Abstract

Nanoplasmonics and metamaterials sciences are rapidly growing due to their contributions to photonic devices fabrication with applications ranging from biomedicine to photovoltaic cells. Noble metal nanoparticles incorporated into polymer matrix have great potential for such applications due to their distinctive optical properties. However, methods to indirectly incorporate metal nanoparticles into polymeric microstructures are still on demand. Here we report on the fabrication of two-photon polymerized microstructures doped with gold nanoparticles through an indirect doping process, so they do not interfere in the two-photon polymerization (2PP) process. Such microstructures present a strong emission, arising from gold nanoparticles fluorescence. The microstructures produced are potential candidates for nanoplasmonics and metamaterials devices applications and the nanoparticles production method can be applied in many samples, heated simultaneously, opening the possibility for large scale processes.

© 2012 OSA

1. Introduction

Nanoplasmonics and metamaterials science have attracted great attention due to their potential application in photonic devices. Metamaterials, materials consisting of periodic micro- and nano-structures [1], provide unique optical properties allowing for the production of invisibility cloaks and negative refraction index materials [2] while nanoplasmonics, which regards to the manipulation of the optical properties in the nanoscale vicinity of a metal surface, has found a wide range of applications such as cancer treatments [3], chemical and biological sensing [4] and photovoltaic cells [5]. In this context, noble metal nanoparticles have potential to tailor the optical properties of micro/nano devices, more specifically gold nanoparticles are known for their ability to enhance local electric field which might be used to enhance the material´s optical [6], electrical and also mechanical properties [7]. The plasmon absorption band of metal nanoparticles is sensitive to the surrounding medium [8] what is desirable for applications involving micro sensors [4]. In addition, since gold nanoparticles are biocompatible, they can be used for the fabrication of sensors for biology and medicine [810]. Studies reporting nanoparticles dispersed in a polymer matrix generally involve the direct insertion of nanoparticles in the resin, prior to polymerization [11]. However, the presence of metal nanoparticles interferes with some polymerization processes, like two-photon polymerization (2PP) microfabrication. The 2PP has been used for the fabrication of tridimensional polymeric microstructures in applications ranging from biology to photonics [1, 10, 1214]. With this technique one can achieve resolution below the diffraction limit [15] and increased light penetration depth, giving the possibility to produce complex tridimensional microstructures [16]. Additionally, the 2PP can be used to fabricate doped microstructures with enhanced optical, biological and chemical properties aiming at applications in optical and photonics devices, such as fluorescent waveguides [17], birefringent elements [18], micro resonators [19, 20] and electrically conductive microstructures [21, 22]. However, only recently a few research groups begun to study the possibility of fabricating two-photon polymerized microstructures doped with metal nanoparticles [11, 2326]. The resulting metal nanoparticle doped structures are an organic/inorganic hybrid bulk metamaterial with potential applications in nanoplasmonics.

In this paper we report on the fabrication of two-photon polymerized microstructures doped with gold nanoparticles through an indirect doping process, in which the nanoparticles are produced after polymerization, therefore not interfering with the 2PP process. Our results show that gold nanoparticles-doped microstructures display an enhancement of the polymer matrix fluorescence arising from gold nanoparticles luminescence. In addition, by exciting these nanoparticles in their plasmon absorption band, one could use the local field enhancement effect in applications such as contrast agent for the visualization of 3D microstructures [11] in confocal microscopy, as a tool for sensing chemical and biological analytes [8] in SERS (surface enhanced Raman spectroscopy) and other nanoplasmonics applications that can benefit from the local field enhancement effect.

2. Experimental

The experimental apparatus for the fabrication of polymeric microstructures via two-photon polymerization is fully described elsewhere [27], but a few details will be given here. We employed a Ti: Sapphire oscillator laser operating at 82 MHz that delivers 35 fs pulses centered at 790 nm and with 40 nm bandwidth. The fabrication setup was composed by two movable mirrors, a precision motorized stage, a red LED as illumination source and a CCD camera for monitoring the fabrication. The pulsed laser was focused through a microscope objective lens into the liquid resin. In a region around the focal volume light intensity is high enough to induce two-photon absorption by the initiating species and locally polymerize the sample. A motorized stage moved the sample in the z direction (beam propagation), while a pair of galvanometric mirrors deflected the beam in the x and y directions allowing for the fabrication of tridimensional structures. After polymerization the sample was immersed in ethanol to wash away all uncured resin, leaving on the substrate only the microstructures.

