Abstract

Residual stresses inside optical fibers can impact significantly on Brillouin spectrum properties. We have analyzed the importance of internal stresses on the Brillouin Gain Spectrum (BGS) for a conventional G.652 fiber and compared modeling results to measurements. Then the residual internal stresses have been investigated for a set of trench-assisted fibers: fibers are coming from a single preform with different draw tensions. Numerical modeling based on measured internal stresses profiles are compared with corresponding BGS experimental results. Clearly, Brillouin spectrum is shifted linearly versus draw tension with a coefficient of −20MHz/100g and its linewidth increases.

© 2012 OSA

1. Introduction

Fabrication of preforms and optical fibers always generates intrinsic residual stresses. The difference of doping compositions between core and cladding results in a mismatch of thermal expansion coefficients and viscosities. Thermal internal stresses are created during the cooling from fusion temperature to room temperature. Moreover, drawing conditions can modify significantly the internal frozen-stresses [1]. These stresses introduce changes in the refractive optical index profile and the acoustic velocity profile. So, Brillouin frequency shift is modified. While the dependence of the Brillouin Gain Spectrum (BGS) with the doping composition profile is already well-known [2,3], only recently the influence of internal frozen- stresses in the BGS has been investigated [4,5].

In this paper, we propose a 2D-FEM model to predict BGS of optical fibers considering the corresponding measured frozen-stresses profiles. Optical and acoustic properties are calculated from measured doping profiles of fibers [6,7]. This model is able to predict the BGS’s behaviors of any optical fiber with mono- or multi-doping composition, considering any residual stresses profile. In order to validate the inclusion of residual stresses in our model, we consider fibers with different stresses profiles and we compare our Brillouin gain simulations to experimental measurements. We present the BGS of a conventional G.652 step-index fiber including residual internal stresses profile. Then, we analyze a set of G.657 single-trench-assisted Bend Insensitive SMFs (BI-SMF). All these fibers are coming from a single preform but are drawn with different tensions. The calculated BGS spectra show very good agreement with corresponding measurements. These results confirm the influence of internal composition and residual frozen-in stresses on the BGS properties.

2. Theoretical background and 2D-FEM model of simulation

BGS calculation requires a rigorous determination of the acoustic-optical interaction (i.e. overlap integral between optical and acoustic modes). The modeling of optical and longitudinal acoustic waves was performed, neglecting the contribution of torsional modes in the BGS [8]. The properties of the optical mode E(x,y) and the longitudinal acoustic mth-order L0m mode um(x,y)are determined by solving the 2D scalar-wave propagation Eqs. (1) and (2) respectively [6,9,10]:

Δt2E+(2πλ0)2(n2neff2)E=0
Δt2um+(Ωm2VL2βacoust2)um=0
where Δt is the transverse Laplacian operator, E(x,y) is the spatial distribution of the optical field, neff is the effective index of the fundamental LP01 optical mode, βacoust is the acoustic propagation constant, um(x,y) is the longitudinal displacement field of the L0m acoustic mode and Ωm is the acoustic Brillouin resonance angular frequency. Assuming that Ωm is much smaller than the optical frequency, the phase matching (i.e. Bragg condition) with the optical wave leads to the relation βacoust=2βopt where βopt=2πneff/λ is the propagation constant of the optical mode. The Brillouin frequency shift is then Ωm=4πneffVeff/λwhere Veffis the effective velocity of the longitudinal acoustic mode.

It is well-known that the refractive index n and the longitudinal acoustic velocity VL vary on the cross-section of the fiber according to the type and concentration of doping materials [11]. The refractive index profile is measured on optical fibers with a near-field measurement technique (EXFO NR-9200). The relative contributions of the different dopants are measured by chemical analysis on the preform. The fractional dependence for unit doping concentration on the optical and acoustic properties of pure silica is listed in Table 1 for used dopants. Propagation equations were solved using COMSOL Multiphysics, a FEM-2D commercial solver. The model and the parameters of resolution are precisely described in [6].Due to the exponential decay of acoustic wave magnitude, the spontaneous Brillouin spectrum of each acoustic mode has a Lorentzian shape. As each acoustic mode contribution adds up in an incoherent way, the BGS is then computed by adding Lorentzian curves centered at each mode’s Brillouin frequency shift νBm=Ωm/2π weighted by the acousto-optic overlap integral Imao [2] (see Eq. (3) and Eq. (4)). In this work, the full width at half maximum (FWHM), noted Γ, of Lorentzian curves is assumed to be identical for all the modes and depends of the fiber-under-test.

