Abstract

We study in detail a novel type of optical nanoantennas made of high-permittivity low-loss dielectric particles. In addition to the electric resonances, the dielectric particles exhibit very strong magnetic resonances at the nanoscale, that can be employed in the Yagi-Uda geometry for creating highly efficient optical nanoantennas. By comparing plasmonic and dielectric nanoantennas, we demonstrate that all-dielectric nanoantennas may exhibit better radiation efficiency also allowing more compact design.

© 2012 Optical Society of America

1. Introduction

The recently emerged field of optical nanoantennas is promising for its potential applications in various areas of nanotechnology. The ability to redirect propagating radiation and transfer it into localized subwavelength modes at the nanoscale [17] makes the optical nanoantennas highly desirable for many applications. Originally, antennas were suggested as sources of electromagnetic (EM) radiation at radio frequencies (RF) and microwaves, emitting radiation via oscillating currents. Different types of antennas were suggested and demonstrated for the effective manipulation of the EM radiation [8]. Thus, conventional antennas perform a twofold function as a source and transformation of EM radiation, resulting in their sizes being comparable with the operational wavelength. Recent success in the fabrication of nanoscale elements allows to bring the concept of the RF antennas to optics, leading to the development of optical nanoantennas consisting of subwavelength elements [5].

One of the first fabricated optical nanoantennas was made of metallic nanorods mimicing the classical analogue of the Yagi-Uda design [1, 5, 6]. It was demonstrated that properly arranged metallic nanoparticles can satisfy all the required RF antenna conditions, and they exhibit high directivity due to the excitation of localized surface plasmons and strong near-field interaction. Various types of optical nanoantennas have been discussed in the literature, including a hybrid design of metallic nanoparticles coupled to dielectric optical microcavities where high-Q whispering gallery modes can be used for single-molecule sensors, resonant amplifiers, nanoconcentrators, energy converters, and dynamical switches [9]. Similar design, consisting of a dielectric microsphere of TiO2 with permittivity ε1 = 6.2 and two silver nanoparticles excited by a point-like source was also considered [4]. Addition, in article [10], the authors study the Purcell factor of the dipole which is located next to the big (radius more than 200 nm) dielectric nanosphere made of silicon.

In this paper we suggest a novel type of optical nanoantennas made of all-dielectric elements. We argue that dielectric nanoantennas can be considered as the best alternative to their metallic counterparts. First, dielectric materials exhibit low loss at the optical frequencies. Second, as was suggested earlier [11, 12], nanoparticles made of high-permittivity dielectrics may support both electric and magnetic resonant modes. This feature may greatly expand the applicability of optical nanoantennas for, e.g. detection of magnetic dipole transitions of molecules. Moreover, it is possible to realize optical Huygens source [13] consisting of a point-like electric dipole operating at the magnetic resonance of a dielectric nanosphere. Such a structure exhibits high directivity with vanishing backward scattering and polarization independence, being attractive for efficient and compact designs of optical nanoantennas.

2. Design principles for all-dielectric nanoantennas

We start our analysis by considering a radiation pattern of two ideal coupled electric and magnetic dipoles. A single point-like dipole source generates the electric far-field of the following form Ep = k2/(4πε0r) exp(ikr)[p⃗n⃗ (n⃗ ·p⃗)], where p⃗ is the electric dipole, k = ω/c is the wavevector, n⃗ is the scattered direction, and r is the distance from the dipole source. The radiation pattern σ=limr4πr2|Ep|2 in the plane of the dipole n⃗ × p⃗ = 0 is proportional to the standard figure-eight profile, σ|| ∝ |cosθ|2, where θ is the scattered angle. In the plane orthogonal to the dipole (n⃗· p⃗ = 0) the radiation pattern remains constant and angle independent, σconst. Thus, the total radiation pattern of a single dipole emitter is a torus which radiates equally in the opposite directions. If we now place, in addition to the electric dipole, an orthogonal magnetic dipole located at the same point, the situation changes dramatically. The magnetic dipole m⃗ generates the electric far-field of the form Em = −(μ0/ε0)1/2k2/(4)exp(ikr)(n⃗ × m⃗). Thus, the total electric field is a sum of two contributions from both electric and magnetic dipoles Etotal = Ep + Em. By assuming that the magnetic dipole is related to the electric dipole via the relation |m⃗| = |p⃗|/(μ0ε0)1/2, which corresponds to an infinitesimally small wavefront of a plane wave often called a Huygens source [8], the radiation pattern becomes σH ∝ |1 + cosθ|2. This radiation pattern is quite different compared to that of a single electric dipole. It is highly asymmetric with the total suppression of the radiation in a particular direction, θ = π[σH(π) = 0], and a strong enhancement in the opposite direction, θ = 0. The complete three-dimensional radiation pattern resembles a cardioid or apple-like shape, which is also azimuthally independent [14]. Such a radiation pattern of the Huygens source is potentially very useful for various nanoantenna applications. However, while electric dipole sources are widely used in optics, magnetic dipoles are less common.

