Abstract

In this work, we describe finite element simulations of the plasmonic resonance (PLR) properties of a self-similar chain of plasmonic nanostructures. Using a broad range of conditions, we find strong numerical evidence that the electric field confinement behaves as (Ξ/λ)PLREFE-γ, where EFE is the electric field enhancement, Ξis the linear size of the focusing length, and λ is the wavelength of the resonant excitation. We find that the exponent γ is close to 1, i.e. significantly lower than the 1.5 found for two-dimensional nanodisks. This scaling law provides support for the hypothesis of a universal regime in which the sub-optical wavelength electric field confinement is controlled by the Euclidean dimensionality and is independent of nanoparticle size, metal nature, or embedding medium permittivity.

© 2012 OSA

Scaling laws are ubiquitous in many natural and engineering systems and have been a rich source of physics insight for over 30 years [1,2]. An especial challenge exists when the equations of the underlying physical system are unknown and one must then rely on numerical simulation or data to make predictions. On the other hand, precise control over the energy confinement has proven pivotal for the study of plasmon resonance (PLR) properties in nanostructures. Recent advances in the development of nanoplasmonics and light harvesting [3] suggest that the spatial confinement of plasmon excitations at metal-dielectric interfaces or in hybrid (metallodielectric) nanostructures can be applied to enable entirely new structures with versatile applications ranging from highly sensitive sensors to photovoltaics. These can typically be shaped on subwavelength scales. Particular interest [421] has been focused on linear chains of N resonantly coupled plasmonic nanostructures because these systems are very sensitive to an applied electric field, giving rise to extremely high electric fields (hot spots), i.e. nanosphere cascade nanolenses yielding electric field enhancement in the nanogap between two nanoparticles which can exceed the excitation field by a factor of 103 at the smallest particle.

Presently, efforts are underway to understand the relationship between the electric field enhancement (EFE), the linear size of the focusing length (Ξ), and the geometry of the plasmonic (metal) phase in nanoplasmonic systems. Not long ago it was hypothesized that the locality of plasmon dispersion in a self-similar chain of magnetoplasmonic core-shell two-dimensional (2D, equivalently, circular infinite cylindrical) nanostructures embedded in a host matrix might be governed by a scaling law [6]. This is (Ξ/λ)PLREFE-1.5, where λ denotes the free space wavelength of the resonant excitation. Fundamental questions remain unanswered about such a law, (i) whether self similar chains of three-dimensional (3D) particles can be characterized within a simple universal scaling behavior, (ii) whether it is valid for any particle geometry, or dependent on physical characteristics of the chain, and (iii) whether these observations are consistent with the PLR characteristics. We stress that a complete understanding of the scope of universality of this law still evades our grasp, e.g. for chains of N>5 nanostructures the applicability of scaling law is debatable because nonlocal (quantum confinement) effects lead to significant plasmon broadening in metal nanoparticles of diameter smaller than 10 nm. We note that DNA has been used to design plasmonic nanostructures, such as plasmonic molecules, polymers and crystals [14]. While numerous investigations have shown that EFE can reach 103 (hot spots) in nanosystems [19], there are only a few calculations on predicting Ξ in 2D [8] and 3D [47] systems.

In this work, we report on a systematic numerical study of the sub-optical wavelength electric field spatial confinement in a series of self-similar chains of plasmonic (full and core-shell (CS)) nanospheres. The results are then used as fitting data to demonstrate that EFE and Ξare related by a scaling law. The study focuses on two important theoretical issues. Firstly, although we expect the physical origin of the scaling law to be similar to the situations discussed in [8], the present results differ from prior work in revealing an exponent different from 1.5. Secondly, we provide numerical evidence that the PLR characteristics play a key role on the observed scaling law.

Consider the schematic of the typical array of N metallic nanospheres in Fig. 1 . The dielectric properties of the embedding medium can be assimilated to water. We assume ideally smooth interfaces between rigid phases. The spheres are obtained using scaled-down copies of an initial geometry. A recursive algorithm, i.e. Ri+1=kRi and di,i+1=Ri+1 can be developed to generate any occurrence of such self-similarity for a given iteration i. Here, Ri denotes the radius of the i-th iteration and i parameterizes the iteration process (as illustrated in Fig. 1). In all simulations the radius corresponding to the first iteration is held fixed at R1 = 185 nm. The choice of this parameter and the number of iterations should be consistent with the overall volume L3 of the cubic cell. Clearly, the process cannot be carried up to a high number of iterations. In this paper, we were able to perform calculations up to four iterations for the geometric parameter ranges: k = 0.30-0.35 and =0.30.6. We will assume throughout that the time dependence of the electric field excitation, assumed to be directed along the x direction, is proportional to exp(2πjct/λ), where c is the speed of light in vacuum. At long wavelength the physics of the system turns out to allow a further simplification. It must be borne in mind that the validity of this long-wavelength behavior is rooted in the fact that all length scales must be much smaller than λ. To ensure that this constraint was satisfied, we use L = 1226 nm. We employ a continuum modelling approach built upon constitutive equations which can capture the material behavior on experimentally relevant scales. That is, when the local electrical response in terms of a position dependent permittivity. The consistency and validation of this procedure was verified by agreement (not shown) of our calculations with those obtained from Kramers-Kronig causality relationships [22].

 

Fig. 1 The geometry of the problem is shown schematically. The coordinate system used in the calculations is indicated. The external field is applied to the system in the x direction. The position of the hot spot corresponding to the maximum field enhancement is indicated by the dot near the smallest particle. The numerical parameters for calculations were: R1 = 185 nm and L = 1226 nm. This two-phase system consists of a self-similar chain of plasmonic nanospheres (phase 2) embedded in a surrounding medium (phase 1). The (i + 1)th sphere has outer radius Ri+1=kRi. The spherical inclusions have permittivity ε2=ε2'jε2" and the host’s permittivity reads ε1=ε1' with ε1'=1.77 in the THz range of frequencies [22].

