Abstract

We apply a four-wave mixing analysis on a quantum dot laser to simultaneously obtain the linewidth enhancement factor α and other intrinsic laser parameters. By fitting the experimentally obtained regenerative signals and power spectra at different detuning frequencies with the respective curves analytically calculated from the rate equations, parameters including the linewidth enhancement factor, the carrier decay rate in the dots, the differential gain, and the photon decay rate can be determined all at once under the same operating conditions. In this paper, a theoretical model for the four-wave mixing analysis of the QD lasers is derived and verified. The sensitivity and accuracy of the parameter extraction using the four-wave mixing method are presented. Moreover, how each each parameters alter the shapes of the regenerative signals and the power spectra are also discussed.

© 2011 OSA

1. Introduction

Nonlinear dynamics of semiconductor lasers and their applications [15] have been investigated extensively in recent years. For the quantum dot (QD) lasers, the dynamical behaviors and modulation characteristics are significantly influenced by the intrinsic laser parameters especially the linewidth enhancement factor α [6]. The linewidth enhancement factor of QD lasers can be measured with several methods under different operation conditions. For the material α below the threshold, it is usually measured with the amplified spontaneous emission (ASE) [7]. For the device α above the threshold, techniques such as the FM/AM response ratio under small signal current modulation [8, 9], the linewidth measurement [10], and the injection locking [1013] are commonly used.

In these techniques, however, the FM/AM method is limited by the electric parasitic effects where careful calibrations of the laser and the photodetector responses are required. In the injection locking technique, one can either measure the variations of the output power [11] or the junction voltage [12] under different detunings to extract the value of α. However, the variations are typically small and the value of α is difficult to be precisely determined. While the α can also be measured from the slope ratio of the upper and the lower injection locking boundaries [13], strong injections are needed to obtain the accurate locking bandwidths. When the laser under test is biased at a higher bias level, injection locking of the laser becomes difficult to achieve.

In this paper, we study the four-wave mixing (FWM) analysis [14] to measure the α of a QD laser. By fitting the experimentally obtained regenerative signals and the power spectra of the FWM states at different detuning frequencies to the respective theoretical curves, intrinsic laser parameters such as the linewidth enhancement factor α, the relaxation resonance frequency νr, the carrier decay rates in the quantum dots γd, the differential gain g0, the photon decay rate γs, the interaction cross section of the carriers ς, the gain saturation coefficient ɛ, the capture rate from the quantum wells into the dots C, and the carrier decay rates in the quantum wells γN can all be extracted simultaneously. Moreover, unlike the injection locking technique, FWM states can be easily obtained with just weak injections. As the results, α of the QD lasers at very high bias levels can still be measured.

2. Model and method

The dynamics of QD lasers with optical injection can be described by the rate equations for the complex amplitude of electric field E, the occupancy probability of the quantum dots ρ, and the carrier density in the surrounding quantum wells NW [2]

dEdt=12υgg0(2ρ11+ɛ|E|2γsυgg0)(1iα)E+γsEieiΔt
dρdt=γdρ+CNW(1ρ)υgς(2ρ11+ɛ|E|2)|E|2
dNWdt=γNNW+Jq2CNW(1ρ),
where γs is the photon decay rate in the cavity, γN and γd are the carrier decay rates in the quantum wells and the quantum dots, C is the capture rate from the wells into the dots, J is the bias current per dot, ς is the interaction cross section of the carriers in the dots, α is the linewidth enhancement factor, υg is the group velocity, g0 is the differential gain, ɛ is the gain saturation coefficient, and Ei and Δ are the effective complex amplitude and the detuning frequency of the injected field. For a single-mode DFB QD laser, rate equations without taking into account the excited states are used in this paper [2, 15, 16]. These rate equations are simplified [17, 18] while have good agreement with the experimental results [2].

By deriving the equations of E, ρ, and NW, the steady-state solutions of the rate equations at the FWM states can be obtained. In the degenerate FWM states, the E-field of the QD laser is composed of the free-oscillating signal, the regenerated amplification signal, and the FWM signal. Therefore, the output field can be expressed as

E(t)=E0+EreiΔt+EfeiΔt,
where E0 is the steady-state field amplitude at the oscillating frequency and Er and Ef are the complex amplitudes of the regenerated amplification and FWM fields, respectively. The source of carrier pulsation is the optical modulation from the beating of the E-field. Thus, the occupancy probability of the quantum dots ρ oscillates at the detuning frequency. To the first order, the occupancy probability can be described as
ρ(t)=ρ0+ρ1eiΔt+ρ1*eiΔt,
where ρ0 is the steady-state occupancy probability of the quantum dots without perturbation and ρ1 is the amplitudes of the pulsation.