Tables Icon

Table 1. Influence of Doping Concentrations on Optical and Acoustic Properties of Fibers Parameters [10]

BGS(ν)=mImao(Γ/2)2(Γ/2)2+(ννBm)2
Imao=(|E|2umdxdy)2|E|4dxdy.|um|2dxdy

The residual internal stresses in an optical fiber not only induce changes in optical refractive index [12] but also modify the acoustic velocity behavior. The acoustic velocity of a homogenous and isotropic infinite material subjected to a uniaxial longitudinal stresses can be expressed as [13]:

VL=VL0(1+KLσ)
where VL0(x,y)is the longitudinal acoustic velocity profile on the fiber cross-section without stresses, σ(x,y)is the total axial stresses (both thermal and draw-induced stresses), varying on the fiber cross-section. The parameterKLis the acousto-elastic coefficient and represents the velocity variation of the acoustic wave with stresses. Second-order expression ofKL (Eq. (6)) can be found in [13]. The Lame’s constants λ(Eq. (7)) andμ(Eq. (8)) are calculated from the profiles of the stress-free longitudinal and shear wave velocities VL0and VT0 respectively.
KL=12(λ+2μ)(3λ+2μ)(λ+μμ(4λ+10μ)+λ)
λ=ρ[(VL0)22(VT0)2]
μ=ρ(VT0)2
The stress free velocities VL0and VT0are computed considering the doping composition [11] and the acoustic velocities of pure fused silica VLsilicaand VTsilica. Note, that glass material’s has been measured on used preforms in the [5940m/s - 6000m/s] range depending of the fictive temperature during the drawing process [14]. The typical value of 3750m/s has been taken for VTsilica [15]. Lame’s silica constants are typically λ = 16GPa and μ = 31GPa, that results KL = 3.4 10−11Pa−1.

The calculated BGS is compared to experimental results that have been obtained using a ~1km fiber. The BGS measurement has been performed using the well-known self-heterodyne technique [16] (see experimental set-up in Fig. 1 ). A 1560nm DFB laser is used as input signal. The heterodyne detection of both the Brillouin frequency shift back-propagated Stokes wave in the fiber-under-test and the injected input signal allows to direct measurement of the BGS. A polarization scrambler is used for polarization-insensitive measurement. The laser linewidth is of the order of 1MHz, compared to 30-40MHz for the acoustic modes, so the detected electrical spectrum corresponds directly to the spontaneous BGS.

 

Fig. 1 Experimental set-up for the measurement of Brillouin spectrum.

Download Full Size | PPT Slide | PDF

3. Validation of stresses profile impact for a step-index fiber

The 2D-FEM model including stress dependence has been validated on a conventional G.652 step-index fiber sample drawn at a typical 90g tension. The fiber consists of a GeO2-doped core fiber with a radius of 5µm and a 6% [wt%] concentration, and a pure silica cladding with radius 62.5µm. The measured index and stress profiles are given in Figs. 2(a) and Fig. 2(b) respectively.The BGS of the characterized step-index fiber has four significant L0m modes. The L01 mode is dominating because its acousto-optic overlap integralI1ao~0.9. The acousto-optic integrals are different for simulated BGS with and without stresses. We can observe a difference of 7MHz in the Brillouin frequency shifts if we don’t account for the residual stresses. Figure 3(a) plots acousto-optic overlap integralsImao.We observe that the L04 mode is not excited if we compute the BGS without stresses. Modal repartitions of L01 and L02 acoustic modes are plotted in Fig. 3(b). Clearly, the spatial distributions of acoustic modes don’t change, so the acousto-optic overlap integral values are similar as shown in Fig. 3(a). However, the Brillouin frequencies vary significantly with the stresses consideration. It can be explained by the great guiding of acoustic modes in the core where the acoustic velocity dependence with stress is almost uniform. Finally, the computed BGS is compared to the experimental result as shown in Fig. 4 . We observe a slightly different overlap integral for L02 mode between the experiments and the simulations that is probably due to index measurement sensitivity around 10−4. Even if residual stresses are not very high, their consideration make the modeling even more accurate.