First, we consider an electric dipole source placed in a close proximity to a dielectric sphere [see Fig. 1(a)]. According to the Mie theory [15], it can be analytically shown that high permittivity dielectric nanoparticles exhibit strong magnetic resonance in the visible range when the wavelength inside the nanoparticle equals its diameter λ/ns ≈ 2Rs [16], where nS and Rs are refractive index and radius of the nanoparticle, respectively. There are many dielectric materials with high enough real part of the permittivity and very low imaginary part, indicating low dissipative losses, for example silicon (Si, ε1 ≃ 16 in the wavelength range from 400 to 600 nm), germanium (Ge, ε1 ≃ 20 from 600 to 1000 nm), aluminum antimonide (AlSb, ε1 ≃ 12 from 500 to 1000 nm), aluminum arsenide (AlAs, ε1 ≃ 10 from 400 to 600 nm), and others.

 figure: Fig. 1

Fig. 1 Schematic view of an all-dielectric optical Yagi-Uda nanoantenna, consisting of the reflector 1 of the radius Rr = 75 nm, and smaller director 2–5 of the radii Rd = 70 nm. The dipole source is placed equally from the reflector and the first director surfaces at the distance D. The separation between surfaces of the neighbouring directors is also equal to D.

Download Full Size | PPT Slide | PDF

In our study we concentrate on the nanoparticles made of silicon, since it satisfies all the requirements being widely used in optics. The real part of the permittivity of the silicon is about 16 [17], while the imaginary part is up to two orders of magnitude smaller than that of nobel metals (silver and gold). Silicon nanoparticles support strong magnetic resonance in the visible range for the radius varying from 40 nm to 80 nm [11, 12].

For such a small radius compared to the wavelength Rsλ, the radiation pattern of the silicon nanoparticle in the far field at the magnetic or electric resonances will resemble that of magnetic or electric point-like dipole, respectively. Thus, it is possible to introduce magnetic αm and electric αe polarisabilities [15, 18] based on the Mie dipole scattering coefficients b1 and a1: αe = 6πa1i/k3, αm = 6πb1i/k3. The dielectric nanoparticle excited by the electric dipole source at the magnetic resonance may result in the total far field radiation pattern which is similar to that of the Huygens source. Similar radiation patterns can be achieved in light scattering by a magnetic particle when permeability equals permittivity μ = ε [19]. Our result suggests that even a dielectric nonmagnetic nanoparticle can support two induced dipoles of equal strength resulting in suppression of the radiation in the backward direction. Thus, it can be considered as the simplest and efficient optical nanoantenna with very good directivity.

In general, both polarisabilities αm and αe are nonzero in the optical region [11, 12]. It is known that for a dipole radiation in the far field the electric and magnetic components should oscillate in phase to have nonzero energy flow. In the near field the electric and magnetic components oscillate with π/2 phase difference, thus, the averaged Poynting vector vanishes, and a part of energy is stored in the vicinity of the source. In the intermediate region, the phase between two components varies form π/2 to 0. By placing a nanoparticle close to the dipole source will change the phase difference between two components, and, thus, affect the amount of radiation form the near field. In the case of plasmonic nanoparticles which exhibit electric polarizability only, there is an abrupt phase change from 0 to π in the vicinity of the localized surface plasmon resonance, which makes it difficult to tune plasmonic nanoantennas for optimal performance. The dependence of the scattering diagram on the distance between the electric dipole source and metallic nanoparticle was studied in Ref. [20]. On contrary, in the case of nanoparticles with both electric and magnetic polarisabilities, it is possible to achieve more efficient radiation from the near to far field zone, due to subtle phase manipulation. This is exactly the case of the dielectric nanoparticles.