NW is nearly constant (≃ N0) based on the simulation results with large capture rates, where N0 is the steady-state solution of NW without perturbation. Therefore, we can set Eq. (3) equals to zero to get the steady-state solution, which gives

NW=J/qγN+2C(1ρ)

To simplify the calculation, some approximations are made based on the simulation results. First, the complex amplitude of the amplitude modulation (σ) is much smaller than the steady-state field amplitude (E0), which gives

|E|2|E0|2(1+σeiΔt+σ*eiΔt)
and
11+ɛ|E|211+ɛ|E0|2

Since the capture rate from the quantum wells into the dots (C) is generally much larger than the carrier decay rates in the quantum wells (γN) while the occupancy probability of the quantum dots (ρ) is not close to 1, Eq. (6) can be reduced to

NW=J/q2C(1ρ)
By solving the steady-state solutions and substituting Eqs. (4), (5), and (9) into the rate equations, the complex amplitudes of the regenerative field, the FWM field, and the amplitude modulation with different detuning frequencies can be obtained.
ErE0=iρ1G(1iα)ΔK
EfE0=iρ1*G(1iα)Δ
σ=ρ1Z,
where
ρ1=KZ+W,G=υgg01+ɛ|E0|2,K=iγsΔEiE0,W=i2GΔ
Z=[2υgς|E0|21+ɛ|E0|2iΔ+γd]/[υgς|E0|2(2ρ01)1+ɛ|E0|2]

To validate this analytically derived model, the regenerative signals, the FWM signals, and the power spectra obtained from Eqs. (10)(12) are plotted in Figs. 1(a)1(c) and compared with the numerical simulation results obtained from the original rate equations Eqs. (1)(3). The parameters used are listed in Table 1 with 2Jth, which are adopted from those used in Ref. [19]. As shown in Figs. 1, except some minor discrepancies around the dips in the regenerative and FWM signals, the curves derived from the analytical model (blue curves) match well with the simulation results (green dots). Thus, by fitting the experimentally obtained regenerative signals, FWM signals, and power spectra with the respective derived curves using the analytically model shown in Eqs. (10)(12), the intrinsic laser parameters can be extracted. In fact, since the regenerative signal and the power spectrum contain all the information of the FWM signal as can be seen in Eqs. (10)(12), only the regenerative signals and the power spectra are needed in determining the parameters.

 

Fig. 1 (a) Regenerated signals, (b) four-wave mixing signals, and (c) power spectra from the numerical simulation (green dots) and the analytical solutions based on the simplified model (blue curves), respectively.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Parameters of the Quantum Dot Laser used in Fig. 1

3. Experimental setup

Figure 2 shows the schematic setup of the FWM analysis. A commercial QD laser diode (LD)(QDLaser QLD 1334) with a threshold current Jth = 8.7 mA is used as a sample for intrinsic laser parameter characterization, which has a wavelength of about 1296 nm and an output power of about 1.6 mW when biased at 20 mA. The QD laser is optically injected by a tunable laser (TL)(Yenista Tunics T100S-O) through a free space optical circulator formed by a polarizing beam splitter (PBS 2), a half-wave plate (HW 2), and a Faraday rotator (FR). The injected power is less than 1 μW to prevent the QD laser from injection-locking or any instability. The power spectrum of the QD laser is detected by a photodiode with 12 GHz frequency response (NewFocus 1554-A) and resolved with a 26.5 GHz spectrum analyzer (Agilent E4407B). The regenerative signal of the QD laser is measured by heterodyning the QD laser output with the TL output at the photodiode (when beam block (B) is removed), where an acousto-optic modulator (IntraAction ACM-1002AA1) is used to shift the beat signal from the DC to about 100 MHz for a better signal to noise ratio.

 

Fig. 2 Schematic setup of the four-wave mixing analysis. TL: tunable laser; LD: QD laser diode; FR: Faraday rotator; HW: half-wave plate; PBS: polarizing beamsplitter; PD: photodiode; SA: spectrum analyzer; VA: variable attenuator; AOM: acousto-optic modulator; B: beam block; FC: 50/50 fiber coupler.

