Abstract

We report efficient low dispersion light coupling into a silicon waveguide using an antenna consisting of two metallic nanoparticles. We find that strong multiple scattering between the nanoparticles dictates the coupling efficiency. We also explore directional coupling, by using different particles with a relative scattering phase, but find that optimum directionality corresponds to minimum efficiency. A dipole model highlights a subtle interplay between multiple scattering and directionality leading to a compromise allowing up to 30% transmission into a single direction. With a 500nm bandwidth near infrared telecoms bands, group delay dispersion is sufficiently low to faithfully couple pulses as short as 50fs.

© 2012 OSA

1. Introduction

The coupling of light into photonic waveguides is a well-known problem, but still topical due to the use of semiconductor materials for compact integrated photonic devices [1]. Semiconductor waveguides, used in photonics, are smaller than the vacuum wavelength and support high momentum modes that are poorly impedance matched to free space. In principle, prism and grating coupling can overcome these factors [2]; however, prisms are bulky with limited permittivity for coupling to semiconductor waveguides, and the most efficient gratings generally require complicated optimized designs [3]. Simple gratings are typically 20% efficient [4]. In addition to a trade-off between design complexity and efficiency, the greatest limitations of these techniques are low bandwidth, high dispersion and high angular sensitivity. Consequently, many researchers and commercial products still use direct end-fire excitation for its simplicity, despite efficiencies as low as just 1% [57].

Recent work has looked at reducing the size of grating couplers by using metallic nanoparticles [818]. Although the metal’s high permittivity contrast provides stronger scattering [9], the localized surface plasmon (LSP) resonances [10] of nanoparticles greatly enhance scattering cross-sections [1113] despite being smaller than the vacuum wavelength [14]. A number of researchers have exploited this to realize compact couplers using just a few metal nanoparticles [1518]. These works focused primarily on the directional aspect of the coupling without evaluating the potential coupling efficiency.

In this letter, we report an optical antenna that couples a focussed beam into a silicon waveguide mode. Our approach uses the strong light-matter interactions and compactness of plasmonics, while avoiding the high loss associated with plasmonics by radiating rapidly into the photonic mode. Remarkably, we find total coupling efficiencies (into both waveguide directions) of 20% for a single particle and 40% for an identical particle pair at λ ≈ 1.55μm, dropping by only 10% over a broad 400nm range. We find optimal coupling into a single direction of 27% by using two differently shaped particles.

2. Plamsonic-photonic coupling

We investigate two dimensional scattering of light focussed onto gold particles with variable length (L) and thickness (T) embedded in SiO2 and placed in the vicinity of a photonic Silicon waveguide of thickness (W) (Fig. 1(a)). The particles each support a LSP with dipole moment predominantly along the direction. An external Gaussian beam, polarized along , excites LSPs, which subsequently re-radiate into the waveguide mode. The coupling rate, κ, between LSPs and waveguide mode is largest when the mode confinement is strongest. There is thus a trade-off between the mode size and the component of the electric field at the position of the particles. Hence, the coupling rate κ ∝ |Ex(xNP)|2/ ∫ E(x) × H*(x)dz. A waveguide thickness of W = 220nm confines the fundamental Transverse Magnetic (TM) mode for optimal coupling near a wavelength of 1.55μm. Meanwhile, the particles are placed as close to the silicon as possible where the mode intensity is greatest (Fig. 1(b)). A 5nm gap avoids direct hybridization of LSPs with the silicon. Finally, the LSP resonances are tuned, by varying the particle length, L, so that the peak in scattering cross section matches the maximum radiative coupling rate of the particle-waveguide system. 20 × 250nm2 gold particles embedded in SiO2 produce a good response (Fig. 1(c)).

 

Fig. 1 (a) Schematic of the plasmonic antenna. (b) Ex component of the TM waveguide mode at the particle position, normalised to total mode power vs. wavelength. (Insets show the mode’s power profile.) (c) Near field intensity of uncoupled particles for L = 150nm (solid), L = 250nm (dashed; inset shows field distribution 100nm above bulk silicon), and L = 350nm (dotted). (d) Transmission amplitude and phase into one direction of the waveguide for different particle lengths, excited by a 7μm beam, comparing numerically simulation (solid) and a forced dipole model (dotted line).

