Abstract

Based on the generalized exponential spectrum for non-Kolmogorov atmospheric turbulence, theoretical expressions of the angle-of-arrival (AOA) variance are derived for plane and spherical optical waves propagating through weak turbulence. Without particular assumption, the new expressions relate the AOA variance to the receiver aperture, finite turbulence inner and outer scales, and the optical wavelength.

©2011 Optical Society of America

1. Introduction

AOA fluctuations play an important role in a diverse range of fields including atmospheric turbulence [1,2], free space optical communication [3], ground-based astronomical observations [4], etc. It involves estimating the variance of AOA fluctuations through integrals of atmospheric turbulence strength along the propagation path. For a long time, study on AOA fluctuations is based on Kolmogorov atmospheric turbulence model, and many methods have been developed for analyzing AOA fluctuations. These methods can generally be divided into two classes: geometrical optics based method and covariance of AOA based method. The former is conditioned by λLD (λL is the Fresnel zone, L is the wave propagation distance, λ is the wavelength, andD is the diameter of the receiver aperture). In this method, the variance of AOA fluctuations is expressed as the derivative of the phase structure function with aperture average, and the result is independent of optical wavelength. Tatarskii [5], Wheelon [6], and Andrews [7] presented close-form solutions to AOA variances for plane and spherical waves by approximating the phase structure function in certain asymptotic cases, and they contained finite turbulence inner and outer scales. Tofsted [8] and Eyyuboglu [9] derived the expression of the variance of AOA fluctuations for the Gaussian beam waves. The latter adopted an original approach to derive the variance of AOA fluctuations from its covariance, and it is applicable in more complete cases than the first method. Conan et al. [10] expressed the AOA variance as convergent series using the Mellin transforms, and the close-form solution was obtained in certain cases by means of a simple and analytical approximation. Cheon [11] developed closed form for the AOA variances without geometrical optics assumption, but the influences of finite inner and outer scales were not considered.

However, over the past decades, both experimental evidences [1215] and theoretical investigations [16,17] have shown that atmospheric turbulence derivates from the Kolmogorov case in certain portions of the atmosphere. So the non-Kolmogorov spectral model and the generalized von Karman spectral model were proposed and used to investigate the AOA fluctuations for wave propagating through non-Kolmogorov turbulence [1820]. In these studies, the geometrical optics approximation assumption is adopted to simplify the calculations, and that makes the results independent of optical wavelength.

In this study, without particular assumption, the generalized exponential spectral model [21] is used to research the AOA fluctuations for plane/spherical optical wave propagating through non-Kolmogorov turbulence. And then, the impacts of the optical wavelength, turbulence inner scales, outer scales and receiver aperture diameter on the variance of AOA fluctuations have been analyzed.

2. Generalized Exponential Spectrum

The generalized exponential spectral model [21] can be applied in non-Kolmogorov atmospheric turbulence, which considers finite turbulence inner and outer scales and has a general spectral power law value in the range of 3 to 5 instead of standard power law value 11/3. Specifically, this spectral model has the following form

Φn(κ,α,l0,L0)=A(α)Cn2καf(k,l0,L0,α)(0κ<,3<α<5),
f(κ,l0,L0,α)=[1exp(κ2/κ02)]exp(κ2/κl2).
where Cn2is the generalized refractive-index structure parameter with units m3α, κ denotes the magnitude of the spatial-frequency vector with units of rad/m and is related to the size of turbulence cells, f(k,l0,L0,α) describes the influence of finite turbulence inner and outer scales, κl=c(α)/l0,κ0=C0/L0, l0and L0 are the turbulence inner and outer scales, respectively. The choice of C0 depends on the specific application, in this study, it is set to4π just as [7]. A(α) and c(α)are given by [21]
A(α)=Γ(α1)4π2sin[(α3)π2],c(α)={πA(α)[Γ(α2+32)(3α3)}1α5.
Whenα=11/3, A(11/3)=0.033 andc(11/3)5.92, Eq. (1) is reduced to the Kolmogorov turbulent exponential spectral model. And whenl00,L0, Eq. (1) becomes the general non-Kolmogorov spectrum

Φn(κ,α)=A(α)Cn2κα(0κ<,3<α<5).

3. Variance of AOA fluctuations

The variance of AOA fluctuations can be expressed with different forms [10,11], but they are equivalent to each other after simple mathematical transforms. In this study, we adopt the form [11]

σ2=π2L0dκ01dξκ3Φn(κ)h(κ,ξ),
where ξ is the normalized path coordinate and h(κ,ξ) is a weighting function. For plane and spherical waves, h(κ,ξ) has different form as
hpl(κ)=[1+kκ2Lsin(κ2Lk)]A(aκ),
hsp(κ)=[1+cos(κ2ξ(1ξ)Lk)]ξ2A(aκξ),
where k=2π/λ, anda=D/2is the radius of the receiver aperture. A(x) is the wavenumber-weighting function which can suppress the influence of turbulence on the variance of AOA fluctuations when the scale of turbulent eddy is smaller than the radius of receiver [6].
A(x)=[2J1(x)x]2,
where J1(x) is the first-order Bessel function andA(x) can be approximated by a Gaussian pattern [10,11]
A(x)exp[(βx)2].
where β can be assigned through theoretically calculating (β=0.5216) [11] or curve fitting (β=0.4832) [22] for Kolmogorov turbulence cases. For non-Kolmogorov turbulence cases, we assume that β is the function of α.

In the next section, the expression forms of β(α) and the variance of AOA fluctuations for plane and spherical waves propagating through weak non-Kolmogorov turbulence will be derived. It should be mentioned that in the following calculation, α is restricted to the range of 3 to 4 just for comparison with [1820,23]. The expressions of the variance of AOA fluctuations themselves are effective for α in the range of 3 to 5.

3.1 Expression of β(α)

Following the same procedure as [11], β(α)for the non-Kolmogorov turbulence is obtained

β(α)=12{Γ(α1)[Γ(α/2)]2+Γ(1+α/2)}1/(α4),(3<α<4).

Figure 1 shows β(α) as the function of α. Whenα=11/3, β(α)=0.5216. As shown, β(α) hardly varies with α and this is physically correct. Becauseβ(α)is the parameter of A(x), while A(x) describes the inherence property (aperture averaging) of receiver and is only related to the receiver itself, it does not vary with α. Here, we verify it again from the theoretical analysis point of view. In this study, for calculation purposes, β(α) is set to0.52.

 

Fig. 1 β(α) as a function of α.