Download Full Size | PPT Slide | PDF

4. Result and discussion

Figures 3(a)3(d) and 3(e)3(h) show the magnitudes of the regenerative signals and the power spectra of the QD laser (red dots) with different detuning frequencies between the TL and the QD laser at bias currents of 1.5Jth, 1.75Jth, 2Jth, and 2.25Jth, respectively. By the least squares curve fitting with the analytically derived curves from Eqs. (10)(12) (blue curves), the intrinsic parameters including the linewidth enhancement factor α, the carrier decay rates in the quantum dots γd, the differential gain g0, the photon decay rate γs, the interaction cross section of the carriers ς, the gain saturation coefficient ɛ, the capture rate from the quantum wells into the dots C, and the carrier decay rates in the quantum wells γN of the QD laser are obtained and shown in Table 2. The parameters used in Ref. [19] are also listed for reference.

 

Fig. 3 Experimentally obtained (a)–(d) regenerated signals and (e)–(h) power spectra of the QD laser under the FWM states at different bias currents (red dots). Blue curves are the least square fitting calculated from the analytical model.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. The Extracted Intrinsic Parameters of the QD Laser and Their Error Ranges

To show the sensitivity and accuracy of the extracted parameters with FWM, a normalized error range (listed in the parentheses of Table 2) measuring a 10% increase in the standard deviation (σ) from the best-fitted parameter (that has a least standard deviation σopt) is calculated. As can be seen in Table 2, the FWM method is particularly sensitive in determining the linewidth enhancement factor α where the error range is less than 5% (which means that changing the α from its best-fitted value by 5% will result in an increase of the standard deviation by 10%). The increasing trend of α as the bias current increases can be clearly determined [19,20]. The linewidth enhancement factor α of the very same QD laser is also measured with the injection locking method [13] to verify the FWM result. At the same bias currents of 1.5Jth, 1.75Jth, 2Jth, and 2.25Jth, α of 0.98(0.11), 0.96(0.08), 0.97(0.04), and 0.98(0.02) are obtained respectively (The values in the parentheses are the standard deviations for various measurements under different injection levels). As can be seen, similar values of α are obtained and confirmed the feasibility of the FWM method. Note that, a relatively strong injection is needed to locked the QD laser being examined in the injection locking method. At higher bias levels, locking the laser becomes more difficult and determining α becomes not possible. On the contrary, only a weak injection is needed to generate the FWM state in the QD laser at any bias levels. Moreover, except α, other intrinsic laser parameters can be extracted simultaneously under the same operating conditions.

As can be seen from Table 2, the FWM method is also good in extracting the γd, g0, and γs that have the error ranges within about 15%. Nonetheless, other parameters such as ς, ɛ, C, and γN are insensitive to the regenerative signals and the power spectra where the values of these parameters are not able to extract accurately through the FWM method (The capture rate from the quantum wells into the dots (C) and the carrier decay rates in the quantum wells (γN) barely affect the fitting results and thus are set with the same values used in Ref. [19]). Note that, the shapes of the regenerative signals shown in Figs. 3(a)3(d) fitted with the experimental data are very different from the one shown in Fig. 1(a). As can be seen in Table 2, this is mainly due to the relatively small γs of the QD laser evaluated.

To show the effects and characteristics of each parameter, Fig. 4 shows the regenerative signals and power spectra obtained from Eqs. (10)(12) with different α, γd, g0, and γs, respectively. Using the curves from the best-fitted values as the references (blue solid curves), curves calculated with larger (red dashed curves) and smaller (red dotted curves) parameters are presented for comparisons. The values of the parameters are arbitrary chosen to exaggerate the effect. Except the parameters that are being discussed, other parameters are fixed at those parameters shown in Table 2 with 2Jth. As can be seen in Fig. 4(a), the α alters the depth of the dip on the positive detuning significantly, while making almost no change on the negative detuning side. As has been discussed in Table 2, only 5% change in the α will increase the standard deviation in the fitting to 110% from its minimum σopt. Compared with other reported methods [21], the FWM method is relatively sensitive and precise in determining the α. As can be seen in Eq. (12), the power spectrum is independent of α. Therefore, no change in the power spectra is shown in Fig. 4(b) as expected. When increasing the carrier decay rate in the dots γd, as shown in Fig. 4(c), the dips in the regenerative signal become shallower and shifts toward larger detuning. The shoulder on the negative detuning becomes more smooth and almost disappears for γd greater than 0.2 ns−1. As expected, the resonance peaks in the power spectra shown in Fig. 4(d) also shifts toward the larger detuning and becomes lower as γd increases. Similar results are obtained and shown in Figs. 4(e) and 4(f) when the differential gain g0 is varied. As the result, from the position and the depth of the dip in the regenerative signal and the position and the height of the resonance peaks, the γd and g0 can be successfully determined. Another sensitive parameter is the photon decay rate γs. Compared to the previous parameters, γs seems to only alter the regenerative signal close to the dip but not those away from the dip as shown in Fig. 4(g). From the power spectrum in Fig. 4(h), the magnitudes of the spectra at lower detuning frequencies vary significantly when varying the γs compared to the other parameters. With each parameter has its distinct features in the regenerative signal and the power spectrum, the laser parameters α, γd, g0, and γs can be effectively extracted.

