in scanning probe microscopy,” Opt. Lett. 36, 4758–4760 (2011).

2010 (4)

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327, 1352–1355 (2010).

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

U. K. Khankhoje, S. - H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21, 065202 (2010).

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).

2009 (3)

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).

D. - H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).

A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21, 3526–3530 (2009).

2007 (4)

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15, 7506–7514 (2007).

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15, 11781–11789 (2007).

2006 (4)

M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14, 1643–1657 (2006).

D. Englund and J. Vuckovic, “Direct analysis of photonic nanostructures,” Opt. Express,  14, 3472–3483 (2006).

H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nature Phys. 2, 484–488 (2006).

2005 (4)

2004 (4)

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgang, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).

H.- G. Park, S. - H. Kim, S. - H. Kwon, Y. - G. Ju, J. - K. Yang, J. - H. Baek, S. - B. Kim, and Y. - H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width” Phys. Rev. Lett. 92, 113903 (2004).

2003 (2)

L. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, “Near-field scanning optical microscopy of photonic crystal nanocavities,” Appl. Phys. Lett. 82, 1676–1678 (2003).

E. Flück, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).

2002 (2)

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).

M. Kageshima, H. Jensenius, M. Dienwiebel, Y. Nakayama, H. Tokumoto, S. P. Jarvis, and T. H. Oosterkamp, “Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe,” Appl. Surf. Sci. 188, 440–444 (2002).

2001 (1)

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time” Science 294, 1080–1082 (2001).

2000 (1)

M. Labardi, S. Patane, and M. Allegrini, “Artifact-free near-field optical imaging by apertureless microscopy,” Appl. Phys. Lett. 77, 621–623 (2000).

1999 (2)

P. J. Valle, J. - J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648–656 (1999).

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

1997 (3)

K. D. Weston and S. K. Buratto, “A reflection near-field scanning optical microscope technique for subwavelength resolution imaging of thin organic films,” J. Phys. Chem. B 101, 5684–5691 (1997).

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J. - J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).

1996 (1)

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).

1992 (1)

H. Guo, Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. Granatstein, “A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits,” IEEE Trans. Microwave Theory Tech. 40, 2086–2094 (1992).

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

1952 (1)

L. C. Maier and J. C. Slater, “Field strength measurements in resonant cavities,” J. Appl. Phys., 23, 68–77 (1952).

Abashin, M.

Abe, D. K.

H. Guo, Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. Granatstein, “A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits,” IEEE Trans. Microwave Theory Tech. 40, 2086–2094 (1992).

Adam, A. J. L.

Agio, M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width” Phys. Rev. Lett. 92, 113903 (2004).

Aizpurua, J.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).

Alkorta, J.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).

Allegrini, M.

M. Labardi, S. Patane, and M. Allegrini, “Artifact-free near-field optical imaging by apertureless microscopy,” Appl. Phys. Lett. 77, 621–623 (2000).

Altug, H.

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nature Phys. 2, 484–488 (2006).

Arentoft, J.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).

Asano, T.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehard & Winston, 1976).

Baba, T.

Baek, J. - H.

H.- G. Park, S. - H. Kim, S. - H. Kwon, Y. - G. Ju, J. - K. Yang, J. - H. Baek, S. - B. Kim, and Y. - H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).

Baida, F.

J. Dahdah, M. Pilar-Bernal, N. Courjal, G. Ulliac, and F. Baida, “Near-field observations of light confinement in a two dimensional lithium niobate photonic crystal cavity,” J. Appl. Phys. 110, 074318 (2011).

Balet, L.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).

Balistreri, M. L. M.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time” Science 294, 1080–1082 (2001).

Bart, M. H.

M. R. Jorgensen, J. W. Galusha, and M. H. Bart, “Strongly modified spontaneous emission rates in Diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

Bielefeldt, H.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).

Birner, A.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width” Phys. Rev. Lett. 92, 113903 (2004).