Download Full Size | PPT Slide | PDF

Calculations are performed using the finite element method as implemented in the COMSOL Multiphysics code [12] to study the effective complex permittivity ε=ε'jε" as in [8] and [22]. The method is a straightforward generalization of that used recently in Ref [21]. for studying self-similar chains of 2D plasmonic nanostructures. In practice, the calculations use homogeneous Dirichlet-Neumann boundary conditions (see Ref [22]. and references cited therein). Simulations were run with 4-iteration chains since technically, a higher iteration number is computationally demanding. In this context, it is also salient to note that a fundamental limiting factor for how small systems can be designed is due to the quantized character of plasmons which can be significant for N5, i.e. the thickness of the metallic shell should be larger than the Fermi wavelength (λF0.5 nm for Au) [3]. In our setup, typical running times for one set of fixed k and parameters required approximately 1 h using a personal computer with a Pentium IV processor (3 GHz). Additional technical details of secondary importance are given in [8]. To quantify the focusing length at the different iterations Ξ was specified according to a previous report [8] as the distance over which EFE attains 85% of its maximum value. We checked (not shown) that shifting the threshold up from 85% to 90% of the maximum value of the EFE does not drastically affect the −1.5 exponent. An alternative definition of Ξ may be obtained from the first moment of the field intensity, Ξ=xE(x)dx/E(x)dxwhich characterizes the average transport distance in the field direction. Both methods give similar results. As is evident from Fig. 1, the maximum EFE is achieved close to the points of the surface of the nanoparticle with maximal curvature, i.e. localized near the surface of the smaller particle, in good agreement with the observations in Refs [68,2333]. That is the optical excitation generates a local electric field in the vicinity of the largest nanosphere which plays the role of the excitation field for the smaller particle, and so on. We explicitly checked that the hot spots are localized to the x axis.

Gold and silver are chosen as model shell materials and were modelled using the Drude model, i.e. ε2(ω)=ε2'ωp2/ω(ωjωc). For Au, plasma frequency ωp/2π=2228 THz, collision frequency ωc/2π=6.0 THz [16], and ε'=7. For Ag, plasma frequency ωp/2π=2149 THz, collision frequency ωc/2π=12.2 THz [3133], and ε'=2.48. Notice that the penetration depth of electromagnetic waves at optical frequencies is about 20 nm for Au. While nonlocality turns out to be a generic feature of small nanoobjects, our calculations show that if we only consider the conventional Drude’s form EFE can be significantly modified (Fig. 2(d) ) compared to the case including the finite-size correction (FSC) leading to an enhanced rate of electron scattering. The FSC was included by changing ωc in Drude’s model of permittivity by ωc+AvF/R, where vF is the Fermi velocity for bulk Au, R is the radius of the particle, and A is a constant of order unity [9,17,19,21]. This is consistent with earlier studies [19,20,30,3438]. We later return to discuss this point for the effective permittivity. An immediate consequence of the Drude’s model when nonlocal surface effects are neglected is that in the near-field region EFE is scale invariant.

 

Fig. 2 (a) Universal scaling of the relative focusing length, Ξ/λ, with respect to the PLR wavelength of the excitation, as a function of EFE for the array of nanoparticles shown in Fig. 1 at various model parameters. The figure is plotted on a log-log scale and the slope of the solid line is −1. (a) =0.6 fixed. Symbols are (open squares) k = 0.30, (open circles) k = 0.31, (open triangles) k = 0.32, (solid squares) k = 0.33, (solid diamonds) k = 0.34, (solid triangles) k = 0.35. The metal phase is assumed to be Au. (b) k = 0.33. Symbols are: (open diamonds) =0.3, (solid circles) =0.4, (open triangles) =0.5, (solid squares) =0.6. The metal phase is assumed to be Au. (c) l = 0.6 and k = 0.33. Symbols are: (solid squares) metal phase is Au and surrounding medium is water; (solid circles) metal phase is Au and surrounding medium is air. (d) =0.6 and k = 0.33. Symbols are: (solid squares) metal phase is Au and no FSC is considered, (solid circles) metal phase is Ag and no FSC is considered, (solid triangles) metal phase is Au and FSC is considered, (solid diamonds) Fe3O4-Au CS nanoparticles (t = 0.2) and no FSC is considered.

Download Full Size | PPT Slide | PDF

Our main results are summarized in the (Ξ/λ)PLRvs EFE diagram shown in Fig. 2. The main feature of the present study is that this diagram displays a scaling law (Ξ/λ)PLREFE-γwith an exponent γ1. This relationship is found to be independent of the values of k and investigated, the metal’s composition and the dielectric medium that surrounds the metal nanoobject, suggesting that it could be universal. With regard to the actual value of γ = 1, it is interesting to observe that it is significantly lower than the 1.5 found for nanodisks. The panels in Fig. 2 present the simulations for a range of model parameters k and , two kinds of noble metals, and two kinds of embedding medium (water and air in order to compare with Refs [47].). In all cases, we see from Fig. 2 that there is only a weak sensitivity of the scaling behavior upon the various sets of parameters. Remarkably, we find that the ratio of the γ values found between the 2D [8] and the current 3D cases is to the inverse ratio of their Euclidean dimensions. With a further increase of N we find that EFE is much larger (Fig. 3 ) than gN=Q(RN/R1)lnQ/|lnk|, where Qε2'/ε2" denotes the quality factor of the surface plasmon resonance and ε2 is the permittivity of the metal at the surface-plasmon resonance frequency, as was suggested by Stockman et al. [4,5]. It is also interesting to note that Dai and associates [21] had hinted at the possibility that cascade amplification produces a local field enhanced by a factor of g¯N=QN at the Nth particle. Figure 3 compares also the EFE values achieved as the structure geometry and metal nature are varied and Dai et al.’s estimate.

