Abstract

We have proposed and developed a scanning laser terahertz (THz) near-field imaging system using a 1.56μm femtosecond fiber laser for high spatial resolution and high-speed measurement. To obtain the two-dimensional (2D) THz images of samples, the laser pulses are scanned over a 2D THz emitter plate [DASC: 4’-dimenthylamino-N-methyl-4- stilbazolium p-chlorobenzenesulfonate] by a galvano meter. In this system, THz wave pulses locally generated at the laser irradiation spots transmit through the sample set on the emitter, and the amplitude of the transmitted THz wave pulse is detected by using a typical THz time-domain spectroscopy (THz-TDS) technique. Using this system, we have succeeded in obtaining THz transmission images of a triangle shaped metal sheet of millimeter-size and a human hair sample with a spatial resolution of sub-wavelength order up to ~27μm (~λTHz/28) at an imaging speed of about 47 seconds/image for 512 x 512 pixels.

© 2012 OSA

1. Introduction

Recent terahertz (THz) imaging technology has attracted much attention for various applications from biology to security, such as inspection of illegal drugs, explosive substances, and evaluation of historical cultural assets, bio tissue, and diagnosis of early cancer [19]. For further practical use of the THz imaging technique, there are several problems to be overcome in terms of imaging speed, spatial resolution, and convenience. In conventional THz imaging technique, samples were set at the focal position of THz waves and moved two-dimensionally by using mechanical stages, so it takes several ten minutes or hours to obtain an image [10,11]. As for the imaging speed, a real-time THz imaging had been achieved by an electro optical (EO) sampling technique using a CCD camera [12], but it needs a high power optical source, which costs a lot. On the other hand, regarding the spatial resolution, it is limited at most several hundreds of μm due to the diffraction limit of the THz waves. There are many researches for improving the spatial resolution, for instance, by using a metallic tip and small apertures for generating near-field THz waves [13,14], and by setting samples close to detector to obtain THz electric fields in near-field [15]. As one of the simplest methods to improve the spatial resolution, a sample is adjacent to the THz generation points, which can be moved two-dimensionally. It is based on local emission of the THz radiation in the waist of the pumping near-infrared beam [16]. Using this technique, a spatial resolution of sub-wavelength order, which is shorter than the center wavelength of generated THz waves (λTHz), is achieved [1719]. In this study, by introducing this simple technique to achieve high spatial resolution THz imaging, we developed a scanning laser terahertz near-field imaging system using 1.56μm femtosecond fiber laser as an optical source. In this system, a galvano meter was employed to scan the pump laser beam over a two dimensional (2D) THz emitter at high-speed. This system configuration enables us to observe high-resolution THz transmission images of thin and flat samples directly set on the emitter without interspaces. Using the developed system, we have tried high-speed and high-resolution THz transmission imaging of various samples, and evaluated the system performance.

2. System setup and evaluation

Figure 1 shows a schematic drawing of the scanning laser THz near-field imaging system. In this system, we used a 1.56μm femtosecond fiber laser (TOPTICA FFS.SYS.HP: maximum power 350 mW, pulse width 110 fs, repetition rate 80 MHz), which is compact, robust, stable and low-cost, compared to Ti-sapphire laser sources. At first, the laser beam is divided into pump and trigger beams using a beam splitter. The pump beam is modulated by means of an acousto-optic modulator (AOM) and scanned over the 2D THz emitter plate with a galvano meter. As for the THz emitter, we employed an organic nonlinear crystal, DASC (4’-dimenthylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate) of 200-μm-thick [20,21]. It was grown by slope nucleation method (SNM) [22] by which we can obtain large and flat crystals with high quality up to about 10 mm x 10 mm. The THz radiation is provided by optical rectification in the DASC crystal, and it is known as one of the appropriate THz generation sources for 1.5μm wavelength laser excitation. The optical characteristics of DASC are almost similar to those of DAST crystal in THz spectral region [23]. THz beams that are locally generated at the pump beam irradiation spots transmit through a sample that is directly set on the emitter and focused onto a detector by using a pair of parabolic mirrors. Therefore, the spot size of the THz source approximately corresponds to the pump beam size. As for a detector, we use a bow-tie shaped photoconductive antenna (PCA) that fabricated on a low temperature grown GaAs (LT-GaAs). On the other hand, the trigger beams are converted to 780 nm by a periodically poled LiNbO3 (PPLN) crystal, and then irradiated to the PCA. Therefore, we can observe a THz transmission image of the sample by monitoring the amplitude of the THz pulses. In addition, reflected laser beam from the emitter is detected by a photodiode, so we can observe a laser reflection image of emitter surface or a sample and compare it with the THz images at the same time. The pump beam size estimated from the laser reflection image is about ϕ 20μm, so the Rayleigh length is estimated to be about 400μm, which implies that the pump beam size is almost constant in the whole DASC crystal. By scanning such localized THz point light sources two dimensionally, and also by setting the sample in vicinity of such light sources, the sample interacts with THz waves and allow us to observe THz transmission images at a spatial resolution of sub-wavelength order.