The indirect doping of gold nanoparticles into the polymeric microstructures consisted of initially mixing the monomers with an aqueous solution of HAuCl4. The resin used as host for the gold nanoparticles was composed by two different triacrylate monomers, which ratio can be varied to obtain final polymerized structures with diverse mechanical properties [28]. Tris(2-hydroxyethyl) isocyanurate triacrylate (50 wt.%) gives hardness to the microstructure while ethoxylated(6) trimethylolpropane triacrylate (50 wt.%) is responsible for reducing shrinkage upon polymerization. Both monomers were mixed in excess of ethanol. To this resin formulation we added a solution of HAuCl4 in water (2 g/l) which was mixed to the resin in a proportion of 1 ml of the solution to 2.5 g of resin mixture. The sample was left for 24 hours at 50°C for evaporation of the solvents prior to the fabrication process. To this mixture we added 3 weight % in excess of the photoinitiator ethyl-2,4,6-trimethylbenzoyl phenylphosphinate, which has been shown to be useful for two-photon absorption polymerization [28, 29].

After the two-photon polymerization fabrication and rinsing processes, the sample was submitted to thermal annealing in a specific range of temperature and time. This thermal treatment is responsible for producing gold nanoparticles in the polymeric microstructure bulk, where the last acted as a reducing agent for dispersed gold ions. Among the several thermal treatments tested, the one consisting of heating the sample up to 185°C for approximately 35 minutes yielded the best results concerning the amount of and time to nanoparticles production. Differential Scanning Calorimetry (DSC) analysis of macroscopic polymerized samples demonstrate that degradation temperature for the polymerized resins is beyond 400 °C, which is well above the thermal annealing temperature used (185 °C), preventing any thermal damage on the microstructures. The presence of the nanoparticles in the microstructures bulk was noted through a strong fluorescence not observed in the non-heated HAuCl4 doped microstructures. The optical properties of the two-photon polymerized microstructures were obtained by an experimental apparatus consisting of an optical fiber coupled to a portable spectrometer (ocean optics) and a microscope. The excitation source used was a He-Cd laser operating at 325nm. The microstructure emission was collected through the microscope objective and guided to a portable spectrometer by an optical fiber.

As a complementary experiment, macroscopic samples with diameter of about 0.9 cm were prepared by using the same resin composition of the microstructures, cured by UV-lamp and thermally annealed. The generation of nanoparticles in the macroscopic samples was indirectly observed during the heating process by a strong color change in the material, which turned from light yellow to red. The samples were them polished and prepared for absorption spectra measurements. Additionally, transmission electron microscopy TEM images were obtained using a JEOL JEM 2100 URP equipment operating at 200kV. The samples were obtained by milling the cured resin and the produced gold nanoparticles were directly observed in the fragments.

3. Results and discussion

Figure 1 shows a scanning electron microscopy (SEM) image of the two-photon polymerized structures containing gold nanoparticles fabricated using an average power of 25 mW. The microstructures, with dimensions around 20 x 20 µm, present good resolution and low surface roughness, same as presented by the non-doped samples, demonstrating that the thermal treatment doesn´t damage the samples. In addition, measurements of polymerization threshold for the resin mixture with and without HAuCl4 were the same, which indicates that neither the nanoparticles nor the gold acid used in the resin formulation impairs the structure mechanical properties.

 

Fig. 1 SEM images of two-photon polymerized microstructures doped with gold nanoparticles (after heating process).

Download Full Size | PPT Slide | PDF

Although there are reports on photoreduction of gold ions in a polymer matrix using a similar laser system [26], laser average power and exposure times are very different. In our setup we used 25 mW incident average power and the laser scanning speed used to fabricate the microstructures is such that each irradiated region of the sample gets exposed for only 20 ms. For this reason we observed no photoreduction of the gold ions embedded in our resin during the polymerization process. The thermal annealing provides the required energy to reduce gold ions to gold atoms and also contributes to increase the atomic mobility in the polymer matrix, favoring the formation of nanoparticles. As a first evidence of the presence of gold nanoparticles in the two-photon polymerized samples, we noted a strong fluorescence that is not observed in the non-heated HAuCl4 doped microstructures. Figure 2(a) and 2(b) show fluorescence microscopy images of HAuCl4 (non-heated) doped and nanoparticle doped microstructures, respectively. Figure 2(c) displays confocal microscopy image of nanoparticle doped microstructures, which shows that the enhanced fluorescence occurs throughout the sample, indicating that the nanoparticles are distributed in the structure bulk.