Download Full Size | PPT Slide | PDF

3.2 Variance of AOA fluctuations for plane wave

Substituting Eq. (6) and Eq. (9) into Eq. (5), the variance of AOA fluctuations for plane wave propagating through atmospheric turbulence becomes

σ(pl)2=π2L0dκ01dξκ3Φn(κ)[1+kLκ2sin(Lκ2k)]exp[β2D2κ24],

Using the generalized exponential spectral model [21], Eq. (11) becomes

σ(pl)2(α,λ,D,l0,L0)=π2L0dκ01dξκ3Φn(κ,α,l0,L0)[1+kLκ2sin(Lκ2k)]exp[β2D2κ24],

For analysis purposes, f(κ,l0,L0,α) is divided into two parts

f(κ,l0,L0,α)=f1(κ,l0,L0,α)+f2(κ,l0,L0,α),f1(κ,l0,L0,α)=exp(κ2/kl2),f2(κ,l0,L0,α)=exp[κ2(1/k02+1/kl2)].

Using the gamma function [24]

Γ(x)=0κx1eκdκ,
and its property

0κμ1exp(aκ)sin(bκ)dκ=Γ(μ)(a2+b2)μ/2sin[μtan1(ba)],

The variance of AOA fluctuations for plane wave propagating though weak non-Kolmogorov becomes

σ(pl)2(α,λ,D,l0,L0)=π2A(α)Cn2L[g1(A11,B11,C11)g1(A21,B21,C21)],
whereg1(A11,B11,C11) and g1(A21,B21,C21) are obtained from f1(κ,l0,L0,α) and f2(κ,l0,L0,α) separately, and can be expressed with the forms
g1(Aij,Bij,Cij)=12Γ(Aij+12)BijAij+12+12CijΓ(Aij12)(Bij2+Cij2)Aij14sin[Aij12tan1(CijBij)],
whereA11=A21=3α,B11=β2D24+1kl2,C11=C21=Lk,B21=β2D24+1kl2+1k02.

The analytical expression of variance of AOA fluctuations for plane wave propagating through weak non-Kolmogorov turbulence with horizontal path has been obtained, and it contains variable wavelength, the receiver aperture diameter, and the finite inner and outer scales.

3.3 Variance of AOA fluctuations for spherical wave

For a spherical wave propagating through atmospheric turbulence, the variance of the AOA fluctuations is given by

σ(sp)2=π2L0dκ01dξκ3Φn(κ)[1+cos(κ2ξ(1ξ)Lk)]ξ2exp[β2D2κ2ξ24],

Using the generalized exponential spectral model [21], Eq. (18) becomes

σ(sp)2(α,λ,D,l0,L0)=π2L001κ3Φn(κ,α,l0,L0)[1+cos(κ2ξ(1ξ)Lk)]ξ2exp[(βDκξ)24]dκdξ.

Similarly, f(κ,l0,L0,α) is expressed with Eq. (13). Using Eq. (14) and the gauss hypergeometric function F21(A,B;C;Z) [24]

F21(A,B;C;Z)=Γ(C)Γ(B)Γ(CB)01tB1(1t)CB1(1tZ)Adt.

The variance of AOA fluctuations for spherical wave propagating through weak non-Kolmogorov turbulence can be expressed as

σsp2(α,λ,D,l0,L0)=π2A(α)Cn2L[g2(A11,B11,C11)g2(A21,B21,C21)].
where g2(A11,B11,C11) and g2(A21,B21,C21) are obtained from f1(κ,l0,L0,α) and f2(κ,l0,L0,α) separately
g2(Aij,Bij,Cij)=12Γ(Aij+12){13BijAij+12F21(Aij+12,32;52;b2Bij)+Re{01ξ2[Bij+b2ξ2+iCijξ(1ξ)]Aij+12dξ}}.
where Aij and Cij have the same forms as in section 3.2, while Bij has the form as

B11=1kl2,B21=1kl2+1k02,b2=β2D24.

For the atmospheric turbulence, usually l0 is in the order of magnitude of millimeter and L0is in the order of magnitude of meter [5-7], so the condition of l0λL andL0λLis basically satisfied, then Eq. (22) can be expressed with closed form just as follows. Whenl0λLandL0λL, thenB11=1kl2=l02c2(α)C11 andB211kl2=L02C02C21, the integration part in g2(A11,B11,C11) andg2(A21,B21,C21)are approximately expressed as

Re{01ξ2[B11+b2ξ2+iC11ξ(1ξ)]A11+12dξ}Re{01ξ2[b2ξ2+iC11ξ(1ξ)]A11+12dξ}=Re[(iC11)A11+1225A11F21(A11+12,5A112;7A112;1+ib2C11)],
Re{01ξ2[B21+b2ξ2+iC21ξ(1ξ)]A21+12dξ}01ξ2[B21+b2ξ2]A21+12dξ=13B21Aij+12F21(A21+12,32;52;b2B21).

As a result, σsp2(α,D,l0,L0) becomes

σsp2(α,λ,D,l0,L0)=π2A(α)Cn2L[g2(A11,B11,C11)g2(A21,B21,C21)],
g2(A11,B11,C11)=12Γ(A11+12){13B11A11+12F21(A11+12,12;32;b2B11)Re[(iC11)A11+1225A11F21(A11+12,5A112;7A112;1+ib2C11)]},
g2(A21,B21,C21)=13Γ(A21+12)B21A21+12F21(A21+12,12;32;b2B21).

The analytical expression of variance of AOA fluctuations for spherical wave propagating through weak non-Kolmogorov turbulence with horizontal path has been obtained, and it contains variable wavelength, the receiver aperture diameter, and the finite inner and outer scales.

5. Numerical results

In this section, simulations are conducted to analyze the influences of changeable parameters (D,l0,λ and L0) on the variance of AOA fluctuations. To avoid the mutual interferences between parameters, in the following simulations, we fix three of the four parameters at a time and analyze only one parameter’s influence on the variance of AOA fluctuations. All the experiments are conducted for plane/spherical optical wave propagating in horizontal path with the settings

Cn2=1×1014m3α , L=1000m

5.1 Effect of wavelength’s variation on the variance of AOA fluctuations

In the first simulation experiment, we fixD=0.05m,l0=1mm,L0=10m and different wavelengths, including visible light (λ=0.55μm), near infrared light (λ=1.55μm), intermediate infrared light (λ=4μm) and far infrared light (λ=10μm) are chosen to analyze their influences on the variance of AOA fluctuations. Simulation experimental results are shown in Fig. 2 .

 

Fig. 2 Variance of AOA fluctuations as a function of α with different wavelength values. (a): plane wave. (b): spherical wave.