Boller, K. - J.

P. J. M. van der Slot, T. Denis, and K. - J. Boller, “The photonic FEL: toward a handheld THz FEL,” in Proc. of the FEL 2008, V. Schaa, ed. (JACoW, 2008), pp. 231–234.

T. Denis, P. J. M. van der Slot, and K. - J. Boller, “Experimental design of a single beam photonic free-electron laser,” in Proc. of the FEL 2009, S. Waller, ed. (JACoW, 2009), pp. 431–434.

Boltasseva, A.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).

Bromborsky, A.

H. Guo, Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. Granatstein, “A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits,” IEEE Trans. Microwave Theory Tech. 40, 2086–2094 (1992).

Bulu, I.

Buratto, S. K.

K. D. Weston and S. K. Buratto, “A reflection near-field scanning optical microscope technique for subwavelength resolution imaging of thin organic films,” J. Phys. Chem. B 101, 5684–5691 (1997).

Caglayan, H.

Carmel, Y.

H. Guo, Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. Granatstein, “A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits,” IEEE Trans. Microwave Theory Tech. 40, 2086–2094 (1992).

Carminati, R.

P. J. Valle, J. - J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648–656 (1999).

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J. - J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).

Chen, L.

H. Guo, Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. Granatstein, “A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits,” IEEE Trans. Microwave Theory Tech. 40, 2086–2094 (1992).

Chen, Y.

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).

Cheng, B. - Y.

H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).

Choi, S. B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Choi, W. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Courjal, N.

J. Dahdah, M. Pilar-Bernal, N. Courjal, G. Ulliac, and F. Baida, “Near-field observations of light confinement in a two dimensional lithium niobate photonic crystal cavity,” J. Appl. Phys. 110, 074318 (2011).

Dahdah, J.

J. Dahdah, M. Pilar-Bernal, N. Courjal, G. Ulliac, and F. Baida, “Near-field observations of light confinement in a two dimensional lithium niobate photonic crystal cavity,” J. Appl. Phys. 110, 074318 (2011).

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

Denis, T.

T. Denis, P. J. M. van der Slot, and K. - J. Boller, “Experimental design of a single beam photonic free-electron laser,” in Proc. of the FEL 2009, S. Waller, ed. (JACoW, 2009), pp. 431–434.

P. J. M. van der Slot, T. Denis, and K. - J. Boller, “The photonic FEL: toward a handheld THz FEL,” in Proc. of the FEL 2008, V. Schaa, ed. (JACoW, 2008), pp. 231–234.

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).

DeSimone, J. M.

D. - H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).

Destler, W.

H. Guo, Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. Granatstein, “A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits,” IEEE Trans. Microwave Theory Tech. 40, 2086–2094 (1992).

Dienwiebel, M.

M. Kageshima, H. Jensenius, M. Dienwiebel, Y. Nakayama, H. Tokumoto, S. P. Jarvis, and T. H. Oosterkamp, “Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe,” Appl. Surf. Sci. 188, 440–444 (2002).

Do, Y. R.

Dogariu, A.

Dolgashev, V. A.

R. A. Marsh, M. A. Shapiro, R. J. Temkin, V. A. Dolgashev, L. L. Laurent, J. R. Lewandowski, A. D. Yeremian, and S. G. Tantawi, “X-band photonic band-gap accelerator structure breakdown experiment,” Phys. Rev. STAB 14, 021301 (2011).

Dorfmüller, J.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).

Dowling, J. P.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).

Englund, D.

D. Englund and J. Vuckovic, “Direct analysis of photonic nanostructures,” Opt. Express,  14, 3472–3483 (2006).

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nature Phys. 2, 484–488 (2006).

Esslinger, M.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).

Fainman, Y.

Feng, S.

H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).

Fiore, A.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).

Florescu, L.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).

Florescu, M.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).

Flück, E.

E. Flück, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).

Francardi, M.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).

Frimmer, M.