 

Fig. 2 Fluorescence microscopy images of a) HAuCl4 doped microstructure and b) gold nanoparticle doped microstructures, where a typical enhanced fluorescence emission caused by the nanoparticles is observed. c) Confocal microscopy image of the same microstructures shown in b).

Download Full Size | PPT Slide | PDF

To investigate the origin of the characteristic emission for microstructures doped with gold nanoparticles, we collected the fluorescence spectra of HAuCl4 (non-heated) doped and nanoparticle doped samples, which are displayed in Fig. 3 , by using as excitation a CW laser operating at 325 nm.

 

Fig. 3 Typical emission of nanoparticle doped (red line) and non-doped microstructure when excited by a CW laser at 325 nm.

Download Full Size | PPT Slide | PDF

Both samples present a wide fluorescence spectrum, covering almost all the visible range (from 400 nm to 600 nm) although the emission from the gold nanoparticle doped microstructure is considerably more intense. The enhanced fluorescence observed, although very similar to the polymer luminescence, arises from nanoparticles luminescence [30, 31] since excitation wavelength is far from nanoparticles plasmon band. Additional fluorescence measurements (not shown), performed on macroscopic samples using the same experimental apparatus and excitation source, confirm these results. A small blue shift is noticed when one compares the emission from the nanoparticle doped macroscopic sample to the non-doped one, which might be a result of SPR absorption by the gold nanoparticles in the polymer bulk. This effect is not observed in the microscopic sample since its thickness is much smaller, and therefore the absorption of the sample fluorescence is also much smaller, preventing the blue-shift to occur.

To investigate the size and shape of the produced nanoparticles into the polymeric bulk sample, absorption spectra measurements and TEM images of macroscopic samples were obtained. We performed absorption measurements in three different samples, which are displayed as an inset (left side) in Fig. 4 : undoped polymer sample (a); polymer sample with HAuCl4 (b) and polymer sample with thermally generated gold nanoparticles (c). Figure 4 shows the absorption spectra of the three macroscopic samples. The TEM image displayed as an inset of Fig. 4 (right side) confirms the presence of the gold nanoparticles produced in the polymer bulk of sample c, which vary in size (from 5 to 40 nm) and shape. Generally the produced nanoparticles are well dispersed, indicating an in situ production. From TEM images, similar to the one presented in the inset of Fig. 4, we were able to estimate the volume fraction of gold nanoparticles as 4.7%.

 

Fig. 4 Absorption spectra of macroscopic samples a, b and c. In the inset we have a picture of the samples where a typical color change, due to gold nanoparticle samples, is observed in sample c. TEM images shows gold nanoparticles with diameters from 5 to 40 nm.

Download Full Size | PPT Slide | PDF

The absorption spectrum does not change significantly between samples a) and b) in Fig. 4. However, in sample c) we observe the characteristic plasmon band, centered at 542 nm, with similar results reported in the literature [32]. The conditions for this resonance depend on the size and shape of the nanoparticles and also on the surrounding medium dielectric constant [8].

4. Conclusion

We were able to produce two-photon polymerized microstructures doped with gold nanoparticles using a simple and indirect doping method. Our indirect doping method allows the two-photon polymerization fabrication with no interference of the metal nanoparticles in the fabrication process. This feature opens the possibility of fabricating microstructures with more than one dopant, for example, a fluorescent dye and metal nanoparticles to explore the dye fluorescence enhancement properties. Moreover this indirect doping method paves the way to explore other noble metal nanoparticles doped microdevices, which can find applications as a contrast agent for the visualization of 3D structures in confocal microscopy, as well as a tool for sensing chemical and biological substances, in the manufacturing of substrates for SERS measurements and other nanoplasmonics applications that can benefit from the local field enhancement effect. This nanoparticle production method can be applied in many samples, heated simultaneously, opening the possibility for large scale production.