Download Full Size | PPT Slide | PDF

As shown, variable wavelengths bring different effects on the variance of AOA fluctuations. With the increase of wavelength, the turbulence produces less effect on the wave propagation, and this is the supplement to the previous results [1820] where the influence of various wavelength is ignored under the geometrical optics approximation assumption.

5.2 Effect of inner scale’s variation on the variance of AOA fluctuations

To analyze turbulence inner scale’s influence on the variance of AOA fluctuation, D,L0and λ are fixed to constant values of D=0.05m, L0=10m andλ=0.55μm. Different inner scale sizes are chosen (for the real atmospheric turbulence condition, l0 is in the order of magnitude of millimeter, here it is set to 1mm, 2mm, 3mm and 5mm, respectively, and it satisfyl0λL). Figure 3 shows the simulation experimental results. As shown, when turbulence inner scale is much smaller than the Fresnel zone, effects of inner scale on the variance of AOA fluctuations can be ignored, and this result is consonant with [18].

 

Fig. 3 Variance of AOA fluctuations as a function of α with different inner scale values.(a): plane wave. (b): spherical wave.

Download Full Size | PPT Slide | PDF

This phenomenon can also be explained from the point of view: the phase fluctuations are contributed mostly by turbulence cells with size of λLor larger [5,6]. Whenl0<<λL, the number of turbulent cells with size of λLalmost keeps unchanged. Therefore, the phase fluctuations will not be changed, which makes the variance of AOA fluctuations unchanged.

5.3 Effect of outer scale’s variation on the variance of AOA fluctuations

To analyze turbulence outer scale’s influence on the variance of AOA fluctuations, D, l0 and λ are set to constant values (D=0.05m,l0=1mm, λ=0.55μm). Different outer scales are chosen, and the simulation results are shown in Fig. 4 .

 

Fig. 4 Variance of AOA fluctuations as a function of α with different outer scale values. (a): plane wave. (b): spherical wave.

Download Full Size | PPT Slide | PDF

As shown, with the increase of the turbulent outer scale, the variance of AOA fluctuations increases. This trend is consistent with [18,20]. The results can be explained directly from the function f(κ,α,l0,L0) in Eq. (2). WhenL0increases, f(κ,α,l0,L0)raises, so that the variance of AOA fluctuations of plane/spherical waves also increase.

It can also be interpreted from another point of view: the phase fluctuations are contributed mostly by turbulence cells with size of λLor larger [5,6], when theL0 is assumed with high value, the wave meets a major number of large-scale turbulent cells along its propagation length and these cells lead to higher variance of AOA fluctuations with respect to the case of lower outer scale value, where more large scales are cut out [18].

5.4 Effect of D’s variation on the variance of AOA fluctuations

To analyze D ’s influence on the variance of AOA fluctuations, λ,l0 and L0are set to constant values (λ=0.55μm,l0=1mm, L0=10m), and different Dis chosen. Figure 5 shows that when Dincreases, the variance of AOA fluctuations decreases obviously, and this is the aperture averaging effects.

 

Fig. 5 Variance of AOA fluctuations as a function of α with different Dvalues. (a): plane wave. (b): spherical wave.

Download Full Size | PPT Slide | PDF

6. Conclusion

In this study, new theoretical expressions of the variance of AOA fluctuations with variable wavelength, finite inner and outer scales and general power law are derived under the assumption of weak fluctuation theory for plane and spherical optical wave propagating through non-Kolmogorov atmospheric turbulence with horizontal path.

Simulation results show that the variance of AOA fluctuations as the function of power law α for plane wave is similar to that for spherical wave. The turbulence outer scale’s variation produces obvious effects on the variance of AOA fluctuations, while the inner scale’s influence is ignorable when it is much smaller than the Fresnel zone. This is consistent with [18,20]. As the receiver aperture diameter D increases, strong averaging effects are produced, and it will alleviate the value of the variance of AOA fluctuations. Also, without geometrical optics assumption, the influence of variable wavelength is included in the expressions, and this is the obvious difference between the expressions derived in this study and the existed expressions where the influence of wavelength is ignored for calculation purpose [1820]. The results in this study will help to better investigate the effects of turbulence on the plane and spherical optical waves propagating through non-Kolmogorov atmospheric turbulence with horizontal path.

Acknowledgments

The authors would like to thank the anonymous reviewers for their very constructive comments and suggestions. This work is partly supported by the National Natural Science Foundation of China (No.60832011) and the Aeronautical Science Foundation of China (20080151009).

References and links

1. R. J. Hill, “Review of optical scintillation methods of measuring the refractive-index spectrum, inner scale and surface fluxes,” Waves in Random and Complex Media 2, 179–201 (1992). http://dx.doi.org/10.1088/0959-7174/2/3/001.

2. M. J. Vilcheck, A. E. Reed, and H. R. Burris, “Multiple methods for measuring atmospheric turbulence,” Proc. SPIE 4821, 300–309 (2002). [CrossRef]  

3. H. T. Eyyuboglu and Y. Baykal, “Analysis of laser multimode content on the angle-of-arrival fluctuations in free-space optics access systems,” Opt. Eng. 44(5), 056002 (2005). [CrossRef]  

4. E. Masciadri, J. Vernin, and P. Bougeault, “3D mapping of optical turbulence using an atmospheric numerical model. I. A useful tool for the ground-based astronomy,” Astron. Astrophys. Suppl. Ser. 137(1), 185–202 (1999). [CrossRef]  

5. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (trans. for NOAA by Israel Program for Scientific Translations, Jerusalem, 1971).

6. A. D. Wheelon, Electromagnetic Scintillation. I. Geometrical Optics (Cambridge U. Press, 2001).

7. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, Bellingham, 2005).