 

Fig. 1 Schematic drawing of a scanning laser THz near-field imaging system and optical image of DASC.

Download Full Size | PPT Slide | PDF

Prior to the experiment, we carried out pre-experiment to find the best optical alignment condition to obtain enough THz imaging area. Because we must consider the fact that imaging results are strongly affected by the thickness and quality of the DASC crystal. Most especially, the anisotropic refractive index along each crystal axis may cause a different distribution of THz intensity radiated from the crystal in relation to the plane of polarization of excitation laser. Therefore, we made the optical axis perpendicular to the crystal surface. We also tried to optimize the detector position. Since we are using a PCA as a detector, the observable THz imaging area might be limited to narrow area. To broaden the THz imaging area, we adjusted the PCA position. Figure 2(a) shows a THz radiation image from the DASC without a sample when the PCA was positioned at the focal point of THz beam. To obtain a 2D THz image, we fixed the delay stage at the maximum amplitude of THz waveforms and scanned the pump laser beam by the galvano meter. The pump beam is modulated at 100 kHz using the AOM, and it took 47 seconds/image for 512 x 512 pixels image (2 mm x 2 mm) by sampling the signals at 100μs/pixel. As you can see, we succeeded in detecting the THz signals from the DASC. However, the imaging area is limited to narrow region. To broaden the imaging area, we also tried to optimize the detector position. Figure 2(b) shows the THz radiation image from the DASC when the THz beam was unfocused on the detector. Here, we set the detector and the objective lens at the half of the focal length of the parabolic mirror. It can be seen that the THz imaging area for the unfocused position is about 5 times wider than that for focused one. Furthermore, a uniform area of THz intensity of about 1.5 mm long, which can be used as a canvas in the THz imaging, can be obtained. This is because the generated THz waves still have opportunity to hit the gap of the PCA even if the scanning pump laser beam is deviated away from the center of the light axis. However, the THz amplitude as shown in Fig. 2(d) is reduced to one-fourth, and the bandwidth is decreased by half in this condition, compared with that of focused one as shown in Fig. 2(c). On the other hand, the center frequency of generated THz waves is located around 0.4 THz for both the conditions. Through the pre-experiments, it was found that the appropriate detector position can be determined depending on the sample size. The broad absorption feature in spectra at 1 THz is due to phonon absorption in the DAST crystal [24].

 

Fig. 2 THz radiation images of DASC when the detector was set at (a) focused and (b) unfocused position. (c) and (d) show the frequency spectra of THz amplitude when the THz beam was focused and unfocused on the detector, respectively. They are calculated by their time domain waveforms as shown in each inset.

Download Full Size | PPT Slide | PDF

3. THz imaging results

Figure 3(a) and 3(b) show a THz transmission image of a 2-mm-equilateral-triangle-shaped copper sheet sample of 100-μm-thick and a difference image obtained by subtracting THz image without the sample in order to remove crystal artifacts, respectively. As shown here, the triangle shape of the sample is clearly visible in these images.