Acknowledgments

The research described in this paper was supported by FAPESP, CNPq and CAPES from Brazil. Technical assistance from André L.S. Romero is gratefully acknowledged. Authors also would like to thank the Electron Microscopy Laboratory (LME) of the Brazilian National Synchrotron Light Laboratory (LNLS) for the use of the TEM facility.

References and links

1. H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999). [CrossRef]  

2. A. Alu and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A, Pure Appl. Opt. 10(9), 093002 (2008). [CrossRef]  

3. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009). [CrossRef]  

4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef]   [PubMed]  

5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef]   [PubMed]  

6. K. Vora, S. Y. Kang, S. Shukla, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett. 100(6), 063120 (2012). [CrossRef]  

7. E. Yilmaz and S. Suzer, “Au nanoparticles in PMMA matrix: In situ synthesis and the effect of Au nanoparticles on PMMA conductivity,” Appl. Surf. Sci. 256(22), 6630–6633 (2010). [CrossRef]  

8. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007). [CrossRef]  

9. M. C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004). [CrossRef]   [PubMed]  

10. P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4494–4498 (2008). [CrossRef]  

11. W.-S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18(26), 27550–27559 (2010). [CrossRef]   [PubMed]  

12. H. B. Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol. 21(3), 624–633 (2003). [CrossRef]  

13. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001). [CrossRef]  

14. M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett. 74(2), 170–172 (1999). [CrossRef]  

15. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007). [CrossRef]   [PubMed]  

16. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997). [CrossRef]   [PubMed]  

17. C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett. 95(11), 113309 (2009). [CrossRef]  

18. C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys. 102(1), 013109 (2007). [CrossRef]  

19. T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011). [CrossRef]   [PubMed]  

20. L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-Performance Microring Resonators Fabricated with Multiphoton Absorption Polymerization,” Adv. Mater. (Deerfield Beach Fla.) 20(19), 3668–3671 (2008). [CrossRef]  

21. T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(8), 081107 (2006). [CrossRef]  

22. R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006). [CrossRef]   [PubMed]  

23. C. N. LaFratta, D. Lim, K. O'Malley, T. Baldacchini, and J. T. Fourkas, “Direct laser patterning of conductive wires on three-dimensional polymeric microstructures,” Chem. Mater. 18(8), 2038–2042 (2006). [CrossRef]  

24. K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express 19(23), 22786–22796 (2011). [CrossRef]   [PubMed]  

25. X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films 453-454, 518–521 (2004). [CrossRef]  

26. K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett. 83(7), 1426–1428 (2003). [CrossRef]  

27. D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum. Electron. 18, 176–186 (2012).

28. T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004). [CrossRef]  

29. C. R. Mendonca, D. S. Correa, T. Baldacchini, P. Tayalia, and E. Mazur, “Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L,” Appl. Phys., A Mater. Sci. Process. 90(4), 633–636 (2008). [CrossRef]  

30. H. He, C. Xie, and J. Ren, “Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging,” Anal. Chem. 80(15), 5951–5957 (2008). [CrossRef]   [PubMed]  

31. D. Philip, “Synthesis and spectroscopic characterization of gold nanoparticles,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 71(1), 80–85 (2008). [CrossRef]  