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).

Fujita, M.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).

Galusha, J. W.

M. R. Jorgensen, J. W. Galusha, and M. H. Bart, “Strongly modified spontaneous emission rates in Diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).

Garcia, P. D.

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327, 1352–1355 (2010).

Garcia-Etxarri, A.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).

Gerardino, A.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).

Gersen, H.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time” Science 294, 1080–1082 (2001).

Gibbs, H. M.

U. K. Khankhoje, S. - H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21, 065202 (2010).

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).

Gogna, P.

L. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, “Near-field scanning optical microscopy of photonic crystal nanocavities,” Appl. Phys. Lett. 82, 1676–1678 (2003).

Gösele, U.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width” Phys. Rev. Lett. 92, 113903 (2004).

Granatstein, V.

H. Guo, Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. Granatstein, “A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits,” IEEE Trans. Microwave Theory Tech. 40, 2086–2094 (1992).

Greffet, J. - J.

P. J. Valle, J. - J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648–656 (1999).

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J. - J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).

Gu, M.

A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21, 3526–3530 (2009).

Guo, H.

H. Guo, Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. Granatstein, “A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits,” IEEE Trans. Microwave Theory Tech. 40, 2086–2094 (1992).

Gurioli, M.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).

Guru, B.

B. Guru and H. Hiziroglu, Electromagnetc Field Theory and Fundamentals (PWS Publishing Company, 1997).

Hecht, B.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).

Hendrickson, J.

U. K. Khankhoje, S. - H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21, 065202 (2010).

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).

Herzig, H.

Hillenbrand, R.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).

Hiziroglu, H.

B. Guru and H. Hiziroglu, Electromagnetc Field Theory and Fundamentals (PWS Publishing Company, 1997).

Huisman, S. R.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

Inouye, Y.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).

Intonti, F.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).

Irman, A.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgang, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).

Jaque, D.

A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21, 3526–3530 (2009).

Jarvis, S. P.

M. Kageshima, H. Jensenius, M. Dienwiebel, Y. Nakayama, H. Tokumoto, S. P. Jarvis, and T. H. Oosterkamp, “Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe,” Appl. Surf. Sci. 188, 440–444 (2002).

Jensenius, H.

M. Kageshima, H. Jensenius, M. Dienwiebel, Y. Nakayama, H. Tokumoto, S. P. Jarvis, and T. H. Oosterkamp, “Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe,” Appl. Surf. Sci. 188, 440–444 (2002).

Jeoung, S. C.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

Johnson, C. C.

C. C. Johnson, Field and Wave Electrodynamics (McGraw-Hill, 1965).

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

Jorgensen, M. R.

M. R. Jorgensen, J. W. Galusha, and M. H. Bart, “Strongly modified spontaneous emission rates in Diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).

Ju, Y. - G.

H.- G. Park, S. - H. Kim, S. - H. Kwon, Y. - G. Ju, J. - K. Yang, J. - H. Baek, S. - B. Kim, and Y. - H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).

Kafesaki, M.

Kageshima, M.

M. Kageshima, H. Jensenius, M. Dienwiebel, Y. Nakayama, H. Tokumoto, S. P. Jarvis, and T. H. Oosterkamp, “Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe,” Appl. Surf. Sci. 188, 440–444 (2002).

Kang, J. H.

Kern, K.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).

Khankhoje, U. K.

U. K. Khankhoje, S. - H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21, 065202 (2010).

Khitrova, G.

U. K. Khankhoje, S. - H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21, 065202 (2010).

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).

Khunsin, W.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).

Kihm, H. W.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Kihm, J. E.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Kim, D. S.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15, 11781–11789 (2007).

Kim, H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

Kim, J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Kim, S. - B.

H.- G. Park, S. - H. Kim, S. - H. Kwon, Y. - G. Ju, J. - K. Yang, J. - H. Baek, S. - B. Kim, and Y. - H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).