 

Fig. 3 (a) THz transmission image and (b) difference THz image of a 2-mm-equilateral-triangle-shaped copper sheet sample

Download Full Size | PPT Slide | PDF

Furthermore, it is considered that this imaging system is available to smaller, flat and thin samples, because the THz waves are locally generated from the emitter. Therefore, we tried to measure THz transmission images of a human hair (ϕ 80μm) as shown in Fig. 4(a) . Figure 4(b) and 4(c) show a THz transmission image and a difference image of the human hair sample, respectively. In this measurement, the detector was set at the focused position. We could observe a clear thin shape of the hair sample. It is noticed that several weak THz transmission spots exist inside the identical hair sample. This result indicates the possibility that the transmitted THz waves correlate with the inner structures or internal constituent such as water of the human hair. Generally, a human hair consists of keratin protein and includes 11-13% of water, so further measurements by spectroscopic method will clear these points in the future.

 

Fig. 4 (a) Optical image, (b) THz transmission image and (c) difference THz image of a human hair sample, and (d) a line profile along the white colored dashed line inserted in Fig. 4(b)

Download Full Size | PPT Slide | PDF

As for the system performance, those THz transmission images are composed of 512 x 512 pixels, and the imaging speed is 47 seconds/frame. The spatial resolution reaches up to 27μm from the line profile in Fig. 4(d), which is approximately corresponding to the pump beam size. This spatial resolution is also corresponding to 1/28 times of the center wavelength of 0.4 THz in the broadband spectra of the generated THz waves shown in Fig. 2(c). This spatial resolution is achieved due to near-field effect that occurs between the surface of the DASC and the sample. To obtain such a high spatial resolution, we must pay attention to THz divergence inside the DASC crystal. Since the THz waves are generated along the pump beam path, the spatial resolution should be limited [18]. The THz beam waist W(z) inside an organic crystal, which depends on the propagation distance z, is described as [25]

W(z)=W01+z2z02(ω),
where W0 and z0(ω) are the initial THz beam waist and the frequency-dependent Rayleigh length, respectively. Here, z0(ω) is also described as
z0(ω)=ω2cW02.
In the case of, W0 << λTHz, similar with this case, the Rayleigh length below 1 THz is calculated to be ~several μm, so it is essential to make the beam propagation distance extremely short to reduce the divergence inside the crystal. Therefore a thinner crystal is required for improving the resolution. In the present study, to focus the pump beam onto the output surface of the DASC crystal, we observed a high-resolution laser reflection image of a metallic mask directly set on the emitter before experiments. Then we replaced it with samples and carried out THz imaging. This will keep the THz divergence at a minimum and allow us to image a sample in THz region with high spatial resolution equivalent of the pump beam spot size. If we focused the pump beam onto the backside surface of the crystal and generated THz wave with the center frequency of 0.4 THz, its beam spot size would expand to be about 6.8 mm at the output surface of the crystal.

4. Conclusion

We developed a scanning laser THz near-field imaging system and succeeded in obtaining THz images of metal and human hair samples with high-speed and high spatial resolution. The imaging speed of 47 seconds for an image of 512 x 512 pixels with a typical THz time-domain spectroscopy technique, and the spatial resolution of up to 27μm (λTHz/28) were achieved without any near-field apertures. As for the hair sample, we could observe interesting THz images which might reflect the structural composition of the hair. Further improvement in the imaging time would be achieved by reducing the sampling time per pixel simultaneously by improving the SNR. To improve the SNR, it may be effective to increase the laser power by using another high-power laser source. As for the detectable area of THz waves, it can be also increased by replacing from a single detector to a 2D structural detector in the future. As a result, it was found that the scanning laser THz near-field imaging system is available to high-speed and high spatial resolution THz imaging for thin and flat samples which can be directly set on the 2D emitter.

Acknowledgment

This research was partially supported by Grant-in-Aid JSPS Core-to-Core Program, and Industry-Academia Collaborative R&D, JST, A22246043 & A23246066, This research was also partially supported by a grant for the Global COE Program, “Center for Electronic Devices Innovation,” from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and links

1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]  

2. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2008).

3. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003). [CrossRef]   [PubMed]  

4. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28(21), 2058–2060 (2003). [CrossRef]   [PubMed]  

5. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007). [CrossRef]  

6. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005). [CrossRef]  

7. T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010). [CrossRef]  

8. K. Fukunaga, I. Hosako, Y. Kohdzuma, T. Koezuka, M.-J. Kim, T. Ikari, and X. Du, “Terahertz analysis of an East Asian historical mural painting,” J. Eur. Opt. Soc. Rap. Public. 5, 10024–1–4 (2010).