Any antenna is characterized by two specific properties, Directivity (D) and Radiation Efficiency (εrad), defined as [5, 8]

D=4πPradMax[p(θ,φ)],ηrad=PradPrad+Ploss,
where Prad and Ploss are integrated radiated and absorbed powers, respectively, θ and φ are spherical angles, and p(θ, φ) is the radiated power in the given direction θ and/or φ.

The Directivity measures the power density of the antenna radiated in the direction of its strongest emission, while Radiation Efficiency measures the electrical losses that occur throughout the antenna at a given wavelength. To calculate these quantities numerically for the structures shown in Fig. 1, we employ the CST Microwave Studio. To get reliable results, we model the electric dipole source by a Discrete Port coupled to two PEC nanoparticles.

In Fig. 2(a) we show the dependence of the Directivity on wavelength for a single dielectric nanoparticle excited by a electric dipole source. Two inserts demonstrate 3D angular distribution of the radiated pattern p(θ, φ) corresponding to the local maxima. In this case, the system radiates predominantly to the forward direction at λ = 590 nm, while at λ = 480 nm, the radiation is predominantly in the backward direction. In this case, the total electric dipole moment of the sphere and point-like source and the magnetic dipole moment of the sphere oscillate with the phase difference arg(αm) − arg(αe) = 1.3 rad, resulting in the destructive interference in the forward direction. At the wavelength λ = 590 nm the total electric and magnetic dipole moments oscillate in phase and produce Huygens-source-like radiation pattern with the main lobe directed in the forward direction.

 figure: Fig. 2

Fig. 2 Wavelength dependence of the directivity of two types of all-dielectric nanoantennas consisting of (a) single dielectric nanoparticle, (b) Yagi-Uda like design for the separation distance D = 70 nm. Insets show 3D radiation pattern diagrams at particular wavelengths.

Download Full Size | PPT Slide | PDF

By adding more elements to the silicon nanoparticle, we can enhance the performance of all-dielectric nanoantennas. In particular, we consider a dielectric analogue of the Yagi-Uda design (see Fig. 1) consisting of four directors and one reflector. The radii of the directors and the reflector are chosen to achieve the maximal constructive interference in the forward direction along the array. The optimal performance of the Yagi-Uda nanoantenna should be expected when the radii of the directors correspond to the magnetic resonance, and the radius of the reflector correspond to the electric resonance at a given frequency, with the coupling between the elements taken into account. Our particular design consists of the directors with radii Rd = 70 nm and the reflector with the radius Rr = 75 nm. In Fig. 2(b) we plot the directivity of all-dielectric Yagi-Uda nanoantenna vs. wavelength with the separation distance D = 70 nm. Inserts demonstrate the 3D radiation patterns at particular wavelengths. We achieve a strong maximum at λ = 500 nm. The main lobe is extremely narrow with the beam-width about 40° and negligible backscattering. The maximum does not correspond exactly to either magnetic or electric resonances of a single dielectric sphere, which implies the importance of the interaction between constitutive nanoparticles.

As the next step, we study the performance of the all-dielectric nanoantennas for different separation distances D, and compare it with a plasmonic analogue of the similar geometric design made of silver nanoparticles. According to the results summarized in Fig. 3, the radiation efficiencies of both types of nanoantennas are nearly the same for larger separation of directors D = 70 nm with the averaged value 70%. Although dissipation losses of silicon are much smaller than those of silver, the dielectric particle absorbs the EM energy by the whole spherical volume, while the metallic particles absorb mostly at the surface. As a result, there is no big difference in the overall performance of these two types of nanoantennas for relatively large distances between the elements. However, the difference becomes very strong for smaller separations. The radiation efficiency of the all-dielectric nanoantenna is insensitive to the separation distance [see Fig. 3(a)]. On contrary, the radiation efficiency drops significantly for metallic nanoantennas [see Fig. 3(b)].

 figure: Fig. 3

Fig. 3 Radiation efficiencies of (a) dielectric (Si) and (b) plasmonic (Ag) Yagi-Uda optical nanoantennas of the same geometrical designs for various values of the separation distance.