 

Fig. 2 Measured G.652 profiles: (a) index profile, (b) stress profile.

Download Full Size | PPT Slide | PDF

 

Fig. 3 G.652 stress impact: (a) Acousto-optic overlap integral with or without considering residual stresses, (b) L01 and L02 modes profiles with or without taking residual stresses into account.

Download Full Size | PPT Slide | PDF

 

Fig. 4 Comparison of G.652’s BGS model with (w), without (w/o) stress and measurement.

Download Full Size | PPT Slide | PDF

4. Draw tension impact for trench-assisted profile

Single-trench-assisted BI-SMFs fibers [17] corresponding to the recent G.657 fibers designed for small bending radius applications. These properties let BI-SMFs be also interesting for sensing applications especially for distributed stress and temperature sensors based on Brillouin effect. For our knowledge, the impact of the trench to the Brillouin shift had never been evaluated. A schematic trench-assisted step index profile shape is represented in Fig. 5 .

 

Fig. 5 Trench-assisted step index structure.

Download Full Size | PPT Slide | PDF

During fabrication process, with or without applied external forces, stresses develop inside the fibers during cooling at room temperature. The draw-induced stresses are due to a difference of the viscoelastic properties in the core and the cladding respectively [18]. So the amplitude of residual stresses depends on the doping composition of fibers and the drawing tensions. In order to investigate the impact of draw-induced stresses on the BGS, we used optical fibers coming from a single preform (i.e. same doping composition and geometric parameters), with same melting point, but drawn with different tensions.

The draw tensions are going from very low values (20g, 40g) to very high values (120g, 160g). The internal stresses profiles have been measured based on a polarimetric technique [19]. The core stresses have negative values, corresponding to a compressive state, and decrease with increasing draw tensions. Acoustic velocities profiles have been calculated according to the measured index and stresses profiles.

An example of stresses impact on the BGS is plotted in Fig. 6(a) . As for the step-index G.652 fiber, the L01 mode has the most significant contribution to BGS in the trench-assisted fibers. Pure Silica used for the preform has a refractive index n = 1,444 and a velocity = 5990m/s. The BGS are plotted in Fig. 6(b) for three different tensions. A very good agreement between BGS calculation and measurements is obtained when the stresses are taken into account. Brillouin spectra are moving towards decreasing frequencies when draw tension increases, so when absolute value of core stresses increase. The evolution of L01 mode Brillouin frequency shift is plotted in Fig. 7(a) according to draw tension. The results are given with an uncertainty of 2MHz for the Brillouin frequency shifts. We have also plotted the evolution of the ratio R corresponding to core stresses values (σ(r)|r = 0), the highest draw tension (160g) is chosen as reference (Eq. (9)). We observe that in absolute value, the core stresses increase with draw tension. Due to the uncertainty in the draw tension ( ± 10g) and the difficulty of the drawing process stabilization at low tension, we have a quite significant scattering in the data. Moreover the uncertainty of stresses measurement, in the order of 1MPa, contributes to this scattering. Amplitude of the core stresses varies linearly with draw tension with a slope of (−0.48 ± 0.08)MPa/g.

 

Fig. 6 BGS comparisons: (a) Measured and simulated BGS with and without stress of fiber drawn with 90g, (b) Measured and simulated (with stress) BGS for different values of draw tension.

Download Full Size | PPT Slide | PDF

 

Fig. 7 Evolution with draw tension of: (a) Measured Brillouin frequency shift versus draw tension, (b) BGS FWHM versus draw tension.

Download Full Size | PPT Slide | PDF

R=σ(r)|r=0σ(r)|r=0160g

The obtained experimental results show that the Brillouin shift decreases with draw tension. A linear approximation give a −20MHz/100g dependence (accuracy ± 2.4MHz/100g.). Note that this value is about half the value found in [4]. This difference can be explained by the higher GeO2 concentration and the multi-doping composition of the fibers. Moreover, the BI-SMF index profiles are different from [4].