9. H. C. Chen, T.-H. Chen, T.-F. Tseng, J.-T. Lu, C.-C. Kuo, S.-C. Fu, W.-J. Lee, Y.-F. Tsai, Y.-Y. Huang, E. Y. Chuang, Y.-J. Hwang, and C.-K. Sun, “High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model,” Opt. Express 19(22), 21552–21562 (2011). [CrossRef]   [PubMed]  

10. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1719 (1995). [CrossRef]   [PubMed]  

11. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996). [CrossRef]  

12. Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69(8), 1026–1028 (1996). [CrossRef]  

13. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “Terahertz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998). [CrossRef]  

14. N. Valk and P. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81(9), 1558–1560 (2002). [CrossRef]  

15. A. J. L. Adam, J. M. Brok, P. C. M. Planken, M. A. Seo, and D. S. Kim, “THz near-field measurements of metal structures,” C. R. Phys. 9(2), 161–168 (2008). [CrossRef]  

16. J. Z. Xu and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27(12), 1067–1069 (2002). [CrossRef]   [PubMed]  

17. R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006). [CrossRef]  

18. K. Wynne and D. A. Jaroszynski, “Superluminal terahertz pulses,” Opt. Lett. 24(1), 25–27 (1999). [CrossRef]   [PubMed]  

19. T. Yuan, J. Z. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol. 45(5-6), 417–425 (2004). [CrossRef]  

20. Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-Methyl-4-{2-[4-(dimethylamino)phenyl]ethenyl}pyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys. 44(7A), 5231–5235 (2005). [CrossRef]  

21. T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada, and H. Nakanishi, “Terahertz Properties of a New Organic Crystal, 4'-Dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate,” Jpn. J. Appl. Phys. 44(29), L932– L934 (2005). [CrossRef]  

22. Y. Mori, Y. Takahashi, T. Iwai, M. Yoshimura, Y. Yap, and T. Sasaki, “Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate (DAST) crystals,” Jpn. J. Appl. Phys. 39(Part 2, No. 10A), L1006–L1008 (2000). [CrossRef]  

23. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4’-N’-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996). [CrossRef]  

24. M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett. 25(12), 911–913 (2000). [CrossRef]   [PubMed]  

25. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23(9), 1822–1835 (2006). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  2. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2008).
  3. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [CrossRef] [PubMed]
  4. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28(21), 2058–2060 (2003).
    [CrossRef] [PubMed]
  5. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
    [CrossRef]
  6. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
    [CrossRef]
  7. T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
    [CrossRef]
  8. K. Fukunaga, I. Hosako, Y. Kohdzuma, T. Koezuka, M.-J. Kim, T. Ikari, and X. Du, “Terahertz analysis of an East Asian historical mural painting,” J. Eur. Opt. Soc. Rap. Public. 5, 10024–1–4 (2010).
  9. H. C. Chen, T.-H. Chen, T.-F. Tseng, J.-T. Lu, C.-C. Kuo, S.-C. Fu, W.-J. Lee, Y.-F. Tsai, Y.-Y. Huang, E. Y. Chuang, Y.-J. Hwang, and C.-K. Sun, “High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model,” Opt. Express 19(22), 21552–21562 (2011).
    [CrossRef] [PubMed]
  10. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1719 (1995).
    [CrossRef] [PubMed]
  11. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
    [CrossRef]
  12. Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69(8), 1026–1028 (1996).
    [CrossRef]
  13. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “Terahertz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998).
    [CrossRef]
  14. N. Valk and P. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81(9), 1558–1560 (2002).
    [CrossRef]
  15. A. J. L. Adam, J. M. Brok, P. C. M. Planken, M. A. Seo, and D. S. Kim, “THz near-field measurements of metal structures,” C. R. Phys. 9(2), 161–168 (2008).
    [CrossRef]
  16. J. Z. Xu and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27(12), 1067–1069 (2002).
    [CrossRef] [PubMed]
  17. R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
    [CrossRef]
  18. K. Wynne and D. A. Jaroszynski, “Superluminal terahertz pulses,” Opt. Lett. 24(1), 25–27 (1999).
    [CrossRef] [PubMed]
  19. T. Yuan, J. Z. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol. 45(5-6), 417–425 (2004).
    [CrossRef]
  20. Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-Methyl-4-{2-[4-(dimethylamino)phenyl]ethenyl}pyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys. 44(7A), 5231–5235 (2005).
    [CrossRef]
  21. T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada, and H. Nakanishi, “Terahertz Properties of a New Organic Crystal, 4'-Dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate,” Jpn. J. Appl. Phys. 44(29), L932– L934 (2005).
    [CrossRef]
  22. Y. Mori, Y. Takahashi, T. Iwai, M. Yoshimura, Y. Yap, and T. Sasaki, “Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate (DAST) crystals,” Jpn. J. Appl. Phys. 39(Part 2, No. 10A), L1006–L1008 (2000).
    [CrossRef]
  23. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4’-N’-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996).
    [CrossRef]
  24. M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett. 25(12), 911–913 (2000).
    [CrossRef] [PubMed]
  25. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23(9), 1822–1835 (2006).
    [CrossRef]