Kim, S. - H.

U. K. Khankhoje, S. - H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21, 065202 (2010).

H.- G. Park, S. - H. Kim, S. - H. Kwon, Y. - G. Ju, J. - K. Yang, J. - H. Baek, S. - B. Kim, and Y. - H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).

Kita, S.

Ko, D. - H.

D. - H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).

Koenderink, A. F.

Kohlgraf-Owens, D. C.

Korterik, J. P.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time” Science 294, 1080–1082 (2001).

Kramper, P.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width” Phys. Rev. Lett. 92, 113903 (2004).

Kristensen, M.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).

Kuipers, L.

E. Flück, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time” Science 294, 1080–1082 (2001).

Kwon, S. - H.

H.- G. Park, S. - H. Kim, S. - H. Kwon, Y. - G. Ju, J. - K. Yang, J. - H. Baek, S. - B. Kim, and Y. - H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).

Labardi, M.

M. Labardi, S. Patane, and M. Allegrini, “Artifact-free near-field optical imaging by apertureless microscopy,” Appl. Phys. Lett. 77, 621–623 (2000).

Lagendijk, A.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).

Laurent, L. L.

R. A. Marsh, M. A. Shapiro, R. J. Temkin, V. A. Dolgashev, L. L. Laurent, J. R. Lewandowski, A. D. Yeremian, and S. G. Tantawi, “X-band photonic band-gap accelerator structure breakdown experiment,” Phys. Rev. STAB 14, 021301 (2011).

Lee, B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Lee, H.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).

Lee, J. W.

Lee, K. G.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

Lee, Y. - H.

H.- G. Park, S. - H. Kim, S. - H. Kwon, Y. - G. Ju, J. - K. Yang, J. - H. Baek, S. - B. Kim, and Y. - H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).

Leistikow, M. D.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).

Levy, U.

Lewandowski, J. R.

R. A. Marsh, M. A. Shapiro, R. J. Temkin, V. A. Dolgashev, L. L. Laurent, J. R. Lewandowski, A. D. Yeremian, and S. G. Tantawi, “X-band photonic band-gap accelerator structure breakdown experiment,” Phys. Rev. STAB 14, 021301 (2011).

Li, L. H.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).

Li, Z. - Y.

H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).

Lienau, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Liu, R. - J.

H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).

Liu, Y. - Z.

H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).

Lodahl, P.

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327, 1352–1355 (2010).

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgang, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).

Loncar, M.

L. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, “Near-field scanning optical microscopy of photonic crystal nanocavities,” Appl. Phys. Lett. 82, 1676–1678 (2003).

Lopez, R.

D. - H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).

Lou, W. R.

H. Guo, Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. Granatstein, “A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits,” IEEE Trans. Microwave Theory Tech. 40, 2086–2094 (1992).

Ma, H. - Q.

H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).

Madrazo, A.

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J. - J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).

Maier, L. C.

L. C. Maier and J. C. Slater, “Field strength measurements in resonant cavities,” J. Appl. Phys., 23, 68–77 (1952).

L. C. Maier, Field Strength Measurements in Resonant Cavities (Massachusetts Institute of Technology, 1949).

Märki, I.

Marsh, R. A.

R. A. Marsh, M. A. Shapiro, R. J. Temkin, V. A. Dolgashev, L. L. Laurent, J. R. Lewandowski, A. D. Yeremian, and S. G. Tantawi, “X-band photonic band-gap accelerator structure breakdown experiment,” Phys. Rev. STAB 14, 021301 (2011).

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehard & Winston, 1976).

Mosk, A. P.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).

Müller, F.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width” Phys. Rev. Lett. 92, 113903 (2004).

Nakagawa, W.

Nakayama, Y.

M. Kageshima, H. Jensenius, M. Dienwiebel, Y. Nakayama, H. Tokumoto, S. P. Jarvis, and T. H. Oosterkamp, “Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe,” Appl. Surf. Sci. 188, 440–444 (2002).