The FWHM Brillouin linewidth of L01 mode is shown in Fig. 7(b) for the different draw tensions. The measurement of Brillouin linewidth is estimated to ~1MHz. We have observed that the Brillouin linewidth increases significantly with draw tension. It can be probably explained by the structural order/disorder changes in the silica glass due to the increase of stresses level.

6. Conclusion

That is the first time to our knowledge that effective residual stresses profiles are considered in the calculation of BGS for any profile type. This approach has been successfully demonstrated for single trench-assisted G.657 fibers for extreme drawing conditions. For these fibers the increase of drawing tension, thus an increase in absolute value of internal residual stresses induces a decrease of Brillouin frequency shift and an increase of Brillouin linewidth. The stresses variation not only induces a BGS frequency shift, but it changes BGS shape through its impact on the acousto-optic integrals. Next step will consist in analyzing a larger number of fibers, especially highly doped fibers or fibers with very high draw tensions for which residual stress amplitudes are much more important.

References and links

1. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004). [CrossRef]  

2. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13(14), 5338–5346 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-14-5338. [CrossRef]   [PubMed]  

3. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004). [CrossRef]  

4. W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007). [CrossRef]  

5. W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006). [CrossRef]  

6. Y. Sikali Mamdem, X. Pheron, F. Taillade, Y. Jaouën, R. Gabet, V. Lanticq, G. Moreau, A. Boukenter, Y. Ouerdane, S. Lesoille, and J. Bertrand, “Two-dimensional FEM analysis of Brillouin Gain Spectra in acoustic guiding and antiguiding single mode optical fibers,” in Proceedings of COMSOL Multiphysics Conference (session Acoustic II, Paris, 2010), 111–124.

7. Y. Sikali Mamdem, E. Burov, L.-A de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” ECOC 2011, paper We.10.P1.16, Geneva, Sept. 2011.

8. A. Safaai-Jazi, C.-K. Jen, and G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986). [CrossRef]   [PubMed]  

9. L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009). [CrossRef]  

10. S. Dasgupta, F. Poletti, S. Liu, P. Petropoulos, D. J. Richardson, L. Grüner-Nielsen, and S. Herstrøm, “Modeling Brillouin Gain Spectrum of solid and microstructured optical fibers using a finite element method,” J. Lightwave Technol. 29(1), 22–30 (2011). [CrossRef]  

11. C. A. S. de Oliveira, C. K. Jen, A. Shang, and C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shifts,” J. Opt. Soc. Am. B 10(6), 969–971 (1993). [CrossRef]  

12. G. W. Scherer, “Stress-induced index profile distortion in optical waveguides,” Appl. Opt. 19(12), 2000–2006 (1980). [CrossRef]   [PubMed]  

13. S. Chaki and G. Bourse, “Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands,” Ultrasonics 49(2), 162–171 (2009). [CrossRef]   [PubMed]  

14. R. Le Parc, “Diffusion de rayonnement et relaxation structurale dans les verres de silice et les préformes de fibres optiques,” PhD thesis (Claude Bernard University, Lyon-1, 2002).

15. F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996). [CrossRef]   [PubMed]  

16. V. Lanticq, S. Jiang, R. Gabet, Y. Jaouën, F. Taillade, G. Moreau, and G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett. 34(7), 1018–1020 (2009). [CrossRef]   [PubMed]  

17. L.-A. de Montmorillon, P. Matthijsse, F. Gooijer, D. Molin, F. Achten, X. Meersseman, and C. Legrand, “Next Generation SMF with Reduced Bend Sensitivity for FTTH Networks,” in Proceedings of ECOC Conference (Cannes, France, paper Mo.3.3.2, 2006).

18. P. K. Bachmann, W. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 2: Fibers,” Appl. Opt. 26(7), 1175–1182 (1987). [CrossRef]   [PubMed]  