8. D. H. Tofsted, “Outer-scale effects on beam-wander and angle-of-arrival variances,” Appl. Opt. 31(27), 5865–5870 (1992). [CrossRef]   [PubMed]  

9. H. T. Eyyuboğlu and Y. Baykal, “Angle-of-arrival fluctuations for general-type beams,” Opt. Eng. 46(9), 096001 (2007). [CrossRef]  

10. R. Conan, J. Borgnino, A. Ziad, and F. Martin, “Analytical solution for the covariance and for the decorrelation time of the angle of arrival of a wave front corrugated by atmospheric turbulence,” J. Opt. Soc. Am. A 17(10), 1807–1818 (2000). [CrossRef]  

11. Y. Cheon and A. Muschinski, “Closed-form approximations for the angle-of-arrival variance of plane and spherical waves propagating through homogeneous and isotropic turbulence,” J. Opt. Soc. Am. A 24(2), 415–422 (2007). [CrossRef]  

12. D. T. Kyrazis, J. B. Wissler, D. B. Keating, A. J. Preble, and K. P. Bishop, “Measurement of optical turbulence in the upper troposphere and lower stratosphere,” Proc. SPIE 2120, 43–55 (1994). [CrossRef]  

13. M. S. Belen’kii, S. J. Karis, J. M. Brown II, and R. Q. Fugate, “Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE 3126, 113–123 (1997). [CrossRef]  

14. M. S. Belen’kii, E. Cuellar, K. A. Hughes, and V. A. Rye, “Experimental study of spatial structure of turbulence at Maui Space Surveillance Site (MSSS),” Proc. SPIE 6304, 63040U, 63040U-12 (2006). [CrossRef]  

15. A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, and Y. Shtemler, “Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov trubulence,” Atmos. Res. 88(1), 66–77 (2008). [CrossRef]  

16. A. S. Gurvich and M. S. Belen’kii, “Influence of stratospheric turbulence on infrared imaging,” J. Opt. Soc. Am. A 12(11), 2517–2522 (1995). [CrossRef]  

17. M. S. Belen’kii, “Effect of the stratosphere on star image motion,” Opt. Lett. 20(12), 1359–1361 (1995). [CrossRef]   [PubMed]  

18. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence,” Proc. SPIE 6551, 65510E, 65510E-12 (2007). [CrossRef]  

19. W. Du, S. Yu, L. Tan, J. Ma, Y. Jiang, and W. Xie, “Angle-of-arrival fluctuations for wave propagation through non-Kolmolgorov turbulence,” Opt. Commun. 282(5), 705–708 (2009). [CrossRef]  

20. L. Tan, W. Du, and J. Ma, “Effect of the outer scale on the angle of arrival variance for free-space-laser beam corrugated by non-Kolmogorov turbulence,” J. Russ. Laser Res. 30(6), 552–559 (2009). [CrossRef]  

21. L. Y. Cui, B. D. Xue, X. G. Cao, J. K. Dong, and J. N. Wang, “Generalized atmospheric turbulence MTF for wave propagating through non-Kolmogorov turbulence,” Opt. Express 18(20), 21269–21283 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-20-21269. [CrossRef]   [PubMed]  

22. C. Ho, and A. Wheelon, “Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-band Downlink,” Jet Propulsion Laboratory, California (2004). http://ipnpr.jpl.nasa.gov/progress_report/42-158/158F.pdf

23. W. Du, L. Tan, J. Ma, and Y. Jiang, “Temporal-frequency spectra for optical wave propagating through non-Kolmogorov turbulence,” Opt. Express 18(6), 5763–5775 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-6-5763. [CrossRef]   [PubMed]  

24. L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed. (SPIE Optical Engineering Press, Bellingham, Wash., 1998).

References

  • View by:
  • |
  • |
  • |

  1. R. J. Hill, “Review of optical scintillation methods of measuring the refractive-index spectrum, inner scale and surface fluxes,” Waves in Random and Complex Media 2, 179–201 (1992). http://dx.doi.org/10.1088/0959-7174/2/3/001 .
  2. M. J. Vilcheck, A. E. Reed, and H. R. Burris, “Multiple methods for measuring atmospheric turbulence,” Proc. SPIE 4821, 300–309 (2002).
    [Crossref]
  3. H. T. Eyyuboglu and Y. Baykal, “Analysis of laser multimode content on the angle-of-arrival fluctuations in free-space optics access systems,” Opt. Eng. 44(5), 056002 (2005).
    [Crossref]
  4. E. Masciadri, J. Vernin, and P. Bougeault, “3D mapping of optical turbulence using an atmospheric numerical model. I. A useful tool for the ground-based astronomy,” Astron. Astrophys. Suppl. Ser. 137(1), 185–202 (1999).
    [Crossref]
  5. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (trans. for NOAA by Israel Program for Scientific Translations, Jerusalem, 1971).
  6. A. D. Wheelon, Electromagnetic Scintillation. I. Geometrical Optics (Cambridge U. Press, 2001).
  7. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, Bellingham, 2005).
  8. D. H. Tofsted, “Outer-scale effects on beam-wander and angle-of-arrival variances,” Appl. Opt. 31(27), 5865–5870 (1992).
    [Crossref] [PubMed]
  9. H. T. Eyyuboğlu and Y. Baykal, “Angle-of-arrival fluctuations for general-type beams,” Opt. Eng. 46(9), 096001 (2007).
    [Crossref]
  10. R. Conan, J. Borgnino, A. Ziad, and F. Martin, “Analytical solution for the covariance and for the decorrelation time of the angle of arrival of a wave front corrugated by atmospheric turbulence,” J. Opt. Soc. Am. A 17(10), 1807–1818 (2000).
    [Crossref]
  11. Y. Cheon and A. Muschinski, “Closed-form approximations for the angle-of-arrival variance of plane and spherical waves propagating through homogeneous and isotropic turbulence,” J. Opt. Soc. Am. A 24(2), 415–422 (2007).
    [Crossref]
  12. D. T. Kyrazis, J. B. Wissler, D. B. Keating, A. J. Preble, and K. P. Bishop, “Measurement of optical turbulence in the upper troposphere and lower stratosphere,” Proc. SPIE 2120, 43–55 (1994).
    [Crossref]
  13. M. S. Belen’kii, S. J. Karis, J. M. Brown, and R. Q. Fugate, “Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE 3126, 113–123 (1997).
    [Crossref]
  14. M. S. Belen’kii, E. Cuellar, K. A. Hughes, and V. A. Rye, “Experimental study of spatial structure of turbulence at Maui Space Surveillance Site (MSSS),” Proc. SPIE 6304, 63040U, 63040U-12 (2006).
    [Crossref]
  15. A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, and Y. Shtemler, “Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov trubulence,” Atmos. Res. 88(1), 66–77 (2008).
    [Crossref]
  16. A. S. Gurvich and M. S. Belen’kii, “Influence of stratospheric turbulence on infrared imaging,” J. Opt. Soc. Am. A 12(11), 2517–2522 (1995).
    [Crossref]
  17. M. S. Belen’kii, “Effect of the stratosphere on star image motion,” Opt. Lett. 20(12), 1359–1361 (1995).
    [Crossref] [PubMed]
  18. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence,” Proc. SPIE 6551, 65510E, 65510E-12 (2007).
    [Crossref]
  19. W. Du, S. Yu, L. Tan, J. Ma, Y. Jiang, and W. Xie, “Angle-of-arrival fluctuations for wave propagation through non-Kolmolgorov turbulence,” Opt. Commun. 282(5), 705–708 (2009).
    [Crossref]
  20. L. Tan, W. Du, and J. Ma, “Effect of the outer scale on the angle of arrival variance for free-space-laser beam corrugated by non-Kolmogorov turbulence,” J. Russ. Laser Res. 30(6), 552–559 (2009).
    [Crossref]
  21. L. Y. Cui, B. D. Xue, X. G. Cao, J. K. Dong, and J. N. Wang, “Generalized atmospheric turbulence MTF for wave propagating through non-Kolmogorov turbulence,” Opt. Express 18(20), 21269–21283 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-20-21269 .
    [Crossref] [PubMed]
  22. C. Ho, and A. Wheelon, “Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-band Downlink,” Jet Propulsion Laboratory, California (2004). http://ipnpr.jpl.nasa.gov/progress_report/42-158/158F.pdf
  23. W. Du, L. Tan, J. Ma, and Y. Jiang, “Temporal-frequency spectra for optical wave propagating through non-Kolmogorov turbulence,” Opt. Express 18(6), 5763–5775 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-6-5763 .
    [Crossref] [PubMed]
  24. L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed. (SPIE Optical Engineering Press, Bellingham, Wash., 1998).