 

Fig. 4 Calculated regenerative signals (left column) and power spectra (right column) of the QD laser with different values of (a)(b) α, (c)(d) γd, (e)(f) g0, and (g)(h) γs, respectively.

Download Full Size | PPT Slide | PDF

5. Conclusion

In conclusion, we apply the FWM analysis to a QD laser for simultaneously extracting the linewidth enhancement factor and other intrinsic parameters. A model for the FWM analysis of the QD lasers is derived and validated. The linewidth enhancement factors of 0.93, 0.94, 0.95, and 1.03 at bias currents of 1.5Jth, 1.75Jth, 2Jth, and 2.25Jth are obtained with the error ranges of less than 5%, where similar values are obtained with the injection locking method using the very same QD laser. Other parameters such as γd, g0, and γs are also effectively measured, which have the error ranges of about 15%. Unlike the injection locking technique, the parameters at higher bias levels can still be extracted with the FWM method where only weak injections are needed to generate the FWM states. While different models have to be derived for semiconductor lasers with different structures, the advantages of the FWM method shown here are generally applicable to any types of semiconductor lasers.

While the FWM method is shown to successfully extract the intrinsic parameters of the QD laser, minor discrepancies are still observed between the experimentally measured regenerative signals and power spectra from the respective fitting curves calculated with the derived model. A more complete and complex model including the effects of the carrier dynamics in the excited states, the nonlinear effects of the α, and the phonon bottleneck may reduce the discrepancies, which will be investigated in the future.

Acknowledgments

This work is supported by the National Science Council of Taiwan under contract NSC 97-2112-M-007-017-MY3 and NSC 100-2112-M-007-012-MY3 and by the National Tsing Hua University under grant 100N2081E1.

References and links

1. F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron . 15, 604–611 (2009). [CrossRef]  

2. D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007). [CrossRef]  

3. Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011). [CrossRef]  

4. Y. S. Juan and F. Y. Lin, “Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser,” Opt. Express 18, 9664–9670 (2010). [CrossRef]   [PubMed]  

5. Y. S. Juan and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser,” Opt. Lett. 34, 1636–1638 (2009). [CrossRef]   [PubMed]  

6. S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000). [CrossRef]  

7. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999). [CrossRef]  

8. S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008). [CrossRef]  

9. J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer,” IEEE Photon. J. 3, 476–488 (2011). [CrossRef]  

10. T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007). [CrossRef]  

11. K. Iiyama, K. Hayashi, and Y. Ida, “Simple method for measuring the linewidth enhancement factor of semiconductor lasers by optical injection locking,” Opt. Lett. 17, 1128–1130 (1992). [CrossRef]   [PubMed]  

12. R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990). [CrossRef]  

13. I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988). [CrossRef]  

14. J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994). [CrossRef]  

15. D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29, 1072–1074 (2004). [CrossRef]  

16. T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett. 35, 937–939 (2010). [CrossRef]   [PubMed]  

17. M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005). [CrossRef]  

18. M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38, 381–394 (2006). [CrossRef]  

19. S. Melnik, G. Huyet, and A. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950–2955 (2006). [CrossRef]   [PubMed]  

20. B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005). [CrossRef]  

21. G. Giuliani, “The linewidth enhancement factor of semiconductor lasers: usefulness, limitations, and measurements,” in “23rd Annual Meeting of the IEEE Photonics Society, 2010,” 423–424 (2010).