19. F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
    [CrossRef]
  2. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13(14), 5338–5346 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-14-5338 .
    [CrossRef] [PubMed]
  3. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
    [CrossRef]
  4. W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
    [CrossRef]
  5. W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
    [CrossRef]
  6. Y. Sikali Mamdem, X. Pheron, F. Taillade, Y. Jaouën, R. Gabet, V. Lanticq, G. Moreau, A. Boukenter, Y. Ouerdane, S. Lesoille, and J. Bertrand, “Two-dimensional FEM analysis of Brillouin Gain Spectra in acoustic guiding and antiguiding single mode optical fibers,” in Proceedings of COMSOL Multiphysics Conference (session Acoustic II, Paris, 2010), 111–124.
  7. Y. Sikali Mamdem, E. Burov, L.-A de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” ECOC 2011, paper We.10.P1.16, Geneva, Sept. 2011.
  8. A. Safaai-Jazi, C.-K. Jen, and G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
    [CrossRef] [PubMed]
  9. L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
    [CrossRef]
  10. S. Dasgupta, F. Poletti, S. Liu, P. Petropoulos, D. J. Richardson, L. Grüner-Nielsen, and S. Herstrøm, “Modeling Brillouin Gain Spectrum of solid and microstructured optical fibers using a finite element method,” J. Lightwave Technol. 29(1), 22–30 (2011).
    [CrossRef]
  11. C. A. S. de Oliveira, C. K. Jen, A. Shang, and C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shifts,” J. Opt. Soc. Am. B 10(6), 969–971 (1993).
    [CrossRef]
  12. G. W. Scherer, “Stress-induced index profile distortion in optical waveguides,” Appl. Opt. 19(12), 2000–2006 (1980).
    [CrossRef] [PubMed]
  13. S. Chaki and G. Bourse, “Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands,” Ultrasonics 49(2), 162–171 (2009).
    [CrossRef] [PubMed]
  14. R. Le Parc, “Diffusion de rayonnement et relaxation structurale dans les verres de silice et les préformes de fibres optiques,” PhD thesis (Claude Bernard University, Lyon-1, 2002).
  15. F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996).
    [CrossRef] [PubMed]
  16. V. Lanticq, S. Jiang, R. Gabet, Y. Jaouën, F. Taillade, G. Moreau, and G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett. 34(7), 1018–1020 (2009).
    [CrossRef] [PubMed]
  17. L.-A. de Montmorillon, P. Matthijsse, F. Gooijer, D. Molin, F. Achten, X. Meersseman, and C. Legrand, “Next Generation SMF with Reduced Bend Sensitivity for FTTH Networks,” in Proceedings of ECOC Conference (Cannes, France, paper Mo.3.3.2, 2006).
  18. P. K. Bachmann, W. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 2: Fibers,” Appl. Opt. 26(7), 1175–1182 (1987).
    [CrossRef] [PubMed]
  19. F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
    [CrossRef]

2011 (1)

2009 (3)

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

S. Chaki and G. Bourse, “Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands,” Ultrasonics 49(2), 162–171 (2009).
[CrossRef] [PubMed]

V. Lanticq, S. Jiang, R. Gabet, Y. Jaouën, F. Taillade, G. Moreau, and G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett. 34(7), 1018–1020 (2009).
[CrossRef] [PubMed]

2007 (1)

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

2006 (1)

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

2005 (1)

2004 (3)

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
[CrossRef]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[CrossRef]

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

1996 (1)

F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996).
[CrossRef] [PubMed]

1993 (1)

1987 (1)

1986 (1)

A. Safaai-Jazi, C.-K. Jen, and G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

1980 (1)

Agrawal, G. P.

Bachmann, P. K.

Bickham, S.

Boissier, M.

F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996).
[CrossRef] [PubMed]

Bourse, G.

S. Chaki and G. Bourse, “Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands,” Ultrasonics 49(2), 162–171 (2009).
[CrossRef] [PubMed]

Chaki, S.

S. Chaki and G. Bourse, “Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands,” Ultrasonics 49(2), 162–171 (2009).
[CrossRef] [PubMed]

Cherif, R.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Chowdhury, D. Q.

Chujo, W.

Codemard, C.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Dasgupta, S.

de Oliveira, C. A. S.

Douay, M.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Dürr, F.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Farnell, G. W.

A. Safaai-Jazi, C.-K. Jen, and G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

Fertein, E.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Gabet, R.

Grüner-Nielsen, L.

He, Z.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

Hermann, W.

Herstrøm, S.

Hindle, F.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Hotate, K.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

Jaouën, Y.

Jen, C. K.

Jen, C.-K.

A. Safaai-Jazi, C.-K. Jen, and G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

Jiang, S.

Kobyakov, A.

Koyamada, Y.