32. A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, and N. Bityurin, “UV-initiated growth of gold nanoparticles in PMMA matrix,” Appl. Surf. Sci. 248(1-4), 181–184 (2005). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
    [CrossRef]
  2. A. Alu and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A, Pure Appl. Opt.10(9), 093002 (2008).
    [CrossRef]
  3. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
    [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  6. K. Vora, S. Y. Kang, S. Shukla, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett.100(6), 063120 (2012).
    [CrossRef]
  7. E. Yilmaz and S. Suzer, “Au nanoparticles in PMMA matrix: In situ synthesis and the effect of Au nanoparticles on PMMA conductivity,” Appl. Surf. Sci.256(22), 6630–6633 (2010).
    [CrossRef]
  8. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007).
    [CrossRef]
  9. M. C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev.104(1), 293–346 (2004).
    [CrossRef] [PubMed]
  10. P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
    [CrossRef]
  11. W.-S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express18(26), 27550–27559 (2010).
    [CrossRef] [PubMed]
  12. H. B. Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol.21(3), 624–633 (2003).
    [CrossRef]
  13. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
    [CrossRef]
  14. M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
    [CrossRef]
  15. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15(6), 3426–3436 (2007).
    [CrossRef] [PubMed]
  16. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  17. C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
    [CrossRef]
  18. C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007).
    [CrossRef]
  19. T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express19(2), 861–869 (2011).
    [CrossRef] [PubMed]
  20. L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-Performance Microring Resonators Fabricated with Multiphoton Absorption Polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
    [CrossRef]
  21. T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett.88(8), 081107 (2006).
    [CrossRef]
  22. R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
    [CrossRef] [PubMed]
  23. C. N. LaFratta, D. Lim, K. O'Malley, T. Baldacchini, and J. T. Fourkas, “Direct laser patterning of conductive wires on three-dimensional polymeric microstructures,” Chem. Mater.18(8), 2038–2042 (2006).
    [CrossRef]
  24. K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express19(23), 22786–22796 (2011).
    [CrossRef] [PubMed]
  25. X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453-454, 518–521 (2004).
    [CrossRef]
  26. K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003).
    [CrossRef]
  27. D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum. Electron.18, 176–186 (2012).
  28. T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
    [CrossRef]
  29. C. R. Mendonca, D. S. Correa, T. Baldacchini, P. Tayalia, and E. Mazur, “Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L,” Appl. Phys., A Mater. Sci. Process.90(4), 633–636 (2008).
    [CrossRef]
  30. H. He, C. Xie, and J. Ren, “Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging,” Anal. Chem.80(15), 5951–5957 (2008).
    [CrossRef] [PubMed]
  31. D. Philip, “Synthesis and spectroscopic characterization of gold nanoparticles,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.71(1), 80–85 (2008).
    [CrossRef]
  32. A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, and N. Bityurin, “UV-initiated growth of gold nanoparticles in PMMA matrix,” Appl. Surf. Sci.248(1-4), 181–184 (2005).
    [CrossRef]

2012

K. Vora, S. Y. Kang, S. Shukla, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett.100(6), 063120 (2012).
[CrossRef]

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum. Electron.18, 176–186 (2012).

2011

2010

W.-S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express18(26), 27550–27559 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

E. Yilmaz and S. Suzer, “Au nanoparticles in PMMA matrix: In situ synthesis and the effect of Au nanoparticles on PMMA conductivity,” Appl. Surf. Sci.256(22), 6630–6633 (2010).
[CrossRef]

2009

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

2008

C. R. Mendonca, D. S. Correa, T. Baldacchini, P. Tayalia, and E. Mazur, “Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L,” Appl. Phys., A Mater. Sci. Process.90(4), 633–636 (2008).
[CrossRef]

H. He, C. Xie, and J. Ren, “Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging,” Anal. Chem.80(15), 5951–5957 (2008).
[CrossRef] [PubMed]

D. Philip, “Synthesis and spectroscopic characterization of gold nanoparticles,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.71(1), 80–85 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

A. Alu and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A, Pure Appl. Opt.10(9), 093002 (2008).
[CrossRef]

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
[CrossRef]

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-Performance Microring Resonators Fabricated with Multiphoton Absorption Polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

2007

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007).
[CrossRef]

C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007).
[CrossRef]

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

2006

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett.88(8), 081107 (2006).
[CrossRef]

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

C. N. LaFratta, D. Lim, K. O'Malley, T. Baldacchini, and J. T. Fourkas, “Direct laser patterning of conductive wires on three-dimensional polymeric microstructures,” Chem. Mater.18(8), 2038–2042 (2006).
[CrossRef]

2005

A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, and N. Bityurin, “UV-initiated growth of gold nanoparticles in PMMA matrix,” Appl. Surf. Sci.248(1-4), 181–184 (2005).
[CrossRef]

2004

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453-454, 518–521 (2004).
[CrossRef]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

M. C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev.104(1), 293–346 (2004).
[CrossRef] [PubMed]

2003

K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003).
[CrossRef]

H. B. Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol.21(3), 624–633 (2003).
[CrossRef]

2001

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
[CrossRef]

1999

M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
[CrossRef]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

1997

Alexandrov, A.