Nieto-Vesperinas, M.

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J. - J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).

Nikolaev, I. S.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgang, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).

Noda, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).

Novotny, L.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).

Nozaki, K.

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

Oh, J. R.

Okamoto, L.

L. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, “Near-field scanning optical microscopy of photonic crystal nanocavities,” Appl. Phys. Lett. 82, 1676–1678 (2003).

Olitzky, J. D.

U. K. Khankhoje, S. - H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21, 065202 (2010).

Oosterkamp, T. H.

M. Kageshima, H. Jensenius, M. Dienwiebel, Y. Nakayama, H. Tokumoto, S. P. Jarvis, and T. H. Oosterkamp, “Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe,” Appl. Surf. Sci. 188, 440–444 (2002).

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

Overgang, K.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgang, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).

Ozbay, E.

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

Park, D. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Park, H.- G.

H.- G. Park, S. - H. Kim, S. - H. Kwon, Y. - G. Ju, J. - K. Yang, J. - H. Baek, S. - B. Kim, and Y. - H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).

Park, H. K.

Park, Q. H.

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15, 11781–11789 (2007).

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Patane, S.

M. Labardi, S. Patane, and M. Allegrini, “Artifact-free near-field optical imaging by apertureless microscopy,” Appl. Phys. Lett. 77, 621–623 (2000).

Pilar-Bernal, M.

J. Dahdah, M. Pilar-Bernal, N. Courjal, G. Ulliac, and F. Baida, “Near-field observations of light confinement in a two dimensional lithium niobate photonic crystal cavity,” J. Appl. Phys. 110, 074318 (2011).

Planken, P. C. M.

Pohl, D. W.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).

Pralle, M.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).

Puscasu, I.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).

Qiu, Y.

L. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, “Near-field scanning optical microscopy of photonic crystal nanocavities,” Appl. Phys. Lett. 82, 1676–1678 (2003).

Ren, C.

H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).

Riboli, F.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).

Richards, B. C.

U. K. Khankhoje, S. - H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21, 065202 (2010).

Rodenas, A.

A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21, 3526–3530 (2009).

Rodgers, J.

H. Guo, Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. Granatstein, “A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits,” IEEE Trans. Microwave Theory Tech. 40, 2086–2094 (1992).

Ropers, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).

Samulski, E. T.

D. - H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).

Sandoghdar, V.

A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, and V. Sandoghdar, “Spontaneous emission in the near-field of two-dimensional photonic crystals,” Opt. Lett. 30, 3210–3212 (2005).

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width” Phys. Rev. Lett. 92, 113903 (2004).

Sapienza, L.

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327, 1352–1355 (2010).

Scherer, A.

U. K. Khankhoje, S. - H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21, 065202 (2010).

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).

L. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, “Near-field scanning optical microscopy of photonic crystal nanocavities,” Appl. Phys. Lett. 82, 1676–1678 (2003).

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

Schnell, M.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).

Seo, M. A.

Shapiro, M. A.

R. A. Marsh, M. A. Shapiro, R. J. Temkin, V. A. Dolgashev, L. L. Laurent, J. R. Lewandowski, A. D. Yeremian, and S. G. Tantawi, “X-band photonic band-gap accelerator structure breakdown experiment,” Phys. Rev. STAB 14, 021301 (2011).

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).

Slater, J. C.

L. C. Maier and J. C. Slater, “Field strength measurements in resonant cavities,” J. Appl. Phys., 23, 68–77 (1952).

Smolka, S.

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327, 1352–1355 (2010).

Sondergaard, T.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).

Soukoulis, C. M.

A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, and V. Sandoghdar, “Spontaneous emission in the near-field of two-dimensional photonic crystals,” Opt. Lett. 30, 3210–3212 (2005).

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width” Phys. Rev. Lett. 92, 113903 (2004).

Sprik, R.

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).