Kumar, S.

Lanticq, V.

Levelut, C.

F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996).
[CrossRef] [PubMed]

Limberger, H. G.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Liu, S.

Maran, J.-N.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Mishra, R.

Moreau, G.

Nakamura, S.

Pelous, J.

F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996).
[CrossRef] [PubMed]

Petropoulos, P.

Poletti, F.

Przygodzki, C.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Richardson, D. J.

Ruffin, A. B.

Safaai-Jazi, A.

A. Safaai-Jazi, C.-K. Jen, and G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

Salathé, R. P.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Saravanos, C.

Sato, S.

Sauer, M.

Scherer, G. W.

Shang, A.

Sotobayashi, H.

Taillade, F.

Tartara, L.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Terki, F.

F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996).
[CrossRef] [PubMed]

Wehr, H.

Wiechert, D. U.

Yablon, A. D.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[CrossRef]

Zghal, M.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Zou, W.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

A. Safaai-Jazi, C.-K. Jen, and G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (1)

F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996).
[CrossRef] [PubMed]

Ultrasonics (1)

S. Chaki and G. Bourse, “Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands,” Ultrasonics 49(2), 162–171 (2009).
[CrossRef] [PubMed]

Other (4)

R. Le Parc, “Diffusion de rayonnement et relaxation structurale dans les verres de silice et les préformes de fibres optiques,” PhD thesis (Claude Bernard University, Lyon-1, 2002).

L.-A. de Montmorillon, P. Matthijsse, F. Gooijer, D. Molin, F. Achten, X. Meersseman, and C. Legrand, “Next Generation SMF with Reduced Bend Sensitivity for FTTH Networks,” in Proceedings of ECOC Conference (Cannes, France, paper Mo.3.3.2, 2006).

Y. Sikali Mamdem, X. Pheron, F. Taillade, Y. Jaouën, R. Gabet, V. Lanticq, G. Moreau, A. Boukenter, Y. Ouerdane, S. Lesoille, and J. Bertrand, “Two-dimensional FEM analysis of Brillouin Gain Spectra in acoustic guiding and antiguiding single mode optical fibers,” in Proceedings of COMSOL Multiphysics Conference (session Acoustic II, Paris, 2010), 111–124.

Y. Sikali Mamdem, E. Burov, L.-A de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” ECOC 2011, paper We.10.P1.16, Geneva, Sept. 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental set-up for the measurement of Brillouin spectrum.

Fig. 2
Fig. 2

Measured G.652 profiles: (a) index profile, (b) stress profile.

Fig. 3
Fig. 3

G.652 stress impact: (a) Acousto-optic overlap integral with or without considering residual stresses, (b) L01 and L02 modes profiles with or without taking residual stresses into account.

Fig. 4
Fig. 4

Comparison of G.652’s BGS model with (w), without (w/o) stress and measurement.

Fig. 5
Fig. 5

Trench-assisted step index structure.

Fig. 6
Fig. 6

BGS comparisons: (a) Measured and simulated BGS with and without stress of fiber drawn with 90g, (b) Measured and simulated (with stress) BGS for different values of draw tension.

Fig. 7
Fig. 7

Evolution with draw tension of: (a) Measured Brillouin frequency shift versus draw tension, (b) BGS FWHM versus draw tension.

Tables (1)

Tables Icon

Table 1 Influence of Doping Concentrations on Optical and Acoustic Properties of Fibers Parameters [10]

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ t 2 E+ ( 2π λ 0 ) 2 ( n 2 n eff 2 )E=0
Δ t 2 u m +( Ω m 2 V L 2 β acoust 2 ) u m =0
BGS(ν)= m I m ao ( Γ/2 ) 2 ( Γ/2 ) 2 + ( ν ν B m ) 2
I m ao = ( | E | 2 u m dxdy ) 2 | E | 4 dxdy. | u m | 2 dxdy
V L = V L 0 (1+ K L σ)
K L = 1 2( λ+2μ )( 3λ+2μ ) ( λ+μ μ ( 4λ+10μ )+λ )
λ=ρ[ ( V L 0 ) 2 2 ( V T 0 ) 2 ]
μ=ρ ( V T 0 ) 2
R= σ(r)| r=0 σ(r)| r=0 160g

Metrics