References

  • View by:
  • |
  • |
  • |

  1. F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.  15, 604–611 (2009).
    [CrossRef]
  2. D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
    [CrossRef]
  3. Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
    [CrossRef]
  4. Y. S. Juan and F. Y. Lin, “Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser,” Opt. Express 18, 9664–9670 (2010).
    [CrossRef] [PubMed]
  5. Y. S. Juan and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser,” Opt. Lett. 34, 1636–1638 (2009).
    [CrossRef] [PubMed]
  6. S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
    [CrossRef]
  7. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
    [CrossRef]
  8. S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
    [CrossRef]
  9. J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer,” IEEE Photon. J. 3, 476–488 (2011).
    [CrossRef]
  10. T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
    [CrossRef]
  11. K. Iiyama, K. Hayashi, and Y. Ida, “Simple method for measuring the linewidth enhancement factor of semiconductor lasers by optical injection locking,” Opt. Lett. 17, 1128–1130 (1992).
    [CrossRef] [PubMed]
  12. R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990).
    [CrossRef]
  13. I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
    [CrossRef]
  14. J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
    [CrossRef]
  15. D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29, 1072–1074 (2004).
    [CrossRef]
  16. T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett. 35, 937–939 (2010).
    [CrossRef] [PubMed]
  17. M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
    [CrossRef]
  18. M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38, 381–394 (2006).
    [CrossRef]
  19. S. Melnik, G. Huyet, and A. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950–2955 (2006).
    [CrossRef] [PubMed]
  20. B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
    [CrossRef]
  21. G. Giuliani, “The linewidth enhancement factor of semiconductor lasers: usefulness, limitations, and measurements,” in “23rd Annual Meeting of the IEEE Photonics Society, 2010,” 423–424 (2010).

2011 (2)

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[CrossRef]

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer,” IEEE Photon. J. 3, 476–488 (2011).
[CrossRef]

2010 (2)

2009 (2)

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.  15, 604–611 (2009).
[CrossRef]

Y. S. Juan and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser,” Opt. Lett. 34, 1636–1638 (2009).
[CrossRef] [PubMed]

2008 (1)

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

2007 (2)

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
[CrossRef]

2006 (2)

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38, 381–394 (2006).
[CrossRef]

S. Melnik, G. Huyet, and A. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950–2955 (2006).
[CrossRef] [PubMed]

2005 (2)

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

2004 (1)

2000 (1)

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[CrossRef]

1999 (1)

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

1994 (1)

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

1992 (1)

1990 (1)

R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990).
[CrossRef]

1988 (1)

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
[CrossRef]

Akiyama, T.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Arakawa, Y.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Bossert, D. J.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Chabran, C.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
[CrossRef]

Chang, S. M.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.  15, 604–611 (2009).
[CrossRef]

Chen, J. X.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

D’ottavi, A.

R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990).
[CrossRef]

Dagens, B.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Debarge, G.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
[CrossRef]

Ebe, H.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Erneux, T.

Fiore, A.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Fischer, M.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Forchel, A.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Fordell, T.

T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
[CrossRef]

Fuchs, B.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Gallion, P.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
[CrossRef]

Gerhard, S.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Gerschutz, F.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Gioannini, M.

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38, 381–394 (2006).
[CrossRef]

Giuliani, G.

G. Giuliani, “The linewidth enhancement factor of semiconductor lasers: usefulness, limitations, and measurements,” in “23rd Annual Meeting of the IEEE Photonics Society, 2010,” 423–424 (2010).

Gouezigou, O. L.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Goulding, D.

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett. 35, 937–939 (2010).
[CrossRef] [PubMed]

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Greene, G.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Grillot, F.

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer,” IEEE Photon. J. 3, 476–488 (2011).
[CrossRef]

Hartnett, M.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Hatori, N.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Hayashi, K.

Hegarty, S. P.

Hofling, S.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Huang, C. C.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.  15, 604–611 (2009).
[CrossRef]

Hui, R.

R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990).
[CrossRef]

Huyet, G.

Hwang, S. K.

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[CrossRef]

Ida, Y.

Iiyama, K.

Ishida, M.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Juan, Y. S.

Kamp, M.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Kelleher, B.

Koeth, J.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Kovsh, A.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Krestnikov, I.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Landreau, J.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Lester, L. F.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Lin, F. Y.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[CrossRef]

Y. S. Juan and F. Y. Lin, “Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser,” Opt. Express 18, 9664–9670 (2010).
[CrossRef] [PubMed]

Y. S. Juan and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser,” Opt. Lett. 34, 1636–1638 (2009).
[CrossRef] [PubMed]

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.  15, 604–611 (2009).
[CrossRef]

Lindberg, A. M.

T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
[CrossRef]

Liu, J. M.