Stobbe, S.

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327, 1352–1355 (2010).

Sukhov, S.

Sweet, J.

U. K. Khankhoje, S. - H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21, 065202 (2010).

Takahashi, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).

Tanaka, Y.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).

Tantawi, S. G.

R. A. Marsh, M. A. Shapiro, R. J. Temkin, V. A. Dolgashev, L. L. Laurent, J. R. Lewandowski, A. D. Yeremian, and S. G. Tantawi, “X-band photonic band-gap accelerator structure breakdown experiment,” Phys. Rev. STAB 14, 021301 (2011).

Tao, H. - H.

H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).

Temkin, R. J.

R. A. Marsh, M. A. Shapiro, R. J. Temkin, V. A. Dolgashev, L. L. Laurent, J. R. Lewandowski, A. D. Yeremian, and S. G. Tantawi, “X-band photonic band-gap accelerator structure breakdown experiment,” Phys. Rev. STAB 14, 021301 (2011).

Thyrrestrup, H.

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327, 1352–1355 (2010).

Ting, D. Z.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).

Tokumoto, H.

M. Kageshima, H. Jensenius, M. Dienwiebel, Y. Nakayama, H. Tokumoto, S. P. Jarvis, and T. H. Oosterkamp, “Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe,” Appl. Surf. Sci. 188, 440–444 (2002).

Tortora, P.

Tumbleston, J. R.

D. - H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).

Ulliac, G.

J. Dahdah, M. Pilar-Bernal, N. Courjal, G. Ulliac, and F. Baida, “Near-field observations of light confinement in a two dimensional lithium niobate photonic crystal cavity,” J. Appl. Phys. 110, 074318 (2011).

Vaccaro, L.

Valle, P. J.

P. J. Valle, J. - J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648–656 (1999).

van der Slot, P. J. M.

P. J. M. van der Slot, T. Denis, and K. - J. Boller, “The photonic FEL: toward a handheld THz FEL,” in Proc. of the FEL 2008, V. Schaa, ed. (JACoW, 2008), pp. 231–234.

T. Denis, P. J. M. van der Slot, and K. - J. Boller, “Experimental design of a single beam photonic free-electron laser,” in Proc. of the FEL 2009, S. Waller, ed. (JACoW, 2009), pp. 431–434.

van Driel, A. F.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgang, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).

van Hulst, N. F.

E. Flück, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time” Science 294, 1080–1082 (2001).

van Tiggelen, B. A.

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).

Vanmaekelbergh, D.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgang, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).

Vignolini, S.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).

Vogelgesang, R.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).

Vos, W. L.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).

A. F. Koenderink and W. L. Vos, “Optical properties of real photonic crystals: anomalous diffuse transmission,” J. Opt. Soc. Am. B 22, 1075–1084 (2005).

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgang, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).

E. Flück, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).

Vuckovic, J.

D. Englund and J. Vuckovic, “Direct analysis of photonic nanostructures,” Opt. Express,  14, 3472–3483 (2006).

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nature Phys. 2, 484–488 (2006).

Wehrspohn, R. B.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width” Phys. Rev. Lett. 92, 113903 (2004).

Weston, K. D.

K. D. Weston and S. K. Buratto, “A reflection near-field scanning optical microscope technique for subwavelength resolution imaging of thin organic films,” J. Phys. Chem. B 101, 5684–5691 (1997).

Wiersma, D. S.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).

Williams, S.

D. - H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

Woo, D. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Wu, L. - A.

H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

Yang, J. - K.

H.- G. Park, S. - H. Kim, S. - H. Kwon, Y. - G. Ju, J. - K. Yang, J. - H. Baek, S. - B. Kim, and Y. - H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

Yeganegi, E.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).

Yeremian, A. D.

R. A. Marsh, M. A. Shapiro, R. J. Temkin, V. A. Dolgashev, L. L. Laurent, J. R. Lewandowski, A. D. Yeremian, and S. G. Tantawi, “X-band photonic band-gap accelerator structure breakdown experiment,” Phys. Rev. STAB 14, 021301 (2011).