2011

2010

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[CrossRef]

K. Fukunaga, I. Hosako, Y. Kohdzuma, T. Koezuka, M.-J. Kim, T. Ikari, and X. Du, “Terahertz analysis of an East Asian historical mural painting,” J. Eur. Opt. Soc. Rap. Public. 5, 10024–1–4 (2010).

2008

A. J. L. Adam, J. M. Brok, P. C. M. Planken, M. A. Seo, and D. S. Kim, “THz near-field measurements of metal structures,” C. R. Phys. 9(2), 161–168 (2008).
[CrossRef]

2007

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

2006

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[CrossRef]

A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23(9), 1822–1835 (2006).
[CrossRef]

2005

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-Methyl-4-{2-[4-(dimethylamino)phenyl]ethenyl}pyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys. 44(7A), 5231–5235 (2005).
[CrossRef]

T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada, and H. Nakanishi, “Terahertz Properties of a New Organic Crystal, 4'-Dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate,” Jpn. J. Appl. Phys. 44(29), L932– L934 (2005).
[CrossRef]

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[CrossRef]

2004

T. Yuan, J. Z. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol. 45(5-6), 417–425 (2004).
[CrossRef]

2003

2002

J. Z. Xu and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27(12), 1067–1069 (2002).
[CrossRef] [PubMed]

N. Valk and P. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81(9), 1558–1560 (2002).
[CrossRef]

2000

Y. Mori, Y. Takahashi, T. Iwai, M. Yoshimura, Y. Yap, and T. Sasaki, “Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate (DAST) crystals,” Jpn. J. Appl. Phys. 39(Part 2, No. 10A), L1006–L1008 (2000).
[CrossRef]

M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett. 25(12), 911–913 (2000).
[CrossRef] [PubMed]

1999

1998

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “Terahertz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998).
[CrossRef]

1996

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69(8), 1026–1028 (1996).
[CrossRef]

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4’-N’-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996).
[CrossRef]

1995

Adam, A. J. L.

A. J. L. Adam, J. M. Brok, P. C. M. Planken, M. A. Seo, and D. S. Kim, “THz near-field measurements of metal structures,” C. R. Phys. 9(2), 161–168 (2008).
[CrossRef]

Barbey, N.

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[CrossRef]

Boccara, C.

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[CrossRef]

Bosshard, C.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4’-N’-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996).
[CrossRef]

Brener, I.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “Terahertz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998).
[CrossRef]

Brok, J. M.

A. J. L. Adam, J. M. Brok, P. C. M. Planken, M. A. Seo, and D. S. Kim, “THz near-field measurements of metal structures,” C. R. Phys. 9(2), 161–168 (2008).
[CrossRef]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Chen, H. C.

Chen, T.-H.

Chuang, E. Y.

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[CrossRef]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Du, X.

K. Fukunaga, I. Hosako, Y. Kohdzuma, T. Koezuka, M.-J. Kim, T. Ikari, and X. Du, “Terahertz analysis of an East Asian historical mural painting,” J. Eur. Opt. Soc. Rap. Public. 5, 10024–1–4 (2010).