 

Fig. 3 A comparison of EFE with the estimates of the cascade amplification coefficient gN and g¯N, suggested by different authors [47,45], for the various cases of metal phase/embedding medium considered in Fig. 2(a), 2(b), 2(c). Squares (resp. crosses) correspond to gN (resp. g¯N). The solid line corresponds to EFE=gN or g¯N.

Download Full Size | PPT Slide | PDF

Figure 3 shows that EFE continues to grow for powers far above the Dai et al. estimate. A similar analysis reveals that γ1 persists when core-metal shell particles are considered at a specific of the metal layer’s thickness (ei=tRi with t = 0.2) instead of full particles (Fig. 2). The simulations for Fe3O4-Au CS nanospheres were procedurally similar from the 2D ones reported in [8]. Initially, it has been expected that the value of γ could be accounted for through the fractal dimension of these arrays, i.e. df=ln2/|lnk|, but this hope was dashed when it became clear our simulations that probe the (Ξ/λ)PLRvs EFE scaling behavior are incapable of distinguishing between types of nanoparticle, metal, and embedding medium but are typically controlled by the Euclidean dimensionality. It is therefore tempting to suggest that it is a universal and robust property of self-similar chains of plasmonic nanoparticles and, most likely, which comes from the resonant excitation of a damped plasmon mode.

A couple of remarks on our results are in order. Interestingly, we find that they show qualitatively good consistency with recently reported identical universal scaling behavior of plasmon coupling in metal nanoshells and that in metal nanoparticles [3941]. As another point of comparison, it is important to note that finite-difference time-domain computations demonstrated a nanolens effect which can convert a diffraction limited Gaussian beam into a sub-wavelength focus as small as λ/10 for self-similar Ag nanosphere array embedded in glass [4244]. Our finding is consistent with recently published works that have highlighted the importance of carefully considering the issue of meshing the computational domain when calculating EFE and ε [6,7,38,45]. From a practical point of view, the scaling law is very useful, because all the quantities involved can be measured experimentally and do not rely on microscopic details. Only very recently, promising measurements have been reported of the optical-field enhancement from well controlled plasmonic arrays [2328,4549].

We end with a brief discussion of the effective permittivity for these self-similar chains of nanospheres which, to the best of our knowledge, was not considered in the majority of past works.

Figure 4 shows the imaginary parts of the effective permittivity which consist of many resonant peaks across a wide spectral region and are characterized by an intricate interplay between them (a full discussion of the permittivity spectra is beyond the scope of this study and will be the object of a future work). With respect to the maximum field enhancement, one can see a systematic redshift of the PLR (marked by the asterisk in Fig. 4) when the iteration number increases. The electrostatic resonance spectrum of nanoscale particles can be complex due to their multiband nature. This issue has been recently addressed in a particularly pointed fashion by Mayergoyz and associates [50]. However, an analytical framework of general applicability for the collective PLR behavior of an arbitrary (non-translation invariant) plasmonic array of nanostructures is lacking. Although our calculations are performed without the nonlocality correction of ε (black line in Fig. 4), there is no significant change in the ε" results when the FSC is taken into account (green line in Fig. 4) with the exception of the 4th iteration for which the low-frequency modes vanish (Fig. 4(d)). To put the result shown in Fig. 2 into perspective, we provide also the ε" data for Fe3O4-Au CS nanosphere arrays (Fig. 5 ).

 

Fig. 4 A comparison of the imaginary parts of the effective permittivity for self-similar chains of Au nanospheres embedded in water with (green line) or without (black line) FSC. =0.6 and k = 0.33. The asterisk indicates the PLR spectral position corresponding to the maximum field enhancement. (a) first iteration (b) second iteration, (c) third iteration, and (d) fourth iteration.

Download Full Size | PPT Slide | PDF

 

Fig. 5 Same as in Fig. 4 for self-similar chains of Fe3O4-Au CS nanoparticles embedded in water without FSC (blue line). =0.6, k = 0.33, and t = 0.2. The value of ε" for self-similar chains of Au nanospheres embedded in water without (black line) FSC is shown for comparison.

Download Full Size | PPT Slide | PDF

Interestingly, the data in Fig. 5 show that the PLR characteristics (blue line in Fig. 5) corresponding to the maximum field enhancement show a different spectral profile than the corresponding case of full Au nanoparticles. Although huge, tunable responses to electric perturbations are possible in this system, i.e. by varying t and the CS phases, experimental difficulties to fabricate self-similar plasmonic arrays will prevent perfect tuning [19,20,2328,49].

In summary, our findings evidence a scaling relation between two fundamental properties of self-similar chains of plasmonic nanostructures: the field enhancement EFE and the linear size Ξ of the hot spot. This law holds robustly for all simulation data. Taken together, this scaling law provides support for the hypothesis of a universal regime in which the sub-optical wavelength electric field confinement in nanoplasmonic systems is controlled by the Euclidean dimensionality and is independent of nanoparticle size, metal nature, or embedding medium permittivity. The present results suggest to us that the universal features of this scaling law are strongly related to the widespread multiple resonant (PLR) peaks and the shifting of the intensity centre as a function of the number of nanoparticles. This scaling law is a significant step towards controlling and designing plasmonic materials with desired sub-optical wavelength electric field confinement properties, e.g. 3D optical near-field trapping [51,52]. It is our intention to probe the scaling relation between EFE and Ξ by including the influence of a coupling mechanism for electric and magnetic fields in magnetoplasmonic heterostructures for which the PRL is controlled using a weak magnetic field [53,54]. While there may be subtleties that would only be manifest were we able to study more complex (nonconvex) nanoparticles, we speculate that this scaling law likely applies to other plasmonic architectures coupling the metallic components through nanogaps, e.g. chain of nanocrescents [5561].