Download Full Size | PPT Slide | PDF

Finally, we investigate the modification of the transition rate of a quantum point-like source placed in the vicinity of dielectric particles. For electric-dipole transitions and in the weak-coupling regime, the normalised spontaneous decay rate Γ/Γ0, also known as Purcell factor, can be calculated classically as the ratio of energy dissipation rates of an electric dipole P/P0 [21]. Here, Γ0 and P0 correspond to transition rate of the quantum emitter and energy dissipation rate of the electric dipole in free space [22]. In the limit of the intrinsic quantum yield of the emitter close to unity, both ratios become equal to each other Γ/Γ0 = P/P0, which allows us to calculate the Purcell factor in the classical regime [21]. We have calculated the Purcell factor by using both, numerical and analytical approaches. Numerically, by using the CST Microwave Studio we calculate the total radiated in the far-field and dissipated into the particles powers and take the ratio of their sum to the total power radiated by the electric dipole in free space. Analytically, we employed the generalised multiparticle Mie solution [23] adapted for the electric dipole excitation [24]. We verified that both approaches produce similar results. In Fig. 4 we show calculated Purcell factor of the all-dielectric Yagi-Uda nanoantenna vs. wavelength for various separation distances. We observe that, by decreasing the separation between the directors, the Purcell factor becomes stronger near the magnetic dipole resonance. Note here, that a plasmonic analogue of the same nanoantenna made of Ag exhibits low Purcell factor less than one, see, for example, Ref. [25]. Thus, such relatively high Purcell fcan be employed for efficient photon extraction from molecules placed near all-dielectric optical nanoantennas.

 figure: Fig. 4

Fig. 4 Purcell factor of all-dielectric Yagi-Uda nanoantenna vs wavelength for various values of the separation distance D.

Download Full Size | PPT Slide | PDF

3. Conclusion

We have suggested a novel type of optical nanoantennas made of dielectric nanoparticles. Such all-dielectric nanoantennas demonstrate a number of key advantages over their metallic counterparts, including much lower dissipation losses and strong optically-induced magnetization. We have analyzed an all-dielectric analogue of the plasmonic Yagi-Uda nanoantenna consisting of an array of nanoelements, and have demonstrated very high directivity with a smaller number of directors. Moreover, lower dissipation losses and localization of the electromagnetic field inside the nanoparticles allows to reduce the distance between the adjacent elements even further, without compromising the performance.

Acknowledgments

The authors thank C.R. Simovski for useful discussions, and acknowledge a support from the Ministry of Education and Science in Russia and the Australian Research Council.

References and links

1. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008). [CrossRef]   [PubMed]  

2. L. Novotny, “Optical antennas tuned to pitch,” Nature (London) 455, 887 (2008). [CrossRef]  

3. A. F. Koenderink, “Plasmon Nanoparticle Array Waveguides for Single Photon and Single Plasmon Sources,” Nano Lett. 9, 4228–4233 (2009). [CrossRef]   [PubMed]  

4. A. Devilez, B. Stout, and N. Bonod, “Compact Metallo-Dielectric Optical Antenna for Ultra Directional and Enhanced Radiative Emission,” ACS Nano 4, 3390–3396 (2010). [CrossRef]   [PubMed]  

5. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2010). [CrossRef]  

6. J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett. 11, 2819–2824 (2011). [CrossRef]   [PubMed]  

7. A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011). [CrossRef]  

8. C. Balanis, Antenna Theory: Analysis and Design (New York ; Brisbane: J. Wiley, 1982).

9. S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA 108, 3147–3151 (2011). [CrossRef]   [PubMed]  

10. M. K. Schmidt, R. Esteban, J. J. Saenz, I. Suarez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas -a suitable platform for controlling magnetic dipolar emission: errata,” Opt. Express 20, 18609–18610 (2012). [CrossRef]  

11. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett. 12, 3749–3755 (2012). [CrossRef]   [PubMed]  

12. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012). [CrossRef]   [PubMed]  

13. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters 94, 635–640 (2011). [CrossRef]  

14. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano 6, 54895497 (2012). [CrossRef]   [PubMed]  

15. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (New York : Wiley, 1998). [CrossRef]  