Download Full Size | PPT Slide | PDF

We first calculate the transmission into the waveguide by a single gold particle. We use a finite element solver (Comsol Multiphysics) in all numerical calculations. We find 4% transmission into the fundamental TM mode at one end of the waveguide from a Gaussian beam focussed to a 7μm diameter spot (Fig. 1(d)). When we add a second particle a distance D from the first, the effective scattering cross section nearly doubles leading to a transmission of just over 7% into one direction, as shown in Fig. 2(a). Here, the de-focussed beam allows us to vary the relative positions of particles with a nearly uniform input field; later, we show how a focused beam significantly increases the transmission.

 

Fig. 2 Transmission into each direction of the waveguide from two particles excited by a Gaussian beam focussed to a 7μm spot. (a) and (b) show the dependence of transmission on the propagation phase ψ, between two particles for Δ = 0 and Δ = π/4, respectively. The plots compare numerical simulations (open symbols) and the coupled oscillator model with (solid line) and without multiple scattering (dashed line).

Download Full Size | PPT Slide | PDF

3. Coupled dipole oscillator model

The transmission amplitude, t(x), into forward and backward propagating waveguide modes can be modelled by interference of the radiation from two forced coupled dipoles [19].

t(x)=κ1a˙1eik|x|+κ2a˙2eik|xD|=t±eikx,
where ai are the dipole amplitudes of the LSPs; and k is the propagation constant of the mode. The left and right transmission coefficients become,
t±=s1(κ1κ2e±iψ)T(α1κ1eiϕ1α1α2β1γ¯1ei(ϕ1+ϕ2ψ)κ1α1α2β2γ¯1ei(ϕ1+ϕ2ψ)κ2α2κ2eiϕ2)(c1c2)
where βi = κii are the proportions of light coupled to the waveguide mode; ci are the coupling coefficients between the input beam and the LSPs and are dependent on the scattering cross-sections of the particles; γi are the total LSP extinction rates, including radiation, waveguide coupling and absorption; γ̄i = γi are the total extinction rates normalised to the frequency; αi = βi cosϕi; ψ = kD; and s = (1 – β1β2γ̄1γ̄2α1α2/4ei(ϕ1+ϕ2–2ψ)) describes high order multiple scattering. Note that we have defined the phase of each resonator as tanϕi=(ωi2ω2)/γiω and therefore cosϕi is the amplitude response across the tuning range, |ϕi| < π/2.

Following the example of other authors [16, 17], we examine a simplified solution without multiple scattering by excluding the diagonal terms and setting s = 1, giving the waveguide mode transmission,

T±=T1+T2+2T1T2cos(Δ±ψ)
where Ti=ci2αi2, and Δ = ϕ2ϕ1. For a single particle the transmission into one direction is T± = T1 (Fig. 2(a)). To achieve directional coupling, we must control the relative phase of the two particles by adjusting their length, L.

Figure 1(d) shows the transmission and its phase for a single particle as we detune the LSP at a fixed wavelength of 1.55μm. The transmission and phase approximately follow the expected dependence of the dipole model, Ti(ϕi) ≈ Ti(0) cos2 ϕi. The relative phase between particles can clearly be tuned by more than π/2. (Full 2π phase control can be achieved with more complex 3D nanoparticle geometries [20].) The transmission curve’s shape, which resembles those in recently reported literature [16, 20], occurs due to resonance broadening for longer particles. From Eq. (3), the best directional coupling into the forward direction only occurs when both,

ψ+Δ=2nπψΔ=(2m+1)π
where n,m ∈ 𝕑. However, the total transmission for optimal directionality (Δ = π/2), given by
T=2T1+2T2+4T1T2cosψcosΔ
is a minimum. For two particles, the total transmission is greatest when T1 = T2 and ϕ2 = ϕ1 = 0, which also corresponds to least directionality. Furthermore, since Ti ∝ cos2ϕi the efficiency for an optimal directional coupler is less than that of an identical particle pair. Directional coupling and optimal efficiency are therefore mutually exclusive. Nevertheless, directional coupling can be effective as shown in Fig. 2(b), where Δ = π/4. Here, a maximum transmission of 11% into one direction can be achieved.