Acknowledgments

We acknowledge financial support from the Ph.D. funding programme (grant programme 211-B2-9/ARED) of the Conseil Régional de Bretagne. Lab-STICC is UMR CNRS 6285.

References and links

1. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).

2. P. Meakin, Fractals, Scaling, and Growth Far from Equilibrium (Cambridge University Press, 1998).

3. A. Maier, Plasmonics: Fundamental and Applications (Springer, 2007).

4. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010). [CrossRef]   [PubMed]  

5. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001). [CrossRef]   [PubMed]  

6. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003). [CrossRef]   [PubMed]  

7. Z. Li, Z. Yang, and H. Xu, “Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett. 97(7), 079701, discussion 079702 (2006). [CrossRef]   [PubMed]  

8. M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Subwavelength control of electromagnetic field confinement in self-similar chains of magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 026612 (2011). [CrossRef]   [PubMed]  

9. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef]   [PubMed]  

10. C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano 3(6), 1379–1388 (2009). [CrossRef]   [PubMed]  

11. A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, “High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers,” J. Opt. Soc. Am. B 21(1), 121–131 (2004). [CrossRef]  

12. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997). [CrossRef]   [PubMed]  

13. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4(1), 153–158 (2004). [CrossRef]  

14. V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272(2-3), 61–137 (1996). [CrossRef]  

15. Properties of Nanostructured Random Media, V. M. Shalaev, ed. (Springer, 2002).

16. J. Borneman, K.-P. Chen, A. Kildishev, and V. Shalaev, “Simplified model for periodic nanoantennae: linear model and inverse design,” Opt. Express 17(14), 11607–11617 (2009). [CrossRef]   [PubMed]  

17. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007). [CrossRef]  

18. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998). [CrossRef]   [PubMed]  

19. F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112(46), 17983–17987 (2008). [CrossRef]  

20. G. W. Hanson, R. C. Monreal, and S. P. Apell, “Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles,” J. Appl. Phys. 109(12), 124306 (2011). [CrossRef]  

21. COMSOL Multiphysics User’s Guide, version 3.4; Comsol Inc. (2006).

22. M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Long-wavelength electromagnetic propagation in magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5), 057602 (2010). [CrossRef]   [PubMed]  

23. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277(5329), 1078–1081 (1997). [CrossRef]   [PubMed]  

24. S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc. 130(9), 2750–2751 (2008). [CrossRef]   [PubMed]  

25. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011). [CrossRef]   [PubMed]  

26. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004). [CrossRef]  

27. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009). [CrossRef]  

28. B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc. 132(10), 3248–3249 (2010). [CrossRef]   [PubMed]  

29. V. Poponin and A. Ignatov, “Local field enhancement in star-like sets of plasmon nanoparticles,” J. Korean Phys. Soc. 47, S222–S228 (2005).

30. S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express 15(7), 4253–4267 (2007). [CrossRef]   [PubMed]  

31. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983). [CrossRef]   [PubMed]  

32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

33. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

34. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004). [CrossRef]   [PubMed]  

35. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26(14), 1096–1098 (2001). [CrossRef]   [PubMed]  

36. H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B 72(7), 073405 (2005). [CrossRef]  

37. C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4(12), 2355–2359 (2004). [CrossRef]  

38. S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B 73(3), 035403 (2006). [CrossRef]  

39. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007). [CrossRef]  

40. P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells,” Nano Lett. 7(9), 2854–2858 (2007). [CrossRef]   [PubMed]  

41. P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 111, 17451–17454 (2007). [CrossRef]  

42. J. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001). [CrossRef]   [PubMed]  

43. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004). [CrossRef]   [PubMed]  

44. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4(1), 76–90 (2011). [CrossRef]   [PubMed]  

45. J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008). [CrossRef]  

46. G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE 7205, 720508, 720508-10 (2009). [CrossRef]  

47. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008). [CrossRef]   [PubMed]  

48. J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem. 80(11), 4247–4251 (2008). [CrossRef]   [PubMed]  

49. V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett. 105(24), 246806 (2010). [CrossRef]   [PubMed]  

50. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005). [CrossRef]  

51. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007). [CrossRef]  

52. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008). [CrossRef]  

53. V. Castel and C. Brosseau, “Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal-oxides,” Phys. Rev. B 77(13), 134424 (2008). [CrossRef]  

54. V. Castel and C. Brosseau, “Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy,” Appl. Phys. Lett. 92(23), 233110 (2008). [CrossRef]  

55. B. M. Ross and L. P. Lee, “Plasmon tuning and local field enhancement maximization of the nanocrescent,” Nanotechnology 19(27), 275201 (2008). [CrossRef]   [PubMed]  

56. K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19(14), 145305 (2008). [CrossRef]   [PubMed]  

57. H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys. 9(3), 53–70 (2007). [CrossRef]  

58. J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.) 17(17), 2131–2134 (2005). [CrossRef]  

59. J. Kim, G. Liu, Y. Lu, and L. Lee, “Intra-particle plasmonic coupling of tip and cavity resonance modes in metallic apertured nanocavities,” Opt. Express 13(21), 8332–8338 (2005). [CrossRef]   [PubMed]  

60. L. Yang, X. Luo, and M. Hong, “Self-similar chain of nanocrescents as a surface-enhanced Raman scattering substrate,” J. Comput. Theor. Nanosci. 7(8), 1364–1367 (2010). [CrossRef]  

61. Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).
  2. P. Meakin, Fractals, Scaling, and Growth Far from Equilibrium (Cambridge University Press, 1998).
  3. A. Maier, Plasmonics: Fundamental and Applications (Springer, 2007).
  4. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
    [CrossRef] [PubMed]
  5. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett.87(16), 167401 (2001).
    [CrossRef] [PubMed]
  6. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
    [CrossRef] [PubMed]
  7. Z. Li, Z. Yang, and H. Xu, “Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
    [CrossRef] [PubMed]
  8. M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Subwavelength control of electromagnetic field confinement in self-similar chains of magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026612 (2011).
    [CrossRef] [PubMed]
  9. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  10. C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
    [CrossRef] [PubMed]
  11. A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, “High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers,” J. Opt. Soc. Am. B21(1), 121–131 (2004).
    [CrossRef]
  12. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997).
    [CrossRef] [PubMed]
  13. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
    [CrossRef]
  14. V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep.272(2-3), 61–137 (1996).
    [CrossRef]
  15. Properties of Nanostructured Random Media, V. M. Shalaev, ed. (Springer, 2002).
  16. J. Borneman, K.-P. Chen, A. Kildishev, and V. Shalaev, “Simplified model for periodic nanoantennae: linear model and inverse design,” Opt. Express17(14), 11607–11617 (2009).
    [CrossRef] [PubMed]
  17. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76(24), 245403 (2007).
    [CrossRef]
  18. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998).
    [CrossRef] [PubMed]
  19. F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112(46), 17983–17987 (2008).
    [CrossRef]
  20. G. W. Hanson, R. C. Monreal, and S. P. Apell, “Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles,” J. Appl. Phys.109(12), 124306 (2011).
    [CrossRef]
  21. COMSOL Multiphysics User’s Guide, version 3.4; Comsol Inc. (2006).
  22. M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Long-wavelength electromagnetic propagation in magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057602 (2010).
    [CrossRef] [PubMed]
  23. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
    [CrossRef] [PubMed]
  24. S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc.130(9), 2750–2751 (2008).
    [CrossRef] [PubMed]
  25. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011).
    [CrossRef] [PubMed]
  26. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
    [CrossRef]
  27. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
    [CrossRef]
  28. B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
    [CrossRef] [PubMed]
  29. V. Poponin and A. Ignatov, “Local field enhancement in star-like sets of plasmon nanoparticles,” J. Korean Phys. Soc.47, S222–S228 (2005).
  30. S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express15(7), 4253–4267 (2007).
    [CrossRef] [PubMed]
  31. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  33. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  34. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
    [CrossRef] [PubMed]
  35. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett.26(14), 1096–1098 (2001).
    [CrossRef] [PubMed]
  36. H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B72(7), 073405 (2005).
    [CrossRef]
  37. C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
    [CrossRef]
  38. S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B73(3), 035403 (2006).
    [CrossRef]
  39. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
    [CrossRef]
  40. P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells,” Nano Lett.7(9), 2854–2858 (2007).
    [CrossRef] [PubMed]
  41. P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C111, 17451–17454 (2007).
    [CrossRef]
  42. J. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express8(12), 655–663 (2001).
    [CrossRef] [PubMed]
  43. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
    [CrossRef] [PubMed]
  44. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
    [CrossRef] [PubMed]
  45. J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008).
    [CrossRef]
  46. G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
    [CrossRef]
  47. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
    [CrossRef] [PubMed]
  48. J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
    [CrossRef] [PubMed]
  49. V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
    [CrossRef] [PubMed]
  50. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
    [CrossRef]
  51. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
    [CrossRef]
  52. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008).
    [CrossRef]
  53. V. Castel and C. Brosseau, “Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal-oxides,” Phys. Rev. B77(13), 134424 (2008).
    [CrossRef]
  54. V. Castel and C. Brosseau, “Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy,” Appl. Phys. Lett.92(23), 233110 (2008).
    [CrossRef]
  55. B. M. Ross and L. P. Lee, “Plasmon tuning and local field enhancement maximization of the nanocrescent,” Nanotechnology19(27), 275201 (2008).
    [CrossRef] [PubMed]
  56. K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008).
    [CrossRef] [PubMed]
  57. H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys.9(3), 53–70 (2007).
    [CrossRef]
  58. J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2131–2134 (2005).
    [CrossRef]
  59. J. Kim, G. Liu, Y. Lu, and L. Lee, “Intra-particle plasmonic coupling of tip and cavity resonance modes in metallic apertured nanocavities,” Opt. Express13(21), 8332–8338 (2005).
    [CrossRef] [PubMed]
  60. L. Yang, X. Luo, and M. Hong, “Self-similar chain of nanocrescents as a surface-enhanced Raman scattering substrate,” J. Comput. Theor. Nanosci.7(8), 1364–1367 (2010).
    [CrossRef]
  61. Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012).
    [CrossRef] [PubMed]

2012

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012).
[CrossRef] [PubMed]

2011

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Subwavelength control of electromagnetic field confinement in self-similar chains of magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026612 (2011).
[CrossRef] [PubMed]

G. W. Hanson, R. C. Monreal, and S. P. Apell, “Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles,” J. Appl. Phys.109(12), 124306 (2011).
[CrossRef]

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011).
[CrossRef] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
[CrossRef] [PubMed]

2010

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Long-wavelength electromagnetic propagation in magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057602 (2010).
[CrossRef] [PubMed]

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

L. Yang, X. Luo, and M. Hong, “Self-similar chain of nanocrescents as a surface-enhanced Raman scattering substrate,” J. Comput. Theor. Nanosci.7(8), 1364–1367 (2010).
[CrossRef]