16. A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano 6, 837–842 (2012). [CrossRef]  

17. E. Palik, Handbook of Optical Constant of Solids (San Diego, Academic, 1985).

18. O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A 76, 043834 (2007). [CrossRef]  

19. M. Kerker, P. Scheiner, and D. D. Cooke, “The range of validity of the Rayleigh and Thomson limits for Lorenz-Mie scattering,” J. Opt. Soc. Am. 68, 135–137 (1978). [CrossRef]  

20. B. Rolly, B. Stout, S. Bidault, and N. Bonod, “Crucial role of the emitterparticle distance on the directivity of optical antennas,” Opt. Lett. 36, 3368–3370 (2011). [CrossRef]   [PubMed]  

21. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006). [CrossRef]  

22. H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987). [CrossRef]  

23. Yu-lin Xu and Bo A. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” Quant J. Spectrosc. Radiat. Transfer 70, 395–419 (2001). [CrossRef]  

24. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett. 5, 585–589 (2005). [CrossRef]   [PubMed]  

25. B. Stout, A. Devilez, B. Rolly, and N. Bonod, “Multipole methods for nanoantennas design: applications to Yagi-Uda configurations,” J. Opt. Soc. Am. B 28, 1213–1223 (2011). [CrossRef]  

References

  • View by:

  1. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008).
    [Crossref] [PubMed]
  2. L. Novotny, “Optical antennas tuned to pitch,” Nature (London) 455, 887 (2008).
    [Crossref]
  3. A. F. Koenderink, “Plasmon Nanoparticle Array Waveguides for Single Photon and Single Plasmon Sources,” Nano Lett. 9, 4228–4233 (2009).
    [Crossref] [PubMed]
  4. A. Devilez, B. Stout, and N. Bonod, “Compact Metallo-Dielectric Optical Antenna for Ultra Directional and Enhanced Radiative Emission,” ACS Nano 4, 3390–3396 (2010).
    [Crossref] [PubMed]
  5. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2010).
    [Crossref]
  6. J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
    [Crossref] [PubMed]
  7. A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
    [Crossref]
  8. C. Balanis, Antenna Theory: Analysis and Design (New York ; Brisbane: J. Wiley, 1982).
  9. S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA 108, 3147–3151 (2011).
    [Crossref] [PubMed]
  10. M. K. Schmidt, R. Esteban, J. J. Saenz, I. Suarez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas -a suitable platform for controlling magnetic dipolar emission: errata,” Opt. Express 20, 18609–18610 (2012).
    [Crossref]
  11. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett. 12, 3749–3755 (2012).
    [Crossref] [PubMed]
  12. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref] [PubMed]
  13. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters 94, 635–640 (2011).
    [Crossref]
  14. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano 6, 54895497 (2012).
    [Crossref] [PubMed]
  15. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (New York : Wiley, 1998).
    [Crossref]
  16. A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano 6, 837–842 (2012).
    [Crossref]
  17. E. Palik, Handbook of Optical Constant of Solids (San Diego, Academic, 1985).
  18. O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A 76, 043834 (2007).
    [Crossref]
  19. M. Kerker, P. Scheiner, and D. D. Cooke, “The range of validity of the Rayleigh and Thomson limits for Lorenz-Mie scattering,” J. Opt. Soc. Am. 68, 135–137 (1978).
    [Crossref]
  20. B. Rolly, B. Stout, S. Bidault, and N. Bonod, “Crucial role of the emitterparticle distance on the directivity of optical antennas,” Opt. Lett. 36, 3368–3370 (2011).
    [Crossref] [PubMed]
  21. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
    [Crossref]
  22. H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).
    [Crossref]
  23. Yu-lin Xu and Bo A. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” Quant J. Spectrosc. Radiat. Transfer 70, 395–419 (2001).
    [Crossref]
  24. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett. 5, 585–589 (2005).
    [Crossref] [PubMed]
  25. B. Stout, A. Devilez, B. Rolly, and N. Bonod, “Multipole methods for nanoantennas design: applications to Yagi-Uda configurations,” J. Opt. Soc. Am. B 28, 1213–1223 (2011).
    [Crossref]

2012 (5)

M. K. Schmidt, R. Esteban, J. J. Saenz, I. Suarez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas -a suitable platform for controlling magnetic dipolar emission: errata,” Opt. Express 20, 18609–18610 (2012).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano 6, 54895497 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano 6, 837–842 (2012).
[Crossref]