Follonier, S.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4’-N’-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996).
[CrossRef]

Fu, S.-C.

Fukunaga, K.

K. Fukunaga, I. Hosako, Y. Kohdzuma, T. Koezuka, M.-J. Kim, T. Ikari, and X. Du, “Terahertz analysis of an East Asian historical mural painting,” J. Eur. Opt. Soc. Rap. Public. 5, 10024–1–4 (2010).

Glavcheva, Z.

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-Methyl-4-{2-[4-(dimethylamino)phenyl]ethenyl}pyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys. 44(7A), 5231–5235 (2005).
[CrossRef]

Gresillon, S.

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[CrossRef]

Günter, P.

A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23(9), 1822–1835 (2006).
[CrossRef]

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4’-N’-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996).
[CrossRef]

Hewitt, T. D.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69(8), 1026–1028 (1996).
[CrossRef]

Hosako, I.

K. Fukunaga, I. Hosako, Y. Kohdzuma, T. Koezuka, M.-J. Kim, T. Ikari, and X. Du, “Terahertz analysis of an East Asian historical mural painting,” J. Eur. Opt. Soc. Rap. Public. 5, 10024–1–4 (2010).

Hu, B. B.

Huang, Y.-Y.

Hunsche, S.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “Terahertz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998).
[CrossRef]

Hwang, Y.-J.

Ikari, T.

K. Fukunaga, I. Hosako, Y. Kohdzuma, T. Koezuka, M.-J. Kim, T. Ikari, and X. Du, “Terahertz analysis of an East Asian historical mural painting,” J. Eur. Opt. Soc. Rap. Public. 5, 10024–1–4 (2010).

Ikeda, S.

T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada, and H. Nakanishi, “Terahertz Properties of a New Organic Crystal, 4'-Dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate,” Jpn. J. Appl. Phys. 44(29), L932– L934 (2005).
[CrossRef]

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-Methyl-4-{2-[4-(dimethylamino)phenyl]ethenyl}pyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys. 44(7A), 5231–5235 (2005).
[CrossRef]

Inoue, H.

Ito, H.

Iwai, T.

Y. Mori, Y. Takahashi, T. Iwai, M. Yoshimura, Y. Yap, and T. Sasaki, “Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate (DAST) crystals,” Jpn. J. Appl. Phys. 39(Part 2, No. 10A), L1006–L1008 (2000).
[CrossRef]

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[CrossRef]

Jaroszynski, D. A.

Jensby, K.

Kawase, K.

Kawayama, I.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[CrossRef]

Keiding, S. R.

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[CrossRef]

Khan, R. U. A.

Kim, D. S.

A. J. L. Adam, J. M. Brok, P. C. M. Planken, M. A. Seo, and D. S. Kim, “THz near-field measurements of metal structures,” C. R. Phys. 9(2), 161–168 (2008).
[CrossRef]

Kim, M.-J.

K. Fukunaga, I. Hosako, Y. Kohdzuma, T. Koezuka, M.-J. Kim, T. Ikari, and X. Du, “Terahertz analysis of an East Asian historical mural painting,” J. Eur. Opt. Soc. Rap. Public. 5, 10024–1–4 (2010).

Kiwa, T.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[CrossRef]

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28(21), 2058–2060 (2003).
[CrossRef] [PubMed]

Knöpfle, G.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4’-N’-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996).
[CrossRef]

Koch, M.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “Terahertz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998).
[CrossRef]

Koezuka, T.

K. Fukunaga, I. Hosako, Y. Kohdzuma, T. Koezuka, M.-J. Kim, T. Ikari, and X. Du, “Terahertz analysis of an East Asian historical mural painting,” J. Eur. Opt. Soc. Rap. Public. 5, 10024–1–4 (2010).

Kohdzuma, Y.

K. Fukunaga, I. Hosako, Y. Kohdzuma, T. Koezuka, M.-J. Kim, T. Ikari, and X. Du, “Terahertz analysis of an East Asian historical mural painting,” J. Eur. Opt. Soc. Rap. Public. 5, 10024–1–4 (2010).

Kondo, Y.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[CrossRef]

Kuo, C.-C.

Lecaque, R.

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[CrossRef]

Lee, W.-J.