A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, and N. Bityurin, “UV-initiated growth of gold nanoparticles in PMMA matrix,” Appl. Surf. Sci.248(1-4), 181–184 (2005).
[CrossRef]

Alu, A.

A. Alu and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A, Pure Appl. Opt.10(9), 093002 (2008).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Asaba, K.

Astruc, D.

M. C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev.104(1), 293–346 (2004).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Baldacchini, T.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
[CrossRef]

C. R. Mendonca, D. S. Correa, T. Baldacchini, P. Tayalia, and E. Mazur, “Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L,” Appl. Phys., A Mater. Sci. Process.90(4), 633–636 (2008).
[CrossRef]

C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007).
[CrossRef]

C. N. LaFratta, D. Lim, K. O'Malley, T. Baldacchini, and J. T. Fourkas, “Direct laser patterning of conductive wires on three-dimensional polymeric microstructures,” Chem. Mater.18(8), 2038–2042 (2006).
[CrossRef]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Barlow, S.

Bityurin, N.

A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, and N. Bityurin, “UV-initiated growth of gold nanoparticles in PMMA matrix,” Appl. Surf. Sci.248(1-4), 181–184 (2005).
[CrossRef]

Campagnola, P. J.

Cardoso, M. R.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum. Electron.18, 176–186 (2012).

Chang, C.-Y.

Chen, S.-J.

Chen, S.-L.

Chen, V. W.

Chen, W.-Y.

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-Performance Microring Resonators Fabricated with Multiphoton Absorption Polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

Cho, K.-C.

Correa, D. S.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum. Electron.18, 176–186 (2012).

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

C. R. Mendonca, D. S. Correa, T. Baldacchini, P. Tayalia, and E. Mazur, “Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L,” Appl. Phys., A Mater. Sci. Process.90(4), 633–636 (2008).
[CrossRef]

Daniel, M. C.

M. C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev.104(1), 293–346 (2004).
[CrossRef] [PubMed]

Dong, C. Y.

Dong, W. T.

Duan, X. M.

K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express19(23), 22786–22796 (2011).
[CrossRef] [PubMed]

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453-454, 518–521 (2004).
[CrossRef]

K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007).
[CrossRef]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007).
[CrossRef]

Engheta, N.

A. Alu and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A, Pure Appl. Opt.10(9), 093002 (2008).
[CrossRef]

Farrer, R. A.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Fourkas, J. T.

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-Performance Microring Resonators Fabricated with Multiphoton Absorption Polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

C. N. LaFratta, D. Lim, K. O'Malley, T. Baldacchini, and J. T. Fourkas, “Direct laser patterning of conductive wires on three-dimensional polymeric microstructures,” Chem. Mater.18(8), 2038–2042 (2006).
[CrossRef]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Galajda, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
[CrossRef]

Gershgoren, E.

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-Performance Microring Resonators Fabricated with Multiphoton Absorption Polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

Guo, L. J.

Hales, J. M.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Haske, W.

He, H.

H. He, C. Xie, and J. Ren, “Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging,” Anal. Chem.80(15), 5951–5957 (2008).
[CrossRef] [PubMed]

Herman, W. N.

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-Performance Microring Resonators Fabricated with Multiphoton Absorption Polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

Ho, P. T.

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-Performance Microring Resonators Fabricated with Multiphoton Absorption Polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

Huang, L. L. H.

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007).
[CrossRef]

Ishikawa, A.

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett.88(8), 081107 (2006).
[CrossRef]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007).
[CrossRef]

Jin, F.

Joshi, M. P.

M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
[CrossRef]

Kaneko, K.

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453-454, 518–521 (2004).
[CrossRef]

K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003).
[CrossRef]

Kang, S. Y.

K. Vora, S. Y. Kang, S. Shukla, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett.100(6), 063120 (2012).
[CrossRef]

Kawata, S.

K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express19(23), 22786–22796 (2011).
[CrossRef] [PubMed]

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett.88(8), 081107 (2006).
[CrossRef]

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453-454, 518–521 (2004).
[CrossRef]

K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003).
[CrossRef]

H. B. Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol.21(3), 624–633 (2003).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
[CrossRef] [PubMed]

Kirsanov, A.

A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, and N. Bityurin, “UV-initiated growth of gold nanoparticles in PMMA matrix,” Appl. Surf. Sci.248(1-4), 181–184 (2005).
[CrossRef]

Kumi, G.