2011 (6)

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[Crossref]

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA 108, 3147–3151 (2011).
[Crossref] [PubMed]

B. Rolly, B. Stout, S. Bidault, and N. Bonod, “Crucial role of the emitterparticle distance on the directivity of optical antennas,” Opt. Lett. 36, 3368–3370 (2011).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters 94, 635–640 (2011).
[Crossref]

B. Stout, A. Devilez, B. Rolly, and N. Bonod, “Multipole methods for nanoantennas design: applications to Yagi-Uda configurations,” J. Opt. Soc. Am. B 28, 1213–1223 (2011).
[Crossref]

2010 (2)

A. Devilez, B. Stout, and N. Bonod, “Compact Metallo-Dielectric Optical Antenna for Ultra Directional and Enhanced Radiative Emission,” ACS Nano 4, 3390–3396 (2010).
[Crossref] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2010).
[Crossref]

2009 (1)

A. F. Koenderink, “Plasmon Nanoparticle Array Waveguides for Single Photon and Single Plasmon Sources,” Nano Lett. 9, 4228–4233 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (1)

O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A 76, 043834 (2007).
[Crossref]

2005 (1)

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett. 5, 585–589 (2005).
[Crossref] [PubMed]

2001 (1)

Yu-lin Xu and Bo A. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” Quant J. Spectrosc. Radiat. Transfer 70, 395–419 (2001).
[Crossref]

1987 (1)

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).
[Crossref]

1978 (1)

Aizpurua, J.

Balanis, C.

C. Balanis, Antenna Theory: Analysis and Design (New York ; Brisbane: J. Wiley, 1982).

Belov, P.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[Crossref]

Belov, P. A.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters 94, 635–640 (2011).
[Crossref]

Bidault, S.

Bohren, C.F.

C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (New York : Wiley, 1998).
[Crossref]

Bonod, N.

Boriskina, S. V.

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA 108, 3147–3151 (2011).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Chew, H.

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Cooke, D. D.

Davoyan, A. R.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[Crossref]

Devilez, A.

B. Stout, A. Devilez, B. Rolly, and N. Bonod, “Multipole methods for nanoantennas design: applications to Yagi-Uda configurations,” J. Opt. Soc. Am. B 28, 1213–1223 (2011).
[Crossref]

A. Devilez, B. Stout, and N. Bonod, “Compact Metallo-Dielectric Optical Antenna for Ultra Directional and Enhanced Radiative Emission,” ACS Nano 4, 3390–3396 (2010).
[Crossref] [PubMed]

Dorfmuller, J.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

Dregely, D.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

Dulkeith, E.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett. 5, 585–589 (2005).
[Crossref] [PubMed]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Esslinger, M.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

Esteban, R.

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Feldmann, J.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett. 5, 585–589 (2005).
[Crossref] [PubMed]

Fu, Y. H.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Giessen, Harald

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

Gonzalez, F.

O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A 76, 043834 (2007).
[Crossref]

Gustafson, Bo A. S.

Yu-lin Xu and Bo A. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” Quant J. Spectrosc. Radiat. Transfer 70, 395–419 (2001).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
[Crossref]

Huffman, D.R.

C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (New York : Wiley, 1998).
[Crossref]

Javier, A. M.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett. 5, 585–589 (2005).
[Crossref] [PubMed]

Kerker, M.

Kern, K.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

Khunsin, W.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

Kivshar, Y. S.

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano 6, 837–842 (2012).
[Crossref]

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[Crossref]

Kivshar, Yu. S.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano 6, 54895497 (2012).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters 94, 635–640 (2011).
[Crossref]

Klar, T. A.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett. 5, 585–589 (2005).
[Crossref] [PubMed]

Koenderink, A. F.

A. F. Koenderink, “Plasmon Nanoparticle Array Waveguides for Single Photon and Single Plasmon Sources,” Nano Lett. 9, 4228–4233 (2009).
[Crossref] [PubMed]

Krasnok, A. E.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters 94, 635–640 (2011).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Liu, W.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano 6, 54895497 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B.

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano 6, 837–842 (2012).
[Crossref]

Lukyanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Mackowski, S.