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[CrossRef]

Lu, J.-T.

Minami, Y.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[CrossRef]

Mineno, Y.

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-Methyl-4-{2-[4-(dimethylamino)phenyl]ethenyl}pyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys. 44(7A), 5231–5235 (2005).
[CrossRef]

T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada, and H. Nakanishi, “Terahertz Properties of a New Organic Crystal, 4'-Dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate,” Jpn. J. Appl. Phys. 44(29), L932– L934 (2005).
[CrossRef]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[CrossRef]

Mori, Y.

Y. Mori, Y. Takahashi, T. Iwai, M. Yoshimura, Y. Yap, and T. Sasaki, “Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate (DAST) crystals,” Jpn. J. Appl. Phys. 39(Part 2, No. 10A), L1006–L1008 (2000).
[CrossRef]

Nakanishi, H.

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-Methyl-4-{2-[4-(dimethylamino)phenyl]ethenyl}pyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys. 44(7A), 5231–5235 (2005).
[CrossRef]

T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada, and H. Nakanishi, “Terahertz Properties of a New Organic Crystal, 4'-Dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate,” Jpn. J. Appl. Phys. 44(29), L932– L934 (2005).
[CrossRef]

Neis, M.

Nuss, M. C.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “Terahertz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[CrossRef]

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1719 (1995).
[CrossRef] [PubMed]

Odani, T.

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-Methyl-4-{2-[4-(dimethylamino)phenyl]ethenyl}pyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys. 44(7A), 5231–5235 (2005).
[CrossRef]

Ogawa, Y.

Okada, S.

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-Methyl-4-{2-[4-(dimethylamino)phenyl]ethenyl}pyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys. 44(7A), 5231–5235 (2005).
[CrossRef]

T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada, and H. Nakanishi, “Terahertz Properties of a New Organic Crystal, 4'-Dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate,” Jpn. J. Appl. Phys. 44(29), L932– L934 (2005).
[CrossRef]

Pan, F.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4’-N’-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996).
[CrossRef]

Peretti, R.

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[CrossRef]

Planken, P.

N. Valk and P. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81(9), 1558–1560 (2002).
[CrossRef]

Planken, P. C. M.

A. J. L. Adam, J. M. Brok, P. C. M. Planken, M. A. Seo, and D. S. Kim, “THz near-field measurements of metal structures,” C. R. Phys. 9(2), 161–168 (2008).
[CrossRef]

Rivoal, J.-C.

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[CrossRef]

Ruiz, B.

Sasaki, T.

Y. Mori, Y. Takahashi, T. Iwai, M. Yoshimura, Y. Yap, and T. Sasaki, “Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate (DAST) crystals,” Jpn. J. Appl. Phys. 39(Part 2, No. 10A), L1006–L1008 (2000).
[CrossRef]

Schneider, A.

Seo, M. A.

A. J. L. Adam, J. M. Brok, P. C. M. Planken, M. A. Seo, and D. S. Kim, “THz near-field measurements of metal structures,” C. R. Phys. 9(2), 161–168 (2008).
[CrossRef]

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[CrossRef]

Spreiter, R.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4’-N’-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996).
[CrossRef]

Stillhart, M.

Sun, C.-K.

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[CrossRef]

Takahashi, H.

Takahashi, Y.

Y. Mori, Y. Takahashi, T. Iwai, M. Yoshimura, Y. Yap, and T. Sasaki, “Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate (DAST) crystals,” Jpn. J. Appl. Phys. 39(Part 2, No. 10A), L1006–L1008 (2000).
[CrossRef]

Taniuchi, T.

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-Methyl-4-{2-[4-(dimethylamino)phenyl]ethenyl}pyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys. 44(7A), 5231–5235 (2005).
[CrossRef]

T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada, and H. Nakanishi, “Terahertz Properties of a New Organic Crystal, 4'-Dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate,” Jpn. J. Appl. Phys. 44(29), L932– L934 (2005).
[CrossRef]

Tonouchi, M.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28(21), 2058–2060 (2003).
[CrossRef] [PubMed]

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[CrossRef]

Tsai, Y.-F.

Tseng, T.-F.

Tsukada, K.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[CrossRef]

Umezawa, H.