2010 (2)

2009 (2)

W. Du, S. Yu, L. Tan, J. Ma, Y. Jiang, and W. Xie, “Angle-of-arrival fluctuations for wave propagation through non-Kolmolgorov turbulence,” Opt. Commun. 282(5), 705–708 (2009).
[Crossref]

L. Tan, W. Du, and J. Ma, “Effect of the outer scale on the angle of arrival variance for free-space-laser beam corrugated by non-Kolmogorov turbulence,” J. Russ. Laser Res. 30(6), 552–559 (2009).
[Crossref]

2008 (1)

A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, and Y. Shtemler, “Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov trubulence,” Atmos. Res. 88(1), 66–77 (2008).
[Crossref]

2007 (3)

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence,” Proc. SPIE 6551, 65510E, 65510E-12 (2007).
[Crossref]

H. T. Eyyuboğlu and Y. Baykal, “Angle-of-arrival fluctuations for general-type beams,” Opt. Eng. 46(9), 096001 (2007).
[Crossref]

Y. Cheon and A. Muschinski, “Closed-form approximations for the angle-of-arrival variance of plane and spherical waves propagating through homogeneous and isotropic turbulence,” J. Opt. Soc. Am. A 24(2), 415–422 (2007).
[Crossref]

2006 (1)

M. S. Belen’kii, E. Cuellar, K. A. Hughes, and V. A. Rye, “Experimental study of spatial structure of turbulence at Maui Space Surveillance Site (MSSS),” Proc. SPIE 6304, 63040U, 63040U-12 (2006).
[Crossref]

2005 (1)

H. T. Eyyuboglu and Y. Baykal, “Analysis of laser multimode content on the angle-of-arrival fluctuations in free-space optics access systems,” Opt. Eng. 44(5), 056002 (2005).
[Crossref]

2002 (1)

M. J. Vilcheck, A. E. Reed, and H. R. Burris, “Multiple methods for measuring atmospheric turbulence,” Proc. SPIE 4821, 300–309 (2002).
[Crossref]

2000 (1)

1999 (1)

E. Masciadri, J. Vernin, and P. Bougeault, “3D mapping of optical turbulence using an atmospheric numerical model. I. A useful tool for the ground-based astronomy,” Astron. Astrophys. Suppl. Ser. 137(1), 185–202 (1999).
[Crossref]

1997 (1)

M. S. Belen’kii, S. J. Karis, J. M. Brown, and R. Q. Fugate, “Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE 3126, 113–123 (1997).
[Crossref]

1995 (2)

1994 (1)

D. T. Kyrazis, J. B. Wissler, D. B. Keating, A. J. Preble, and K. P. Bishop, “Measurement of optical turbulence in the upper troposphere and lower stratosphere,” Proc. SPIE 2120, 43–55 (1994).
[Crossref]

1992 (1)

Andrews, L. C.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence,” Proc. SPIE 6551, 65510E, 65510E-12 (2007).
[Crossref]

Baykal, Y.

H. T. Eyyuboğlu and Y. Baykal, “Angle-of-arrival fluctuations for general-type beams,” Opt. Eng. 46(9), 096001 (2007).
[Crossref]

H. T. Eyyuboglu and Y. Baykal, “Analysis of laser multimode content on the angle-of-arrival fluctuations in free-space optics access systems,” Opt. Eng. 44(5), 056002 (2005).
[Crossref]

Belen’kii, M. S.

M. S. Belen’kii, E. Cuellar, K. A. Hughes, and V. A. Rye, “Experimental study of spatial structure of turbulence at Maui Space Surveillance Site (MSSS),” Proc. SPIE 6304, 63040U, 63040U-12 (2006).
[Crossref]

M. S. Belen’kii, S. J. Karis, J. M. Brown, and R. Q. Fugate, “Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE 3126, 113–123 (1997).
[Crossref]

A. S. Gurvich and M. S. Belen’kii, “Influence of stratospheric turbulence on infrared imaging,” J. Opt. Soc. Am. A 12(11), 2517–2522 (1995).
[Crossref]

M. S. Belen’kii, “Effect of the stratosphere on star image motion,” Opt. Lett. 20(12), 1359–1361 (1995).
[Crossref] [PubMed]

Bishop, K. P.

D. T. Kyrazis, J. B. Wissler, D. B. Keating, A. J. Preble, and K. P. Bishop, “Measurement of optical turbulence in the upper troposphere and lower stratosphere,” Proc. SPIE 2120, 43–55 (1994).
[Crossref]

Borgnino, J.

Bougeault, P.

E. Masciadri, J. Vernin, and P. Bougeault, “3D mapping of optical turbulence using an atmospheric numerical model. I. A useful tool for the ground-based astronomy,” Astron. Astrophys. Suppl. Ser. 137(1), 185–202 (1999).
[Crossref]

Brown, J. M.

M. S. Belen’kii, S. J. Karis, J. M. Brown, and R. Q. Fugate, “Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE 3126, 113–123 (1997).
[Crossref]

Burris, H. R.

M. J. Vilcheck, A. E. Reed, and H. R. Burris, “Multiple methods for measuring atmospheric turbulence,” Proc. SPIE 4821, 300–309 (2002).
[Crossref]

Cao, X. G.

Cheon, Y.

Conan, R.

Cuellar, E.