2009

J. Borneman, K.-P. Chen, A. Kildishev, and V. Shalaev, “Simplified model for periodic nanoantennae: linear model and inverse design,” Opt. Express17(14), 11607–11617 (2009).
[CrossRef] [PubMed]

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
[CrossRef]

2008

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008).
[CrossRef]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008).
[CrossRef]

V. Castel and C. Brosseau, “Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal-oxides,” Phys. Rev. B77(13), 134424 (2008).
[CrossRef]

V. Castel and C. Brosseau, “Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy,” Appl. Phys. Lett.92(23), 233110 (2008).
[CrossRef]

B. M. Ross and L. P. Lee, “Plasmon tuning and local field enhancement maximization of the nanocrescent,” Nanotechnology19(27), 275201 (2008).
[CrossRef] [PubMed]

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008).
[CrossRef] [PubMed]

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc.130(9), 2750–2751 (2008).
[CrossRef] [PubMed]

F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112(46), 17983–17987 (2008).
[CrossRef]

2007

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys.9(3), 53–70 (2007).
[CrossRef]

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76(24), 245403 (2007).
[CrossRef]

S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express15(7), 4253–4267 (2007).
[CrossRef] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells,” Nano Lett.7(9), 2854–2858 (2007).
[CrossRef] [PubMed]

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C111, 17451–17454 (2007).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

2006

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B73(3), 035403 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Z. Li, Z. Yang, and H. Xu, “Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

2005

V. Poponin and A. Ignatov, “Local field enhancement in star-like sets of plasmon nanoparticles,” J. Korean Phys. Soc.47, S222–S228 (2005).

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2131–2134 (2005).
[CrossRef]

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B72(7), 073405 (2005).
[CrossRef]

J. Kim, G. Liu, Y. Lu, and L. Lee, “Intra-particle plasmonic coupling of tip and cavity resonance modes in metallic apertured nanocavities,” Opt. Express13(21), 8332–8338 (2005).
[CrossRef] [PubMed]

2004

A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, “High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers,” J. Opt. Soc. Am. B21(1), 121–131 (2004).
[CrossRef]

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

2003

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

2001

1998

1997

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997).
[CrossRef] [PubMed]

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

1996

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep.272(2-3), 61–137 (1996).
[CrossRef]

1983

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Alexander, R. W.

Ali, T. A.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Apell, S. P.

G. W. Hanson, R. C. Monreal, and S. P. Apell, “Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles,” J. Appl. Phys.109(12), 124306 (2011).
[CrossRef]

Aubry, A.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Aussenegg, F. R.

Barnes, W. L.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett.87(16), 167401 (2001).
[CrossRef] [PubMed]

Bidault, S.

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc.130(9), 2750–2751 (2008).
[CrossRef] [PubMed]

Blanco, L. A.

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B73(3), 035403 (2006).
[CrossRef]

Bocchio, N.

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys.9(3), 53–70 (2007).
[CrossRef]

Bokor, J.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

Boriskina, S. V.

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
[CrossRef] [PubMed]

Borneman, J.

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Brosseau, C.

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Subwavelength control of electromagnetic field confinement in self-similar chains of magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026612 (2011).
[CrossRef] [PubMed]

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Long-wavelength electromagnetic propagation in magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057602 (2010).
[CrossRef] [PubMed]

V. Castel and C. Brosseau, “Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy,” Appl. Phys. Lett.92(23), 233110 (2008).
[CrossRef]

V. Castel and C. Brosseau, “Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal-oxides,” Phys. Rev. B77(13), 134424 (2008).
[CrossRef]

Burin, A. L.

Burrows, C. P.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Cabrini, S.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

Cajko, F.

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008).
[CrossRef]

Campolongo, M. J.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011).
[CrossRef] [PubMed]

Cao, H.

Casiraghi, C.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Castel, V.

V. Castel and C. Brosseau, “Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal-oxides,” Phys. Rev. B77(13), 134424 (2008).
[CrossRef]

V. Castel and C. Brosseau, “Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy,” Appl. Phys. Lett.92(23), 233110 (2008).
[CrossRef]

Chen, K.-P.

Cheng, W.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011).
[CrossRef] [PubMed]

Clime, L.

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008).
[CrossRef] [PubMed]

Coluccio, M. L.

G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
[CrossRef]

Cui, B.

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008).
[CrossRef] [PubMed]

Dai, J.

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008).
[CrossRef]

Das, G.

G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
[CrossRef]

De Angelis, F.

G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
[CrossRef]

Deng, Z.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

Di Fabrizio, E.

G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
[CrossRef]

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008).
[CrossRef]

Ding, B.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

Elghanian, R.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells,” Nano Lett.7(9), 2854–2858 (2007).
[CrossRef] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C111, 17451–17454 (2007).
[CrossRef]

Engheta, N.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76(24), 245403 (2007).
[CrossRef]

Essone Mezeme, M.

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Subwavelength control of electromagnetic field confinement in self-similar chains of magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026612 (2011).
[CrossRef] [PubMed]

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Long-wavelength electromagnetic propagation in magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057602 (2010).
[CrossRef] [PubMed]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett.87(16), 167401 (2001).
[CrossRef] [PubMed]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

Fernández-Domínguez, A. I.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Foteinopoulou, S.

Fredkin, D. R.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112(46), 17983–17987 (2008).
[CrossRef]

García de Abajo, F. J.

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc.130(9), 2750–2751 (2008).
[CrossRef] [PubMed]

Geim, A. K.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Genov, D. A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

Goodrich, G. P.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

Grady, N. K.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008).
[CrossRef]

Hafner, J. H.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

Halas, N. J.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

Hanson, G. W.

G. W. Hanson, R. C. Monreal, and S. P. Apell, “Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles,” J. Appl. Phys.109(12), 124306 (2011).
[CrossRef]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

Hofmann, C.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Hong, M.