4. Multiple scattering and directional coupling

The asymmetric transmission lineshapes in Figs. 2(a) and 2(b) cannot be explained by the simple interference of two dipoles. A good correspondence between the numerical simulation and Eq. (2) requires strong multiple scattering between the particles. To make the comparison, we have used the analytical transmission trend in Fig. 1(d) with the approximation that β1β2, γ̄1γ̄2 and c1c2, giving only two unknown fitting parameters: the peak transmission of a single particle with zero phase, T0 = T(ϕ= 0) = 3.5% and the multiple scattering parameter, β2γ̄ ≈ 0.4. The large value of the scattering parameter highlights the strong coupling between nanoparticles and waveguide mode. Furthermore, multiple scattering is sufficiently strong to observe higher order scattering, where s−1 ≈ 1.2. In the absence of multiple scattering, two identical particles should provide four times the single particle transmission, T0, due to constructive interference, as shown by Eq. (3), for T1 = T2 = T0; ϕ1 = ϕ2 = 0. However, with multiple scattering the total transmission for two identical particles is just 4T0/(1 + β2γ̄)2 ≈ 2T0. Thus, multiple scattering suppresses the constructive interference of the dipoles and reduces the total transmission (Fig. 2(a)). Interestingly, the suppression of interference is less pronounced for Δ = π/4 (Fig. 2(b)).

To further understand the role of multiple scattering, we investigate the two particle coupler’s transmission for various phase differences. To this end, the length of one particle is varied, controlling ϕ2, while the length of the other is kept constant at L = 250nm, thus fixing the value of ϕ1 ≈ 0. Figure 3(a) shows the peak transmission for each direction as a function of ϕ2. While multiple scattering significantly reduces the coupling efficiency for identical particles, the effect is less pronounced for different particles, with a phase difference between them. Hence, when increasing Δ, the transmission also increases approaching the transmission we would expect for constructively interfering particles, near Δ = π/4. It is interesting to note that for Δ > π/4, the transmission surpasses even that of the simple constructively interfering dipoles. Meanwhile, the effect of directional coupling reduces transmission for Δ > π/4, leaving the maximum transmission near Δ ≈ π/4. Multiple scattering is a natural consequence of the extremely strong coupling between nanoparticle and waveguide. For weaker coupling (β2γ̄ ≪ 1) we have observed the constructive interference of each nanoparticle and a total transmission of 4T0. This suggests that, if β can be maintained at a high value while β2γ̄ ≪ 1, the reduction of multiple scattering could yield even greater coupling efficiencies.

 

Fig. 3 (a) Maximum transmission (Tmax) into left and right directions (open circles and open squares, respectively) vs. phase difference between the two particles for numerical calculations (open symbols) and coupled oscillator model with (solid lines) and without multiple scattering (dashed line). (b) Transmission spectra into one direction for a 2μm focus for two particles with a Δ = π/4 phase shift (solid line; L1 = 250nm, L2 = 160nm), an identical particle pair (dotted line; L1 = L2 = 250nm), and a single particle (dashed line).

Download Full Size | PPT Slide | PDF

5. Efficient low dispersion coupling

Simply focussing the beam down to a 2μm spot significantly increases the coupling efficiency with the total transmission into one direction reaching 13%, 20% and 27% for the single particle, identical pair and π/4 phase-shifted pair, respectively (Fig. 3(b)). Furthermore, the coupling efficiency is sustained over a bandwidth of at least 500nm. Since scattered light from the plasmonic antenna also only incurs a π phase change across the wide transmission band, we can also expect low group delay dispersion (GDD) of light passing through the coupler, c.f. Fig. 4(a). To calculate pulse broadening we determined the total phase (ϕ) induced by both the coupler and mode propagation over 4μm of the waveguide. The corresponding pulse broadening map is shown in Fig. 4(b). Interestingly, we find anomalous dispersion of our particle coupler that compensates for the normal dispersion on propagating 15μm through the silicon waveguide. With the broad bandwidth and low dispersion, these antennas could faithfully couple the spectral components of pulses as short as 50fs.