M. S. Belen’kii, E. Cuellar, K. A. Hughes, and V. A. Rye, “Experimental study of spatial structure of turbulence at Maui Space Surveillance Site (MSSS),” Proc. SPIE 6304, 63040U, 63040U-12 (2006).
[Crossref]

Cui, L. Y.

Dong, J. K.

Du, W.

W. Du, L. Tan, J. Ma, and Y. Jiang, “Temporal-frequency spectra for optical wave propagating through non-Kolmogorov turbulence,” Opt. Express 18(6), 5763–5775 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-6-5763 .
[Crossref] [PubMed]

W. Du, S. Yu, L. Tan, J. Ma, Y. Jiang, and W. Xie, “Angle-of-arrival fluctuations for wave propagation through non-Kolmolgorov turbulence,” Opt. Commun. 282(5), 705–708 (2009).
[Crossref]

L. Tan, W. Du, and J. Ma, “Effect of the outer scale on the angle of arrival variance for free-space-laser beam corrugated by non-Kolmogorov turbulence,” J. Russ. Laser Res. 30(6), 552–559 (2009).
[Crossref]

Eyyuboglu, H. T.

H. T. Eyyuboğlu and Y. Baykal, “Angle-of-arrival fluctuations for general-type beams,” Opt. Eng. 46(9), 096001 (2007).
[Crossref]

H. T. Eyyuboglu and Y. Baykal, “Analysis of laser multimode content on the angle-of-arrival fluctuations in free-space optics access systems,” Opt. Eng. 44(5), 056002 (2005).
[Crossref]

Ferrero, V.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence,” Proc. SPIE 6551, 65510E, 65510E-12 (2007).
[Crossref]

Fugate, R. Q.

M. S. Belen’kii, S. J. Karis, J. M. Brown, and R. Q. Fugate, “Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE 3126, 113–123 (1997).
[Crossref]

Golbraikh, E.

A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, and Y. Shtemler, “Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov trubulence,” Atmos. Res. 88(1), 66–77 (2008).
[Crossref]

Gurvich, A. S.

Hughes, K. A.

M. S. Belen’kii, E. Cuellar, K. A. Hughes, and V. A. Rye, “Experimental study of spatial structure of turbulence at Maui Space Surveillance Site (MSSS),” Proc. SPIE 6304, 63040U, 63040U-12 (2006).
[Crossref]

Jiang, Y.

W. Du, L. Tan, J. Ma, and Y. Jiang, “Temporal-frequency spectra for optical wave propagating through non-Kolmogorov turbulence,” Opt. Express 18(6), 5763–5775 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-6-5763 .
[Crossref] [PubMed]

W. Du, S. Yu, L. Tan, J. Ma, Y. Jiang, and W. Xie, “Angle-of-arrival fluctuations for wave propagation through non-Kolmolgorov turbulence,” Opt. Commun. 282(5), 705–708 (2009).
[Crossref]

Karis, S. J.

M. S. Belen’kii, S. J. Karis, J. M. Brown, and R. Q. Fugate, “Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE 3126, 113–123 (1997).
[Crossref]

Keating, D. B.

D. T. Kyrazis, J. B. Wissler, D. B. Keating, A. J. Preble, and K. P. Bishop, “Measurement of optical turbulence in the upper troposphere and lower stratosphere,” Proc. SPIE 2120, 43–55 (1994).
[Crossref]

Kopeika, N. S.

A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, and Y. Shtemler, “Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov trubulence,” Atmos. Res. 88(1), 66–77 (2008).
[Crossref]

Kupershmidt, I.

A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, and Y. Shtemler, “Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov trubulence,” Atmos. Res. 88(1), 66–77 (2008).
[Crossref]

Kyrazis, D. T.

D. T. Kyrazis, J. B. Wissler, D. B. Keating, A. J. Preble, and K. P. Bishop, “Measurement of optical turbulence in the upper troposphere and lower stratosphere,” Proc. SPIE 2120, 43–55 (1994).
[Crossref]

Ma, J.

W. Du, L. Tan, J. Ma, and Y. Jiang, “Temporal-frequency spectra for optical wave propagating through non-Kolmogorov turbulence,” Opt. Express 18(6), 5763–5775 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-6-5763 .
[Crossref] [PubMed]

L. Tan, W. Du, and J. Ma, “Effect of the outer scale on the angle of arrival variance for free-space-laser beam corrugated by non-Kolmogorov turbulence,” J. Russ. Laser Res. 30(6), 552–559 (2009).
[Crossref]

W. Du, S. Yu, L. Tan, J. Ma, Y. Jiang, and W. Xie, “Angle-of-arrival fluctuations for wave propagation through non-Kolmolgorov turbulence,” Opt. Commun. 282(5), 705–708 (2009).
[Crossref]

Martin, F.

Masciadri, E.

E. Masciadri, J. Vernin, and P. Bougeault, “3D mapping of optical turbulence using an atmospheric numerical model. I. A useful tool for the ground-based astronomy,” Astron. Astrophys. Suppl. Ser. 137(1), 185–202 (1999).
[Crossref]

Muschinski, A.

Phillips, R. L.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence,” Proc. SPIE 6551, 65510E, 65510E-12 (2007).
[Crossref]

Preble, A. J.

D. T. Kyrazis, J. B. Wissler, D. B. Keating, A. J. Preble, and K. P. Bishop, “Measurement of optical turbulence in the upper troposphere and lower stratosphere,” Proc. SPIE 2120, 43–55 (1994).
[Crossref]

Reed, A. E.

M. J. Vilcheck, A. E. Reed, and H. R. Burris, “Multiple methods for measuring atmospheric turbulence,” Proc. SPIE 4821, 300–309 (2002).
[Crossref]

Rye, V. A.

M. S. Belen’kii, E. Cuellar, K. A. Hughes, and V. A. Rye, “Experimental study of spatial structure of turbulence at Maui Space Surveillance Site (MSSS),” Proc. SPIE 6304, 63040U, 63040U-12 (2006).
[Crossref]

Shtemler, Y.

A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, and Y. Shtemler, “Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov trubulence,” Atmos. Res. 88(1), 66–77 (2008).
[Crossref]

Tan, L.

W. Du, L. Tan, J. Ma, and Y. Jiang, “Temporal-frequency spectra for optical wave propagating through non-Kolmogorov turbulence,” Opt. Express 18(6), 5763–5775 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-6-5763 .
[Crossref] [PubMed]

L. Tan, W. Du, and J. Ma, “Effect of the outer scale on the angle of arrival variance for free-space-laser beam corrugated by non-Kolmogorov turbulence,” J. Russ. Laser Res. 30(6), 552–559 (2009).
[Crossref]

W. Du, S. Yu, L. Tan, J. Ma, Y. Jiang, and W. Xie, “Angle-of-arrival fluctuations for wave propagation through non-Kolmolgorov turbulence,” Opt. Commun. 282(5), 705–708 (2009).
[Crossref]

Tofsted, D. H.