L. Yang, X. Luo, and M. Hong, “Self-similar chain of nanocrescents as a surface-enhanced Raman scattering substrate,” J. Comput. Theor. Nanosci.7(8), 1364–1367 (2010).
[CrossRef]

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

Ignatov, A.

V. Poponin and A. Ignatov, “Local field enhancement in star-like sets of plasmon nanoparticles,” J. Korean Phys. Soc.47, S222–S228 (2005).

Jain, P. K.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C111, 17451–17454 (2007).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells,” Nano Lett.7(9), 2854–2858 (2007).
[CrossRef] [PubMed]

Kelly, A. T.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Kildishev, A.

Kim, J.

Klar, P.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Kneipp, H.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

Kneipp, J.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

Kneipp, K.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

Kobayashi, T.

Kottmann, J.

Kottmann, J. P.

Kravets, V. G.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Kreiter, M.

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys.9(3), 53–70 (2007).
[CrossRef]

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2131–2134 (2005).
[CrossRef]

Krenn, J. R.

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Lasquellec, S.

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Subwavelength control of electromagnetic field confinement in self-similar chains of magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026612 (2011).
[CrossRef] [PubMed]

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Long-wavelength electromagnetic propagation in magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057602 (2010).
[CrossRef] [PubMed]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Lee, L.

Lee, L. P.

B. M. Ross and L. P. Lee, “Plasmon tuning and local field enhancement maximization of the nanocrescent,” Nanotechnology19(27), 275201 (2008).
[CrossRef] [PubMed]

Lei, D. Y.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Leitner, A.

Letsinger, R. L.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

Levin, C. S.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Li, J.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76(24), 245403 (2007).
[CrossRef]

Li, K.

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

Li, X.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

Li, Z.

Z. Li, Z. Yang, and H. Xu, “Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

Liu, G.

Long, L. L.

Lu, Y.

Luo, D.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011).
[CrossRef] [PubMed]

Luo, X.

L. Yang, X. Luo, and M. Hong, “Self-similar chain of nanocrescents as a surface-enhanced Raman scattering substrate,” J. Comput. Theor. Nanosci.7(8), 1364–1367 (2010).
[CrossRef]

Luo, Y.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012).
[CrossRef] [PubMed]

Maier, S. A.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Martin, O. J. F.

Mayergoyz, I. D.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

Mecarini, F.

G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
[CrossRef]

Mirkin, C. A.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

Monreal, R. C.

G. W. Hanson, R. C. Monreal, and S. P. Apell, “Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles,” J. Appl. Phys.109(12), 124306 (2011).
[CrossRef]

Morimoto, A.

Morosan, E.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Mucic, R. C.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

Nehl, C. L.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

Nieto-Vesperinas, M.

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B73(3), 035403 (2006).
[CrossRef]

Nordlander, P.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Ordal, M. A.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Panne, U.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

Pendry, J. B.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Polman, A.

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc.130(9), 2750–2751 (2008).
[CrossRef] [PubMed]

Poponin, V.

V. Poponin and A. Ignatov, “Local field enhancement in star-like sets of plasmon nanoparticles,” J. Korean Phys. Soc.47, S222–S228 (2005).

Quidant, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

Quinten, M.

Ratner, M. A.

Reinhard, B. M.

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
[CrossRef] [PubMed]

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008).
[CrossRef]

Rochholz, H.

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys.9(3), 53–70 (2007).
[CrossRef]

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2131–2134 (2005).
[CrossRef]

Ross, B. M.

B. M. Ross and L. P. Lee, “Plasmon tuning and local field enhancement maximization of the nanocrescent,” Nanotechnology19(27), 275201 (2008).
[CrossRef] [PubMed]

Salandrino, A.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76(24), 245403 (2007).
[CrossRef]

Sarychev, A. K.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Sburlan, S. E.

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B73(3), 035403 (2006).
[CrossRef]

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, “High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers,” J. Opt. Soc. Am. B21(1), 121–131 (2004).
[CrossRef]

Schedin, F.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Shalaev, V.

Shalaev, V. M.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep.272(2-3), 61–137 (1996).
[CrossRef]

Sherwood, M.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

Shumaker-Parry, J. S.

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2131–2134 (2005).
[CrossRef]

Sonnefraud, Y.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Stockman, M. I.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett.87(16), 167401 (2001).
[CrossRef] [PubMed]

Storhoff, J. J.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

Takahara, J.

Taki, H.

Tam, F.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

Tan, S. J.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011).
[CrossRef] [PubMed]

Tsukerman, I.

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008).
[CrossRef]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Vandenbem, C.

Veres, T.

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008).
[CrossRef] [PubMed]

Vigneron, J. P.

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Ward, C. A.

Wei, A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Whitmire, K. H.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Xu, H.

Z. Li, Z. Yang, and H. Xu, “Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B72(7), 073405 (2005).
[CrossRef]

Yamagishi, S.

Yan, H.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

Yang, L.

L. Yang, X. Luo, and M. Hong, “Self-similar chain of nanocrescents as a surface-enhanced Raman scattering substrate,” J. Comput. Theor. Nanosci.7(8), 1364–1367 (2010).
[CrossRef]

Yang, Z.