 

Fig. 4 (a) Plasmonic coupler group delay dispersion over transmission window. (b) Pulse broadening due to 4μm propagating along silicon waveguide without coupler (solid), for a particle pair with Δ = π/4 (dashed line), and an identical particle pair (dotted line).

Download Full Size | PPT Slide | PDF

6. Conclusion

In conclusion, we have presented a sub-wavelength optical coupler that is more compact and easier to design than conventional grating couplers yet provides comparable efficiency over a much broader spectrum with low dispersion. Our approach offers directional control through the scattered phase by simply varying each particle’s length. However, coupling efficiency and directionality are mutually exclusive. Meanwhile, multiple scattering between nanoparticles due to the high coupling efficiency suppresses the constructive interference expected of an identical particle pair. Since multiple scattering scales with β2γ̄, we have proposed to reduce it by using resonators with higher Q factors, at the expense of dispersion. To this end, 3D nanoparticles coupled to TM or TE waveguide modes could mitigate multiple scattering. Such waveguide couplers are a viable approach for integrated semiconductor photonics technology due to their ability to achieve high coupling efficiency over a broad wavelength range with extremely low group delay dispersion.

Acknowledgments

This work was sponsored by the UK Engineering and Physical Sciences Research Council (EPSRC). R.F.O. is supported by an EPSRC Fellowship ( EP/I004343/1) and Marie Curie IRG ( PIRG08-GA-2010-277080).

References and links

1. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).

2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

3. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003). [CrossRef]   [PubMed]  

4. J. K. Butler, N.-H. Sun, G. A. Evans, L. Pang, and P. Congdon, “Grating-assisted coupling of light between semiconductor and glass waveguides,” J. Lightwave Technol. 16, 1038–1048 (1998). [CrossRef]  

5. T. D. Happ, M. Kamp, and A. Forchel, “Photonic crystal tapers for ultracompact mode conversion,” Opt. Lett. 26, 1102–1104 (2001). [CrossRef]  

6. C.-W. Liao, Y.-T. Yang, S.-W. Huang, and M.-C. Lee, “Fiber-core-matched three-dimensional adiabatic tapered couplers for integrated photonic devices,” J. Lightwave Technol. 29, 770–774 (2011). [CrossRef]  

7. V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011). [CrossRef]   [PubMed]  

8. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008). [CrossRef]  

9. A. Ghoshal and P. G. Kik, “Frequency dependent power efficiency of a nanostructured surface plasmon coupler,” Phys. Status Solidi RRL 4, 280–282 (2010). [CrossRef]  

10. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010). [CrossRef]   [PubMed]  

11. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003). [CrossRef]   [PubMed]  

12. J.-P. Tetienne, A. Bousseksou, D. Costantini, Y. De Wilde, and R. Colombelli, “Design of an integrated coupler for the electrical generation of surface plasmon polaritons,” Opt. Express 19, 18155–18163 (2011). [CrossRef]   [PubMed]  

13. J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010). [CrossRef]   [PubMed]  

14. S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron. 38, 257–267 (2006). [CrossRef]  

15. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010). [CrossRef]  

16. G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009). [CrossRef]  

17. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008). [CrossRef]  

18. J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011). [CrossRef]   [PubMed]  

19. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991). [CrossRef]  

20. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  3. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003).
    [Crossref] [PubMed]
  4. J. K. Butler, N.-H. Sun, G. A. Evans, L. Pang, and P. Congdon, “Grating-assisted coupling of light between semiconductor and glass waveguides,” J. Lightwave Technol. 16, 1038–1048 (1998).
    [Crossref]
  5. T. D. Happ, M. Kamp, and A. Forchel, “Photonic crystal tapers for ultracompact mode conversion,” Opt. Lett. 26, 1102–1104 (2001).
    [Crossref]
  6. C.-W. Liao, Y.-T. Yang, S.-W. Huang, and M.-C. Lee, “Fiber-core-matched three-dimensional adiabatic tapered couplers for integrated photonic devices,” J. Lightwave Technol. 29, 770–774 (2011).
    [Crossref]
  7. V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
    [Crossref] [PubMed]
  8. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
    [Crossref]
  9. A. Ghoshal and P. G. Kik, “Frequency dependent power efficiency of a nanostructured surface plasmon coupler,” Phys. Status Solidi RRL 4, 280–282 (2010).
    [Crossref]
  10. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
    [Crossref] [PubMed]
  11. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
    [Crossref] [PubMed]
  12. J.-P. Tetienne, A. Bousseksou, D. Costantini, Y. De Wilde, and R. Colombelli, “Design of an integrated coupler for the electrical generation of surface plasmon polaritons,” Opt. Express 19, 18155–18163 (2011).
    [Crossref] [PubMed]
  13. J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010).
    [Crossref] [PubMed]
  14. S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron. 38, 257–267 (2006).
    [Crossref]
  15. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
    [Crossref]
  16. G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
    [Crossref]
  17. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
    [Crossref]
  18. J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
    [Crossref] [PubMed]
  19. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
    [Crossref]
  20. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]

2011 (5)

2010 (4)

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[Crossref]

J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010).
[Crossref] [PubMed]

A. Ghoshal and P. G. Kik, “Frequency dependent power efficiency of a nanostructured surface plasmon coupler,” Phys. Status Solidi RRL 4, 280–282 (2010).
[Crossref]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[Crossref] [PubMed]

2009 (1)

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[Crossref]

2008 (2)

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

2006 (1)

S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron. 38, 257–267 (2006).
[Crossref]

2003 (2)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[Crossref] [PubMed]

S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003).
[Crossref] [PubMed]

2001 (1)

1998 (1)

1991 (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

Afshinmanesh, F.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref] [PubMed]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Albrektsen, O.

Bartal, G.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[Crossref]

Boltasseva, A.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

Bousseksou, A.

Bozhevolnyi, S. I.

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
[Crossref] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

Brongersma, M. L.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref] [PubMed]

Brucoli, G.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

Butler, J. K.

Cai, W.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref] [PubMed]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[Crossref] [PubMed]

Colombelli, R.

Congdon, P.

Costantini, D.

Day, J. K.

J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010).
[Crossref] [PubMed]

De Wilde, Y.

Du, C.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

Evans, G. A.

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[Crossref] [PubMed]

Fernández-García, R.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[Crossref] [PubMed]

Forchel, A.

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Gan, D.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

García-Vidal, F. J.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Ghoshal, A.

A. Ghoshal and P. G. Kik, “Frequency dependent power efficiency of a nanostructured surface plasmon coupler,” Phys. Status Solidi RRL 4, 280–282 (2010).
[Crossref]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[Crossref] [PubMed]

Giessen, H.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[Crossref] [PubMed]

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[Crossref] [PubMed]

Gosciniak, J.

Grady, N. K.

J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010).
[Crossref] [PubMed]

Halas, N. J.

J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010).
[Crossref] [PubMed]

Han, Z.

Happ, T. D.

Haus, H. A.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[Crossref]

Huang, S.-W.

Huang, W.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[Crossref]

Kamp, M.

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Keshmiri, H.

Kik, P. G.

A. Ghoshal and P. G. Kik, “Frequency dependent power efficiency of a nanostructured surface plasmon coupler,” Phys. Status Solidi RRL 4, 280–282 (2010).
[Crossref]

Kim, P. S.

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[Crossref]

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[Crossref] [PubMed]

Lee, G.

Lee, M.-C.

Leosson, K.

Lerosey, G.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[Crossref]

Liao, C.-W.

Liu, J. S. Q.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref] [PubMed]

Luo, X.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[Crossref] [PubMed]

S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron. 38, 257–267 (2006).
[Crossref]

Martín-Moreno, L.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

Matheu, P.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[Crossref]

Neumann, O.

J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010).
[Crossref] [PubMed]

Nielsen, M. G.

Oh, C. H.