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-Methyl-4-{2-[4-(dimethylamino)phenyl]ethenyl}pyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys. 44(7A), 5231–5235 (2005).
[CrossRef]

Valk, N.

N. Valk and P. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81(9), 1558–1560 (2002).
[CrossRef]

Walther, M.

Watanabe, Y.

Wong, M. S.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4’-N’-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996).
[CrossRef]

Wu, Q.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69(8), 1026–1028 (1996).
[CrossRef]

Wynne, K.

Xu, J. Z.

Yamashita, M.

Yap, Y.

Y. Mori, Y. Takahashi, T. Iwai, M. Yoshimura, Y. Yap, and T. Sasaki, “Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate (DAST) crystals,” Jpn. J. Appl. Phys. 39(Part 2, No. 10A), L1006–L1008 (2000).
[CrossRef]

Yoshimura, M.

Y. Mori, Y. Takahashi, T. Iwai, M. Yoshimura, Y. Yap, and T. Sasaki, “Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate (DAST) crystals,” Jpn. J. Appl. Phys. 39(Part 2, No. 10A), L1006–L1008 (2000).
[CrossRef]

Yuan, T.

T. Yuan, J. Z. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol. 45(5-6), 417–425 (2004).
[CrossRef]

Zhang, X.-C.

T. Yuan, J. Z. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol. 45(5-6), 417–425 (2004).
[CrossRef]

J. Z. Xu and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27(12), 1067–1069 (2002).
[CrossRef] [PubMed]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69(8), 1026–1028 (1996).
[CrossRef]

Appl. Phys. Lett.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[CrossRef]

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69(8), 1026–1028 (1996).
[CrossRef]

N. Valk and P. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81(9), 1558–1560 (2002).
[CrossRef]

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4’-N’-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996).
[CrossRef]

C. R. Phys.

A. J. L. Adam, J. M. Brok, P. C. M. Planken, M. A. Seo, and D. S. Kim, “THz near-field measurements of metal structures,” C. R. Phys. 9(2), 161–168 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[CrossRef]

Infrared Phys. Technol.

T. Yuan, J. Z. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol. 45(5-6), 417–425 (2004).
[CrossRef]

J. Eur. Opt. Soc. Rap. Public.

K. Fukunaga, I. Hosako, Y. Kohdzuma, T. Koezuka, M.-J. Kim, T. Ikari, and X. Du, “Terahertz analysis of an East Asian historical mural painting,” J. Eur. Opt. Soc. Rap. Public. 5, 10024–1–4 (2010).

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-Methyl-4-{2-[4-(dimethylamino)phenyl]ethenyl}pyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys. 44(7A), 5231–5235 (2005).
[CrossRef]

T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada, and H. Nakanishi, “Terahertz Properties of a New Organic Crystal, 4'-Dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate,” Jpn. J. Appl. Phys. 44(29), L932– L934 (2005).
[CrossRef]

Y. Mori, Y. Takahashi, T. Iwai, M. Yoshimura, Y. Yap, and T. Sasaki, “Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate (DAST) crystals,” Jpn. J. Appl. Phys. 39(Part 2, No. 10A), L1006–L1008 (2000).
[CrossRef]

Nat. Photonics

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Opt. Commun.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “Terahertz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998).
[CrossRef]

R. Lecaque, S. Gresillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Rep. Prog. Phys.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Other

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic drawing of a scanning laser THz near-field imaging system and optical image of DASC.

Fig. 2
Fig. 2

THz radiation images of DASC when the detector was set at (a) focused and (b) unfocused position. (c) and (d) show the frequency spectra of THz amplitude when the THz beam was focused and unfocused on the detector, respectively. They are calculated by their time domain waveforms as shown in each inset.

Fig. 3
Fig. 3

(a) THz transmission image and (b) difference THz image of a 2-mm-equilateral-triangle-shaped copper sheet sample

Fig. 4
Fig. 4

(a) Optical image, (b) THz transmission image and (c) difference THz image of a human hair sample, and (d) a line profile along the white colored dashed line inserted in Fig. 4(b)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W(z)= W 0 1+ z 2 z 0 2 (ω) ,
z 0 (ω)= ω 2c W 0 2 .

Metrics