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-Performance Microring Resonators Fabricated with Multiphoton Absorption Polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

Kuo, W.-S.

LaFratta, C. N.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

C. N. LaFratta, D. Lim, K. O'Malley, T. Baldacchini, and J. T. Fourkas, “Direct laser patterning of conductive wires on three-dimensional polymeric microstructures,” Chem. Mater.18(8), 2038–2042 (2006).
[CrossRef]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Li, L.

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-Performance Microring Resonators Fabricated with Multiphoton Absorption Polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

Li, L. J.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Lien, C.-H.

Lim, D.

C. N. LaFratta, D. Lim, K. O'Malley, T. Baldacchini, and J. T. Fourkas, “Direct laser patterning of conductive wires on three-dimensional polymeric microstructures,” Chem. Mater.18(8), 2038–2042 (2006).
[CrossRef]

Lin, C.-Y.

Ling, T.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Marder, S. R.

Marlow, F.

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

Maruo, S.

Masui, K.

Matsuo, S.

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

Mazur, E.

K. Vora, S. Y. Kang, S. Shukla, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett.100(6), 063120 (2012).
[CrossRef]

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
[CrossRef]

C. R. Mendonca, D. S. Correa, T. Baldacchini, P. Tayalia, and E. Mazur, “Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L,” Appl. Phys., A Mater. Sci. Process.90(4), 633–636 (2008).
[CrossRef]

C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007).
[CrossRef]

Mendonca, C. R.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum. Electron.18, 176–186 (2012).

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

C. R. Mendonca, D. S. Correa, T. Baldacchini, P. Tayalia, and E. Mazur, “Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L,” Appl. Phys., A Mater. Sci. Process.90(4), 633–636 (2008).
[CrossRef]

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
[CrossRef]

C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007).
[CrossRef]

Misawa, H.

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

Misoguti, L.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum. Electron.18, 176–186 (2012).

Mooney, D. J.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
[CrossRef]

Nakamura, O.

Naughton, M. J.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

O'Malley, K.

C. N. LaFratta, D. Lim, K. O'Malley, T. Baldacchini, and J. T. Fourkas, “Direct laser patterning of conductive wires on three-dimensional polymeric microstructures,” Chem. Mater.18(8), 2038–2042 (2006).
[CrossRef]

Ormos, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
[CrossRef]

Perry, J. W.

Philip, D.

D. Philip, “Synthesis and spectroscopic characterization of gold nanoparticles,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.71(1), 80–85 (2008).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Praino, J.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Prasad, P. N.

M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
[CrossRef]

Pudavar, H. E.

M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
[CrossRef]

Reianhardt, B. A.

M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
[CrossRef]

Ren, J.

H. He, C. Xie, and J. Ren, “Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging,” Anal. Chem.80(15), 5951–5957 (2008).
[CrossRef] [PubMed]

Rodgers, T. C.

Saleh, B. E. A.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Sapogova, N.

A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, and N. Bityurin, “UV-initiated growth of gold nanoparticles in PMMA matrix,” Appl. Surf. Sci.248(1-4), 181–184 (2005).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shoji, S.

Shukla, S.

K. Vora, S. Y. Kang, S. Shukla, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett.100(6), 063120 (2012).
[CrossRef]

Smirnova, L.

A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, and N. Bityurin, “UV-initiated growth of gold nanoparticles in PMMA matrix,” Appl. Surf. Sci.248(1-4), 181–184 (2005).
[CrossRef]

Soustov, L.

A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, and N. Bityurin, “UV-initiated growth of gold nanoparticles in PMMA matrix,” Appl. Surf. Sci.248(1-4), 181–184 (2005).
[CrossRef]

Sun, H. B.

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453-454, 518–521 (2004).
[CrossRef]

H. B. Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol.21(3), 624–633 (2003).
[CrossRef]

K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003).
[CrossRef]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

Suzer, S.

E. Yilmaz and S. Suzer, “Au nanoparticles in PMMA matrix: In situ synthesis and the effect of Au nanoparticles on PMMA conductivity,” Appl. Surf. Sci.256(22), 6630–6633 (2010).
[CrossRef]

Swiatkiewicz, J.

M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
[CrossRef]

Tanaka, T.