Yoon, Y. C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).

L. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, “Near-field scanning optical microscopy of photonic crystal nanocavities,” Appl. Phys. Lett. 82, 1676–1678 (2003).

Zhang, D. - Z.

H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).

Zhang, L.

D. - H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).

Zhang, Z. - B.

H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).

Zhou, G.

A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21, 3526–3530 (2009).

Adv. Mater. (1)

A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21, 3526–3530 (2009).

Appl. Phys. Lett. (3)

L. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, “Near-field scanning optical microscopy of photonic crystal nanocavities,” Appl. Phys. Lett. 82, 1676–1678 (2003).

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).

M. Labardi, S. Patane, and M. Allegrini, “Artifact-free near-field optical imaging by apertureless microscopy,” Appl. Phys. Lett. 77, 621–623 (2000).

Appl. Surf. Sci. (1)

M. Kageshima, H. Jensenius, M. Dienwiebel, Y. Nakayama, H. Tokumoto, S. P. Jarvis, and T. H. Oosterkamp, “Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe,” Appl. Surf. Sci. 188, 440–444 (2002).

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

Europhys. Lett. (1)

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).

IEEE Trans. Microwave Theory Tech. (1)

H. Guo, Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. Granatstein, “A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits,” IEEE Trans. Microwave Theory Tech. 40, 2086–2094 (1992).

J. Appl. Phys. (4)

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J. - J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).

P. J. Valle, J. - J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648–656 (1999).

J. Dahdah, M. Pilar-Bernal, N. Courjal, G. Ulliac, and F. Baida, “Near-field observations of light confinement in a two dimensional lithium niobate photonic crystal cavity,” J. Appl. Phys. 110, 074318 (2011).

J. Appl. Phys., (1)

L. C. Maier and J. C. Slater, “Field strength measurements in resonant cavities,” J. Appl. Phys., 23, 68–77 (1952).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

K. D. Weston and S. K. Buratto, “A reflection near-field scanning optical microscope technique for subwavelength resolution imaging of thin organic films,” J. Phys. Chem. B 101, 5684–5691 (1997).

Nano Lett. (2)

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).

D. - H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).

Nanotechnology (1)

U. K. Khankhoje, S. - H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21, 065202 (2010).

Nat. Photonics (1)

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).

Nature (2)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgang, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).

Nature Phys. (1)

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nature Phys. 2, 484–488 (2006).

Opt. Commun. (1)

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. B (1)

H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006).

Phys. Rev. E (1)

E. Flück, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).

Phys. Rev. Lett. (6)

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width” Phys. Rev. Lett. 92, 113903 (2004).

M. R. Jorgensen, J. W. Galusha, and M. H. Bart, “Strongly modified spontaneous emission rates in Diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).

Phys. Rev. STAB (1)

R. A. Marsh, M. A. Shapiro, R. J. Temkin, V. A. Dolgashev, L. L. Laurent, J. R. Lewandowski, A. D. Yeremian, and S. G. Tantawi, “X-band photonic band-gap accelerator structure breakdown experiment,” Phys. Rev. STAB 14, 021301 (2011).

Rev. Sci. Instrum. (1)

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).

Science (5)

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327, 1352–1355 (2010).

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

H.- G. Park, S. - H. Kim, S. - H. Kwon, Y. - G. Ju, J. - K. Yang, J. - H. Baek, S. - B. Kim, and Y. - H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time” Science 294, 1080–1082 (2001).

Sol. Energy Mater. Sol. Cells (1)

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).

Other (8)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehard & Winston, 1976).