Z. Li, Z. Yang, and H. Xu, “Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008).
[CrossRef]

Zhang, Z.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

Zoriniants, G.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Zuckermann, R. N.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

ACS Nano

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2131–2134 (2005).
[CrossRef]

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

Anal. Chem.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

V. Castel and C. Brosseau, “Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy,” Appl. Phys. Lett.92(23), 233110 (2008).
[CrossRef]

J. Am. Chem. Soc.

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc.130(9), 2750–2751 (2008).
[CrossRef] [PubMed]

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

J. Appl. Phys.

G. W. Hanson, R. C. Monreal, and S. P. Apell, “Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles,” J. Appl. Phys.109(12), 124306 (2011).
[CrossRef]

J. Chem. Phys.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

J. Comput. Theor. Nanosci.

L. Yang, X. Luo, and M. Hong, “Self-similar chain of nanocrescents as a surface-enhanced Raman scattering substrate,” J. Comput. Theor. Nanosci.7(8), 1364–1367 (2010).
[CrossRef]

J. Korean Phys. Soc.

V. Poponin and A. Ignatov, “Local field enhancement in star-like sets of plasmon nanoparticles,” J. Korean Phys. Soc.47, S222–S228 (2005).

J. Opt. Soc. Am. B

J. Phys. Chem. C

F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112(46), 17983–17987 (2008).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C111, 17451–17454 (2007).
[CrossRef]

Nano Lett.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells,” Nano Lett.7(9), 2854–2858 (2007).
[CrossRef] [PubMed]

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

Nanoscale

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
[CrossRef] [PubMed]

Nanotechnology

B. M. Ross and L. P. Lee, “Plasmon tuning and local field enhancement maximization of the nanocrescent,” Nanotechnology19(27), 275201 (2008).
[CrossRef] [PubMed]

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011).
[CrossRef] [PubMed]

Nat. Photonics

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008).
[CrossRef]

Nat. Phys.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

New J. Phys.

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys.9(3), 53–70 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep.272(2-3), 61–137 (1996).
[CrossRef]

Phys. Rev. B

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76(24), 245403 (2007).
[CrossRef]

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B72(7), 073405 (2005).
[CrossRef]

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B73(3), 035403 (2006).
[CrossRef]

V. Castel and C. Brosseau, “Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal-oxides,” Phys. Rev. B77(13), 134424 (2008).
[CrossRef]

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008).
[CrossRef]

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Long-wavelength electromagnetic propagation in magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057602 (2010).
[CrossRef] [PubMed]

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Subwavelength control of electromagnetic field confinement in self-similar chains of magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026612 (2011).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett.87(16), 167401 (2001).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

Z. Li, Z. Yang, and H. Xu, “Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012).
[CrossRef] [PubMed]

Proc. SPIE

G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
[CrossRef]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

Other

COMSOL Multiphysics User’s Guide, version 3.4; Comsol Inc. (2006).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).

P. Meakin, Fractals, Scaling, and Growth Far from Equilibrium (Cambridge University Press, 1998).

A. Maier, Plasmonics: Fundamental and Applications (Springer, 2007).

Properties of Nanostructured Random Media, V. M. Shalaev, ed. (Springer, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The geometry of the problem is shown schematically. The coordinate system used in the calculations is indicated. The external field is applied to the system in the x direction. The position of the hot spot corresponding to the maximum field enhancement is indicated by the dot near the smallest particle. The numerical parameters for calculations were: R1 = 185 nm and L = 1226 nm. This two-phase system consists of a self-similar chain of plasmonic nanospheres (phase 2) embedded in a surrounding medium (phase 1). The (i + 1)th sphere has outer radius R i+1 =k R i . The spherical inclusions have permittivity ε 2 = ε 2 ' j ε 2 " and the host’s permittivity reads ε 1 = ε 1 ' with ε 1 ' =1.77 in the THz range of frequencies [22].

Fig. 2
Fig. 2

(a) Universal scaling of the relative focusing length, Ξ/λ , with respect to the PLR wavelength of the excitation, as a function of EFE for the array of nanoparticles shown in Fig. 1 at various model parameters. The figure is plotted on a log-log scale and the slope of the solid line is −1. (a) = 0.6 fixed. Symbols are (open squares) k = 0.30, (open circles) k = 0.31, (open triangles) k = 0.32, (solid squares) k = 0.33, (solid diamonds) k = 0.34, (solid triangles) k = 0.35. The metal phase is assumed to be Au. (b) k = 0.33. Symbols are: (open diamonds) = 0.3, (solid circles) = 0.4, (open triangles) = 0.5, (solid squares) = 0.6. The metal phase is assumed to be Au. (c) l = 0.6 and k = 0.33. Symbols are: (solid squares) metal phase is Au and surrounding medium is water; (solid circles) metal phase is Au and surrounding medium is air. (d) = 0.6 and k = 0.33. Symbols are: (solid squares) metal phase is Au and no FSC is considered, (solid circles) metal phase is Ag and no FSC is considered, (solid triangles) metal phase is Au and FSC is considered, (solid diamonds) Fe3O4-Au CS nanoparticles (t = 0.2) and no FSC is considered.

Fig. 3
Fig. 3

A comparison of EFE with the estimates of the cascade amplification coefficient g N and g ¯ N , suggested by different authors [47,45], for the various cases of metal phase/embedding medium considered in Fig. 2(a), 2(b), 2(c). Squares (resp. crosses) correspond to g N (resp. g ¯ N ). The solid line corresponds to EFE= g N or g ¯ N .

Fig. 4
Fig. 4

A comparison of the imaginary parts of the effective permittivity for self-similar chains of Au nanospheres embedded in water with (green line) or without (black line) FSC. = 0.6 and k = 0.33. The asterisk indicates the PLR spectral position corresponding to the maximum field enhancement. (a) first iteration (b) second iteration, (c) third iteration, and (d) fourth iteration.

Fig. 5
Fig. 5

Same as in Fig. 4 for self-similar chains of Fe3O4-Au CS nanoparticles embedded in water without FSC (blue line). = 0.6, k = 0.33, and t = 0.2. The value of ε " for self-similar chains of Au nanospheres embedded in water without (black line) FSC is shown for comparison.

Metrics