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[CrossRef]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

Make, D.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Malloy, K. J.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Markus, A.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

McInerney, J. G.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Mecozzi, A.

R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990).
[CrossRef]

Melnik, S.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

S. Melnik, G. Huyet, and A. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950–2955 (2006).
[CrossRef] [PubMed]

Montrosset, I.

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38, 381–394 (2006).
[CrossRef]

Nakata, Y.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Newell, T. C.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

O’Brien, D.

Otsubo, K.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Petitbon, I.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
[CrossRef]

Provost, J. G.

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer,” IEEE Photon. J. 3, 476–488 (2011).
[CrossRef]

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Rachinskii, D.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Rasskazov, O.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Schilling, C.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Sevega, A.

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38, 381–394 (2006).
[CrossRef]

Simpson, T. B.

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

Spano, P.

R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990).
[CrossRef]

Stintz, A.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Sugawara, M.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Thedrez, B.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Tu, S. Y.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.  15, 604–611 (2009).
[CrossRef]

Uskov, A.

Uskov, A. V.

Viktorov, E. A.

Electron. Lett. (2)

R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990).
[CrossRef]

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

IEEE J. Quantum Electron. (3)

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
[CrossRef]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.  15, 604–611 (2009).
[CrossRef]

IEEE Photon. J. (2)

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[CrossRef]

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer,” IEEE Photon. J. 3, 476–488 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

J. Appl. Phys. (1)

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Opt. Commun. (1)

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38, 381–394 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Other (1)

G. Giuliani, “The linewidth enhancement factor of semiconductor lasers: usefulness, limitations, and measurements,” in “23rd Annual Meeting of the IEEE Photonics Society, 2010,” 423–424 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Regenerated signals, (b) four-wave mixing signals, and (c) power spectra from the numerical simulation (green dots) and the analytical solutions based on the simplified model (blue curves), respectively.

Fig. 2
Fig. 2

Schematic setup of the four-wave mixing analysis. TL: tunable laser; LD: QD laser diode; FR: Faraday rotator; HW: half-wave plate; PBS: polarizing beamsplitter; PD: photodiode; SA: spectrum analyzer; VA: variable attenuator; AOM: acousto-optic modulator; B: beam block; FC: 50/50 fiber coupler.

Fig. 3
Fig. 3

Experimentally obtained (a)–(d) regenerated signals and (e)–(h) power spectra of the QD laser under the FWM states at different bias currents (red dots). Blue curves are the least square fitting calculated from the analytical model.

Fig. 4
Fig. 4

Calculated regenerative signals (left column) and power spectra (right column) of the QD laser with different values of (a)(b) α, (c)(d) γd, (e)(f) g0, and (g)(h) γs, respectively.

Tables (2)

Tables Icon

Table 1 Parameters of the Quantum Dot Laser used in Fig. 1

Tables Icon

Table 2 The Extracted Intrinsic Parameters of the QD Laser and Their Error Ranges

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d E d t = 1 2 υ g g 0 ( 2 ρ 1 1 + ɛ | E | 2 γ s υ g g 0 ) ( 1 i α ) E + γ s E i e i Δ t
d ρ d t = γ d ρ + C N W ( 1 ρ ) υ g ς ( 2 ρ 1 1 + ɛ | E | 2 ) | E | 2
d N W d t = γ N N W + J q 2 C N W ( 1 ρ ) ,
E ( t ) = E 0 + E r e i Δ t + E f e i Δ t ,
ρ ( t ) = ρ 0 + ρ 1 e i Δ t + ρ 1 * e i Δ t ,
N W = J / q γ N + 2 C ( 1 ρ )
| E | 2 | E 0 | 2 ( 1 + σ e i Δ t + σ * e i Δ t )
1 1 + ɛ | E | 2 1 1 + ɛ | E 0 | 2
N W = J / q 2 C ( 1 ρ )
E r E 0 = i ρ 1 G ( 1 i α ) Δ K
E f E 0 = i ρ 1 * G ( 1 i α ) Δ
σ = ρ 1 Z ,
ρ 1 = K Z + W , G = υ g g 0 1 + ɛ | E 0 | 2 , K = i γ s Δ E i E 0 , W = i 2 G Δ
Z = [ 2 υ g ς | E 0 | 2 1 + ɛ | E 0 | 2 i Δ + γ d ] / [ υ g ς | E 0 | 2 ( 2 ρ 0 1 ) 1 + ɛ | E 0 | 2 ]

Metrics