L. C. Maier, Field Strength Measurements in Resonant Cavities (Massachusetts Institute of Technology, 1949).

C. C. Johnson, Field and Wave Electrodynamics (McGraw-Hill, 1965).

T. Denis, P. J. M. van der Slot, and K. - J. Boller, “Experimental design of a single beam photonic free-electron laser,” in Proc. of the FEL 2009, S. Waller, ed. (JACoW, 2009), pp. 431–434.

Concerto V7.5, Cobham Ltd., UK, http://www.cobham.com

B. Guru and H. Hiziroglu, Electromagnetc Field Theory and Fundamentals (PWS Publishing Company, 1997).

P. J. M. van der Slot, T. Denis, and K. - J. Boller, “The photonic FEL: toward a handheld THz FEL,” in Proc. of the FEL 2008, V. Schaa, ed. (JACoW, 2008), pp. 231–234.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic three-dimensional view of the photonic crystal slab indicating the defining geometry parameters. Metallic rods are placed inside a rectangular metallic waveguide. The dashed line indicates the size of the supercell. (b) Calculated band structure of the photonic crystal slab showing the four lowest TE-like modes having a non-zero Ez component of the electric field.

Fig. 2
Fig. 2

Transverse Ez-eigenmode patterns of the photonic crystal slab for mode 1 and mode 2 at two cross sections (xy-plane) inside the unit cell. First, through the first row of rods (at z = 0.5az, (a) and (b)). Second, at a cross section through the empty part of the waveguide (at z = 2.5az, (c) and (d)). The normalized wave number for both patterns is kzaz,eff = 0 and the corresponding normalized frequency for (a) is 0.61 and for (b) 0.71.

Fig. 3
Fig. 3

Schematic view of the setup to measure the electromagnetic field inside the photonic crystal slab by a scatterer. The Fig. shows a cross section through the photonic crystal slab at y = 0. The photonic crystal slab is sandwiched between two aluminum mirrors (bold black). The input and output antennas are mounted at the center of both mirrors. To map the Ez field component along the x-direction a spherical metallic scatterer, which is mounted on a string, can be moved throughout the photonic crystal slab.

Fig. 4
Fig. 4

Transmission and reflection spectrum of the photonic crystal slab without a scatterer between 8.0 GHz and 13.5 GHz. The peaks correspond to the various longitudinal modes for each transverse mode.

Fig. 5
Fig. 5

(a) Zoom into transmission and reflection spectrum of the photonic crystal slab depicted in Fig. 4. The spectra clearly show the different longitudinal modes for transverse mode 1. The labeling depicts the number of anti-nodes, m, along the propagation direction. (b) Measured band structure of the photonic crystal slab for the four lowest frequency TE-like eigenmodes (symbols) compared to the calculated values from Fig. 1(b)

Fig. 6
Fig. 6

Measured frequency shift Δν induced by placing the spherical scatterer at that location for mode 1 at a longitudinal resonance frequencies of ν = 8.16GHz (a) and ν = 8.42GHz (b). The corresponding wave number is k z a z , eff = 1 15 π and k z a z , eff = 6 15 π, respectively. The resulting electric field component Ez calculated from the measured frequency shift shown in (a) and (b) is shown in (c) and (d), respectively. The measured electric field component Ez (symbols) is compared to the calculated electric field (lines).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ ν ( r ) = 1 2 μ 0 H ( r ) 2 ε 0 E ( r ) 2 U π R 3 ν 0
Δ ν ( r ) ε 0 E z ( r ) 2 U π R 3 ν 0
E z ( r ) = Δ ν ( r ) U π R 3 ε 0 ν 0 .
δ ϕ = n a z , eff k z = m π m = 1 , 2
0 < a z , eff k z = m n π π .
Q = 2 π ν 0 U P diss .
E z ( r ) = 12 Δ ν ( r ) ν 0 1 π l 3 ln ( 1 + 1 ( d / l ) 2 ) ln ( 1 1 ( d / l ) 2 ) 2 1 ( d / l ) 2 ( 1 ( d / l ) 2 ) 3 / 2

Metrics