Maier, S. A.

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano 6, 837–842 (2012).
[Crossref]

Maksymov, I. S.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[Crossref]

Merchiers, O.

O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A 76, 043834 (2007).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano 6, 837–842 (2012).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano 6, 54895497 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters 94, 635–640 (2011).
[Crossref]

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[Crossref]

Moreno, F.

O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A 76, 043834 (2007).
[Crossref]

Neshev, D. N.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano 6, 54895497 (2012).
[Crossref] [PubMed]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2010).
[Crossref]

L. Novotny, “Optical antennas tuned to pitch,” Nature (London) 455, 887 (2008).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
[Crossref]

Palik, E.

E. Palik, Handbook of Optical Constant of Solids (San Diego, Academic, 1985).

Parak, W. J.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett. 5, 585–589 (2005).
[Crossref] [PubMed]

Reinhard, B. M.

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA 108, 3147–3151 (2011).
[Crossref] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Ringler, M.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett. 5, 585–589 (2005).
[Crossref] [PubMed]

Rolly, B.

Saenz, J. J.

Saiz, J. M.

O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A 76, 043834 (2007).
[Crossref]

Scheiner, P.

Schmidt, M. K.

Simovski, C.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[Crossref]

Stefani, F. D.

Stout, B.

Suarez-Lacalle, I.

Taminiau, T. H.

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2010).
[Crossref]

van Hulst, N. F.

Vogelgesang, R.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

Xu, Yu-lin

Yu-lin Xu and Bo A. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” Quant J. Spectrosc. Radiat. Transfer 70, 395–419 (2001).
[Crossref]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

ACS Nano (3)

A. Devilez, B. Stout, and N. Bonod, “Compact Metallo-Dielectric Optical Antenna for Ultra Directional and Enhanced Radiative Emission,” ACS Nano 4, 3390–3396 (2010).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano 6, 54895497 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano 6, 837–842 (2012).
[Crossref]

J. Chem. Phys. (1)

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

JETP Letters (1)

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters 94, 635–640 (2011).
[Crossref]

Nano Lett. (4)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

A. F. Koenderink, “Plasmon Nanoparticle Array Waveguides for Single Photon and Single Plasmon Sources,” Nano Lett. 9, 4228–4233 (2009).
[Crossref] [PubMed]

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett. 5, 585–589 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2010).
[Crossref]

Nature (London) (1)

L. Novotny, “Optical antennas tuned to pitch,” Nature (London) 455, 887 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A 76, 043834 (2007).
[Crossref]

Phys. Status Solidi RRL (1)

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA 108, 3147–3151 (2011).
[Crossref] [PubMed]

Quant J. Spectrosc. Radiat. Transfer (1)

Yu-lin Xu and Bo A. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” Quant J. Spectrosc. Radiat. Transfer 70, 395–419 (2001).
[Crossref]

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Other (4)

E. Palik, Handbook of Optical Constant of Solids (San Diego, Academic, 1985).

C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (New York : Wiley, 1998).
[Crossref]

C. Balanis, Antenna Theory: Analysis and Design (New York ; Brisbane: J. Wiley, 1982).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic view of an all-dielectric optical Yagi-Uda nanoantenna, consisting of the reflector 1 of the radius Rr = 75 nm, and smaller director 2–5 of the radii Rd = 70 nm. The dipole source is placed equally from the reflector and the first director surfaces at the distance D. The separation between surfaces of the neighbouring directors is also equal to D.
Fig. 2
Fig. 2 Wavelength dependence of the directivity of two types of all-dielectric nanoantennas consisting of (a) single dielectric nanoparticle, (b) Yagi-Uda like design for the separation distance D = 70 nm. Insets show 3D radiation pattern diagrams at particular wavelengths.
Fig. 3
Fig. 3 Radiation efficiencies of (a) dielectric (Si) and (b) plasmonic (Ag) Yagi-Uda optical nanoantennas of the same geometrical designs for various values of the separation distance.
Fig. 4
Fig. 4 Purcell factor of all-dielectric Yagi-Uda nanoantenna vs wavelength for various values of the separation distance D.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = 4 π P rad Max [ p ( θ , φ ) ] , η rad = P rad P rad + P loss ,

Metrics