Toselli, I.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence,” Proc. SPIE 6551, 65510E, 65510E-12 (2007).
[Crossref]

Vernin, J.

E. Masciadri, J. Vernin, and P. Bougeault, “3D mapping of optical turbulence using an atmospheric numerical model. I. A useful tool for the ground-based astronomy,” Astron. Astrophys. Suppl. Ser. 137(1), 185–202 (1999).
[Crossref]

Vilcheck, M. J.

M. J. Vilcheck, A. E. Reed, and H. R. Burris, “Multiple methods for measuring atmospheric turbulence,” Proc. SPIE 4821, 300–309 (2002).
[Crossref]

Virtser, A.

A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, and Y. Shtemler, “Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov trubulence,” Atmos. Res. 88(1), 66–77 (2008).
[Crossref]

Wang, J. N.

Wissler, J. B.

D. T. Kyrazis, J. B. Wissler, D. B. Keating, A. J. Preble, and K. P. Bishop, “Measurement of optical turbulence in the upper troposphere and lower stratosphere,” Proc. SPIE 2120, 43–55 (1994).
[Crossref]

Xie, W.

W. Du, S. Yu, L. Tan, J. Ma, Y. Jiang, and W. Xie, “Angle-of-arrival fluctuations for wave propagation through non-Kolmolgorov turbulence,” Opt. Commun. 282(5), 705–708 (2009).
[Crossref]

Xue, B. D.

Yu, S.

W. Du, S. Yu, L. Tan, J. Ma, Y. Jiang, and W. Xie, “Angle-of-arrival fluctuations for wave propagation through non-Kolmolgorov turbulence,” Opt. Commun. 282(5), 705–708 (2009).
[Crossref]

Ziad, A.

Zilberman, A.

A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, and Y. Shtemler, “Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov trubulence,” Atmos. Res. 88(1), 66–77 (2008).
[Crossref]

Appl. Opt. (1)

Astron. Astrophys. Suppl. Ser. (1)

E. Masciadri, J. Vernin, and P. Bougeault, “3D mapping of optical turbulence using an atmospheric numerical model. I. A useful tool for the ground-based astronomy,” Astron. Astrophys. Suppl. Ser. 137(1), 185–202 (1999).
[Crossref]

Atmos. Res. (1)

A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, and Y. Shtemler, “Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov trubulence,” Atmos. Res. 88(1), 66–77 (2008).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Russ. Laser Res. (1)

L. Tan, W. Du, and J. Ma, “Effect of the outer scale on the angle of arrival variance for free-space-laser beam corrugated by non-Kolmogorov turbulence,” J. Russ. Laser Res. 30(6), 552–559 (2009).
[Crossref]

Opt. Commun. (1)

W. Du, S. Yu, L. Tan, J. Ma, Y. Jiang, and W. Xie, “Angle-of-arrival fluctuations for wave propagation through non-Kolmolgorov turbulence,” Opt. Commun. 282(5), 705–708 (2009).
[Crossref]

Opt. Eng. (2)

H. T. Eyyuboglu and Y. Baykal, “Analysis of laser multimode content on the angle-of-arrival fluctuations in free-space optics access systems,” Opt. Eng. 44(5), 056002 (2005).
[Crossref]

H. T. Eyyuboğlu and Y. Baykal, “Angle-of-arrival fluctuations for general-type beams,” Opt. Eng. 46(9), 096001 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (5)

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence,” Proc. SPIE 6551, 65510E, 65510E-12 (2007).
[Crossref]

D. T. Kyrazis, J. B. Wissler, D. B. Keating, A. J. Preble, and K. P. Bishop, “Measurement of optical turbulence in the upper troposphere and lower stratosphere,” Proc. SPIE 2120, 43–55 (1994).
[Crossref]

M. S. Belen’kii, S. J. Karis, J. M. Brown, and R. Q. Fugate, “Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE 3126, 113–123 (1997).
[Crossref]

M. S. Belen’kii, E. Cuellar, K. A. Hughes, and V. A. Rye, “Experimental study of spatial structure of turbulence at Maui Space Surveillance Site (MSSS),” Proc. SPIE 6304, 63040U, 63040U-12 (2006).
[Crossref]

M. J. Vilcheck, A. E. Reed, and H. R. Burris, “Multiple methods for measuring atmospheric turbulence,” Proc. SPIE 4821, 300–309 (2002).
[Crossref]

Other (6)

R. J. Hill, “Review of optical scintillation methods of measuring the refractive-index spectrum, inner scale and surface fluxes,” Waves in Random and Complex Media 2, 179–201 (1992). http://dx.doi.org/10.1088/0959-7174/2/3/001 .

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (trans. for NOAA by Israel Program for Scientific Translations, Jerusalem, 1971).

A. D. Wheelon, Electromagnetic Scintillation. I. Geometrical Optics (Cambridge U. Press, 2001).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, Bellingham, 2005).

L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed. (SPIE Optical Engineering Press, Bellingham, Wash., 1998).

C. Ho, and A. Wheelon, “Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-band Downlink,” Jet Propulsion Laboratory, California (2004). http://ipnpr.jpl.nasa.gov/progress_report/42-158/158F.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 β ( α ) as a function of α.
Fig. 2
Fig. 2 Variance of AOA fluctuations as a function of α with different wavelength values. (a): plane wave. (b): spherical wave.
Fig. 3
Fig. 3 Variance of AOA fluctuations as a function of α with different inner scale values.(a): plane wave. (b): spherical wave.
Fig. 4
Fig. 4 Variance of AOA fluctuations as a function of α with different outer scale values. (a): plane wave. (b): spherical wave.
Fig. 5
Fig. 5 Variance of AOA fluctuations as a function of α with different Dvalues. (a): plane wave. (b): spherical wave.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