Pala, R. A.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref] [PubMed]

Pang, L.

Park, S.

Pile, D. F. P.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[Crossref]

Radko, I. P.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Roschuk, T.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[Crossref] [PubMed]

Song, S. H.

Sonnefraud, Y.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[Crossref] [PubMed]

Sun, N.-H.

Tetienne, J.-P.

J.-P. Tetienne, A. Bousseksou, D. Costantini, Y. De Wilde, and R. Colombelli, “Design of an integrated coupler for the electrical generation of surface plasmon polaritons,” Opt. Express 19, 18155–18163 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[Crossref] [PubMed]

Volkov, V. S.

Wang, C.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

Xu, T.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

Yang, Y.-T.

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Zhang, X.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[Crossref]

Zhao, Y.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

ACS Nano (1)

J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

J. Lightwave Technol. (2)

Nano Lett. (1)

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[Crossref]

Nat. Commun. (1)

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref] [PubMed]

Nat. Photon. (1)

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron. 38, 257–267 (2006).
[Crossref]

Phys. Rev. B (1)

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

Phys. Rev. Lett. (1)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[Crossref] [PubMed]

Phys. Status Solidi RRL (1)

A. Ghoshal and P. G. Kik, “Frequency dependent power efficiency of a nanostructured surface plasmon coupler,” Phys. Status Solidi RRL 4, 280–282 (2010).
[Crossref]

Proc. IEEE (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Small (1)

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[Crossref] [PubMed]

Other (2)

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the plasmonic antenna. (b) Ex component of the TM waveguide mode at the particle position, normalised to total mode power vs. wavelength. (Insets show the mode’s power profile.) (c) Near field intensity of uncoupled particles for L = 150nm (solid), L = 250nm (dashed; inset shows field distribution 100nm above bulk silicon), and L = 350nm (dotted). (d) Transmission amplitude and phase into one direction of the waveguide for different particle lengths, excited by a 7μm beam, comparing numerically simulation (solid) and a forced dipole model (dotted line).

Fig. 2
Fig. 2

Transmission into each direction of the waveguide from two particles excited by a Gaussian beam focussed to a 7μm spot. (a) and (b) show the dependence of transmission on the propagation phase ψ, between two particles for Δ = 0 and Δ = π/4, respectively. The plots compare numerical simulations (open symbols) and the coupled oscillator model with (solid line) and without multiple scattering (dashed line).

Fig. 3
Fig. 3

(a) Maximum transmission (Tmax) into left and right directions (open circles and open squares, respectively) vs. phase difference between the two particles for numerical calculations (open symbols) and coupled oscillator model with (solid lines) and without multiple scattering (dashed line). (b) Transmission spectra into one direction for a 2μm focus for two particles with a Δ = π/4 phase shift (solid line; L1 = 250nm, L2 = 160nm), an identical particle pair (dotted line; L1 = L2 = 250nm), and a single particle (dashed line).

Fig. 4
Fig. 4

(a) Plasmonic coupler group delay dispersion over transmission window. (b) Pulse broadening due to 4μm propagating along silicon waveguide without coupler (solid), for a particle pair with Δ = π/4 (dashed line), and an identical particle pair (dotted line).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t ( x ) = κ 1 a ˙ 1 e i k | x | + κ 2 a ˙ 2 e i k | x D | = t ± e i k x ,
t ± = s 1 ( κ 1 κ 2 e ± i ψ ) T ( α 1 κ 1 e i ϕ 1 α 1 α 2 β 1 γ ¯ 1 e i ( ϕ 1 + ϕ 2 ψ ) κ 1 α 1 α 2 β 2 γ ¯ 1 e i ( ϕ 1 + ϕ 2 ψ ) κ 2 α 2 κ 2 e i ϕ 2 ) ( c 1 c 2 )
T ± = T 1 + T 2 + 2 T 1 T 2 cos ( Δ ± ψ )
ψ + Δ = 2 n π ψ Δ = ( 2 m + 1 ) π
T = 2 T 1 + 2 T 2 + 4 T 1 T 2 cos ψ cos Δ

Metrics