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett.88(8), 081107 (2006).
[CrossRef]

Tayalia, P.

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

C. R. Mendonca, D. S. Correa, T. Baldacchini, P. Tayalia, and E. Mazur, “Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L,” Appl. Phys., A Mater. Sci. Process.90(4), 633–636 (2008).
[CrossRef]

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
[CrossRef]

C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007).
[CrossRef]

Teich, M. C.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Tribuzi, V.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum. Electron.18, 176–186 (2012).

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Vora, K.

K. Vora, S. Y. Kang, S. Shukla, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett.100(6), 063120 (2012).
[CrossRef]

Voss, T.

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

Xie, C.

H. He, C. Xie, and J. Ren, “Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging,” Anal. Chem.80(15), 5951–5957 (2008).
[CrossRef] [PubMed]

Yakimovich, N.

A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, and N. Bityurin, “UV-initiated growth of gold nanoparticles in PMMA matrix,” Appl. Surf. Sci.248(1-4), 181–184 (2005).
[CrossRef]

Yilmaz, E.

E. Yilmaz and S. Suzer, “Au nanoparticles in PMMA matrix: In situ synthesis and the effect of Au nanoparticles on PMMA conductivity,” Appl. Surf. Sci.256(22), 6630–6633 (2010).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
[CrossRef]

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-Performance Microring Resonators Fabricated with Multiphoton Absorption Polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

Anal. Chem.

H. He, C. Xie, and J. Ren, “Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging,” Anal. Chem.80(15), 5951–5957 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003).
[CrossRef]

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett.88(8), 081107 (2006).
[CrossRef]

K. Vora, S. Y. Kang, S. Shukla, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett.100(6), 063120 (2012).
[CrossRef]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
[CrossRef]

M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
[CrossRef]

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

C. R. Mendonca, D. S. Correa, T. Baldacchini, P. Tayalia, and E. Mazur, “Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L,” Appl. Phys., A Mater. Sci. Process.90(4), 633–636 (2008).
[CrossRef]

Appl. Surf. Sci.

A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, and N. Bityurin, “UV-initiated growth of gold nanoparticles in PMMA matrix,” Appl. Surf. Sci.248(1-4), 181–184 (2005).
[CrossRef]

E. Yilmaz and S. Suzer, “Au nanoparticles in PMMA matrix: In situ synthesis and the effect of Au nanoparticles on PMMA conductivity,” Appl. Surf. Sci.256(22), 6630–6633 (2010).
[CrossRef]

Chem. Mater.

C. N. LaFratta, D. Lim, K. O'Malley, T. Baldacchini, and J. T. Fourkas, “Direct laser patterning of conductive wires on three-dimensional polymeric microstructures,” Chem. Mater.18(8), 2038–2042 (2006).
[CrossRef]

Chem. Rev.

M. C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev.104(1), 293–346 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum. Electron.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum. Electron.18, 176–186 (2012).

J. Am. Chem. Soc.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

J. Appl. Phys.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007).
[CrossRef]

J. Lightwave Technol.

J. Opt. A, Pure Appl. Opt.

A. Alu and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A, Pure Appl. Opt.10(9), 093002 (2008).
[CrossRef]

Nat. Mater.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Plasmonics

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007).
[CrossRef]

Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.

D. Philip, “Synthesis and spectroscopic characterization of gold nanoparticles,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.71(1), 80–85 (2008).
[CrossRef]

Thin Solid Films

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453-454, 518–521 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SEM images of two-photon polymerized microstructures doped with gold nanoparticles (after heating process).

Fig. 2
Fig. 2

Fluorescence microscopy images of a) HAuCl4 doped microstructure and b) gold nanoparticle doped microstructures, where a typical enhanced fluorescence emission caused by the nanoparticles is observed. c) Confocal microscopy image of the same microstructures shown in b).

Fig. 3
Fig. 3

Typical emission of nanoparticle doped (red line) and non-doped microstructure when excited by a CW laser at 325 nm.

Fig. 4
Fig. 4

Absorption spectra of macroscopic samples a, b and c. In the inset we have a picture of the samples where a typical color change, due to gold nanoparticle samples, is observed in sample c. TEM images shows gold nanoparticles with diameters from 5 to 40 nm.

Metrics