Φ n ( κ , α , l 0 , L 0 ) = A ( α ) C n 2 κ α f ( k , l 0 , L 0 , α ) ( 0 κ < , 3 < α < 5 ) ,
f ( κ , l 0 , L 0 , α ) = [ 1 exp ( κ 2 / κ 0 2 ) ] exp ( κ 2 / κ l 2 ) .
A ( α ) = Γ ( α 1 ) 4 π 2 sin [ ( α 3 ) π 2 ] , c ( α ) = { π A ( α ) [ Γ ( α 2 + 3 2 ) ( 3 α 3 ) } 1 α 5 .
Φ n ( κ , α ) = A ( α ) C n 2 κ α ( 0 κ < , 3 < α < 5 ) .
σ 2 = π 2 L 0 d κ 0 1 d ξ κ 3 Φ n ( κ ) h ( κ , ξ ) ,
h p l ( κ ) = [ 1 + k κ 2 L sin ( κ 2 L k ) ] A ( a κ ) ,
h s p ( κ ) = [ 1 + cos ( κ 2 ξ ( 1 ξ ) L k ) ] ξ 2 A ( a κ ξ ) ,
A ( x ) = [ 2 J 1 ( x ) x ] 2 ,
A ( x ) exp [ ( β x ) 2 ] .
β ( α ) = 1 2 { Γ ( α 1 ) [ Γ ( α / 2 ) ] 2 + Γ ( 1 + α / 2 ) } 1 / ( α 4 ) , ( 3 < α < 4 ) .
σ ( p l ) 2 = π 2 L 0 d κ 0 1 d ξ κ 3 Φ n ( κ ) [ 1 + k L κ 2 sin ( L κ 2 k ) ] exp [ β 2 D 2 κ 2 4 ] ,
σ ( p l ) 2 ( α , λ , D , l 0 , L 0 ) = π 2 L 0 d κ 0 1 d ξ κ 3 Φ n ( κ , α , l 0 , L 0 ) [ 1 + k L κ 2 sin ( L κ 2 k ) ] exp [ β 2 D 2 κ 2 4 ] ,
f ( κ , l 0 , L 0 , α ) = f 1 ( κ , l 0 , L 0 , α ) + f 2 ( κ , l 0 , L 0 , α ) , f 1 ( κ , l 0 , L 0 , α ) = exp ( κ 2 / k l 2 ) , f 2 ( κ , l 0 , L 0 , α ) = exp [ κ 2 ( 1 / k 0 2 + 1 / k l 2 ) ] .
Γ ( x ) = 0 κ x 1 e κ d κ ,
0 κ μ 1 exp ( a κ ) sin ( b κ ) d κ = Γ ( μ ) ( a 2 + b 2 ) μ / 2 sin [ μ tan 1 ( b a ) ] ,
σ ( p l ) 2 ( α , λ , D , l 0 , L 0 ) = π 2 A ( α ) C n 2 L [ g 1 ( A 11 , B 11 , C 11 ) g 1 ( A 21 , B 21 , C 21 ) ] ,
g 1 ( A i j , B i j , C i j ) = 1 2 Γ ( A i j + 1 2 ) B i j A i j + 1 2 + 1 2 C i j Γ ( A i j 1 2 ) ( B i j 2 + C i j 2 ) A i j 1 4 sin [ A i j 1 2 tan 1 ( C i j B i j ) ] ,
σ ( s p ) 2 = π 2 L 0 d κ 0 1 d ξ κ 3 Φ n ( κ ) [ 1 + cos ( κ 2 ξ ( 1 ξ ) L k ) ] ξ 2 exp [ β 2 D 2 κ 2 ξ 2 4 ] ,
σ ( s p ) 2 ( α , λ , D , l 0 , L 0 ) = π 2 L 0 0 1 κ 3 Φ n ( κ , α , l 0 , L 0 ) [ 1 + cos ( κ 2 ξ ( 1 ξ ) L k ) ] ξ 2 exp [ ( β D κ ξ ) 2 4 ] d κ d ξ .
F 2 1 ( A , B ; C ; Z ) = Γ ( C ) Γ ( B ) Γ ( C B ) 0 1 t B 1 ( 1 t ) C B 1 ( 1 t Z ) A d t .
σ s p 2 ( α , λ , D , l 0 , L 0 ) = π 2 A ( α ) C n 2 L [ g 2 ( A 11 , B 11 , C 11 ) g 2 ( A 21 , B 21 , C 21 ) ] .
g 2 ( A i j , B i j , C i j ) = 1 2 Γ ( A i j + 1 2 ) { 1 3 B i j A i j + 1 2 F 2 1 ( A i j + 1 2 , 3 2 ; 5 2 ; b 2 B i j ) + Re { 0 1 ξ 2 [ B i j + b 2 ξ 2 + i C i j ξ ( 1 ξ ) ] A i j + 1 2 d ξ } } .
B 11 = 1 k l 2 , B 21 = 1 k l 2 + 1 k 0 2 , b 2 = β 2 D 2 4 .
Re { 0 1 ξ 2 [ B 11 + b 2 ξ 2 + i C 11 ξ ( 1 ξ ) ] A 11 + 1 2 d ξ } Re { 0 1 ξ 2 [ b 2 ξ 2 + i C 11 ξ ( 1 ξ ) ] A 11 + 1 2 d ξ } = Re [ ( i C 11 ) A 11 + 1 2 2 5 A 11 F 2 1 ( A 11 + 1 2 , 5 A 11 2 ; 7 A 11 2 ; 1 + i b 2 C 11 ) ] ,
Re { 0 1 ξ 2 [ B 21 + b 2 ξ 2 + i C 21 ξ ( 1 ξ ) ] A 21 + 1 2 d ξ } 0 1 ξ 2 [ B 21 + b 2 ξ 2 ] A 21 + 1 2 d ξ = 1 3 B 21 A i j + 1 2 F 2 1 ( A 21 + 1 2 , 3 2 ; 5 2 ; b 2 B 21 ) .
σ s p 2 ( α , λ , D , l 0 , L 0 ) = π 2 A ( α ) C n 2 L [ g 2 ( A 11 , B 11 , C 11 ) g 2 ( A 21 , B 21 , C 21 ) ] ,
g 2 ( A 11 , B 11 , C 11 ) = 1 2 Γ ( A 11 + 1 2 ) { 1 3 B 11 A 11 + 1 2 F 2 1 ( A 11 + 1 2 , 1 2 ; 3 2 ; b 2 B 11 ) Re [ ( i C 11 ) A 11 + 1 2 2 5 A 11 F 2 1 ( A 11 + 1 2 , 5 A 11 2 ; 7 A 11 2 ; 1 + i b 2 C 11 ) ] } ,
g 2 ( A 21 , B 21 , C 21 ) = 1 3 Γ ( A 21 + 1 2 ) B 21 A 21 + 1 2 F 2 1 ( A 21 + 1 2 , 1 2 ; 3 2 ; b 2 B 21 ) .
C n 2 = 1 × 10 14 m 3 α   ,   L = 1000 m

Metrics